E5C  Impedance diagrams: Basic principles of Smith charts; impedance

of RLC networks at specified frequencies

 

E5C01 (A)

What type of graph can be used to calculate impedance along transmission lines?

A.  A Smith chart

B.  A logarithmic chart

C.  A Jones chart

D.  A radiation pattern chart

 

E5C02 (B)

What type of coordinate system is used in a Smith chart?

A.  Voltage and current circles

B.  Resistance and reactance circles

C.  Voltage and current lines

D.  Resistance and reactance lines

 

E5C03 (C)

What type of calculations can be performed using a Smith chart?

A.  Beam headings and radiation patterns

B.  Satellite azimuth and elevation bearings

C.  Impedance and SWR values in transmission lines

D.  Circuit gain calculations

 

E5C04 (C)

What are the two families of circles that make up a Smith chart?

A.  Resistance and voltage

B.  Reactance and voltage

C.  Resistance and reactance

D.  Voltage and impedance

 

E5C05 (A)

What type of chart is shown in Figure E5-1?

A.  Smith chart

B.  Free-space radiation directivity chart

C.  Vertical-space radiation pattern chart

D.  Horizontal-space radiation pattern chart

 

E5C06 (B)

On the Smith chart shown in Figure E5-1, what is the name for the large outer circle bounding the coordinate portion of the chart?

A.  Prime axis

B.  Reactance axis

C.  Impedance axis

D.  Polar axis

 

E5C07 (D)

On the Smith chart shown in Figure E5-1, what is the only straight line shown?

A.  The reactance axis

B.  The current axis

C.  The voltage axis

D.  The resistance axis

 

E5C08 (C)

What is the process of normalizing with regard to a Smith chart?

A.  Reassigning resistance values with regard to the reactance axis

B.  Reassigning reactance values with regard to the resistance axis

C.  Reassigning resistance values with regard to the prime center

D.  Reassigning prime center with regard to the reactance axis

 

E5C09 (A)

What is the third family of circles, which are added to a Smith chart during the process of solving problems?

A.  Standing-wave ratio circles

B.  Antenna-length circles

C.  Coaxial-length circles

D.  Radiation-pattern circles

 

E5C10 (A)

In rectangular coordinates, what is the impedance of a network comprised of a 10-microhenry inductor in series with a 40-ohm resistor at 500 MHz?

A.  40 + j31,400

B.  40 - j31,400

C.  31,400 + j40

D.  31,400 - j40

 

E5C11 (C)

In polar coordinates, what is the impedance of a network comprised of a 100-picofarad capacitor in parallel with a 4,000-ohm resistor at 500 kHz?

A.  2490 ohms, /__51.5_degrees__

B.  4000 ohms, /__38.5_degrees__

C.  2490 ohms, /__-51.5_degrees__

D.  5112 ohms, /__-38.5_degrees__

 

E5C12 (D)

Which point on Figure E5-2 best represents the impedance of a series circuit consisting of a 300-ohm resistor, a 0.64-microhenry inductor and a 85-picofarad capacitor at 24.900 MHz?

A.  Point 1

B.  Point 3

C.  Point 5

D.  Point 8


E1A | E1B | E1C | E1D | E1E | E1F | E1G | E2A | E2B | E2C

E2D | E3A | E3B | E4A | E4B | E4C | E4D | E4E | E5A | E5B

E5C | E5D | E5E | E5F | E5G | E5H | E6A | E6B | E6C | E6D

E6E | E7A | E7B | E7C | E7D | E7E | E7F | E7G | E8A | E8B

E8C | E8D | E8E | E9A | E9B | E9C | E9D | E9E