Marcus Martins / Minas Gerais / São Paulo / BRASIL

O  UNIVERSO

A palavra Universo deriva do francês antigo Univers que por sua vez deriva do latim universum. A palavra latina foi usada por Cícero (Marco Túlio Cícero, em latim Marcus Tullius Cicero - Arpino, 3 de Janeiro de 106 a.C. — Formia, 7 de Dezembro de 43 a.C., foi um filósofo, orador, escritor, advogado e político romano. Cícero é normalmente visto como sendo uma das mentes mais versáteis da Roma antiga). A palavra latina é derivada da contração poética Unvorsum — usada primeiramente por Lucrécio (Tito Lucrécio Caro - em latim: Titus Lucretius Carus; ca. 99 a.C. – ca. 55 a.C.). Cicero  foi poeta e filósofo latino que viveu no século I a.C. Universum foi usada no Livro IV (linha 262) de seu De rerum natura (Sobre a Natureza das coisas) — que conecta un, uni (a forma combinada de unus, ou "one") com vorsum, versum (um substantivo derivado do particípio passivo perfeito de vertere, que significa "algo rodado, rolado ou mudado"). Lucrécio usou a palavra com o sentido "tudo em um só, tudo combinado em um". Uma interpretação alternativa de unvorsum é "tudo girando como um" ou "tudo girando através de um". Nesse sentido, pode ser considerada a tradução de uma palavra para Universo no grego antigo, περιφορα, "algo transportado em um círculo", originalmente utilizada para descrever o percurso de uma refeição, a comida sendo carregada em torno de um círculo de mesas.

O Universo é constituído de tudo o que existe fisicamente, a totalidade do espaço e tempo e todas as formas de matéria e energia. O termo Universo pode ser usado em sentidos contextuais ligeiramente diferentes, denotando conceitos como o cosmo, o mundo ou natureza. Cosmo ou cosmos (do grego antigo κόσμος, transl. kósmos, "ordem", "organização","beleza","harmonia") é um termo que designa o universo em seu conjunto, toda a estrutura universal em sua totalidade, desde o microcosmo ao macrocosmo. O cosmo é a totalidade de todas as coisas deste Universo ordenado, desde as estrelas, até as partículas subatômicas. Pode ser estudado na Cosmologia. O astrônomo Carl Sagan define o termo cosmos como sendo "tudo o que já foi, tudo o que é e tudo que será". O filósofo grego Pitágoras foi o primeiro a utilizar o termo "cosmos" para referenciar o Universo, talvez querendo se referir ao firmamento de estrelas. Mundo é um termo utilizado em diversos contextos como sinónimo de planeta Terra ou mesmo para quaisquer outros corpos celestes assemelhados aos planetas, especialmente os rochosos. O termo carrega consigo ainda um ponto de vista humano, como um lugar que é ou que poderia ser habitado por seres humanos. Frequentemente é usado para querer dizer a soma de experiência humana na história, ou a 'condição humana' em geral. Especialmente num contexto metafísico, também pode referir a tudo que compõe a realidade, o universo. O termo mundo distingue o planeta inteiro ou a população de qualquer país ou região em particular: negócios mundiais são esses que pertencem não só a um lugar mas ao mundo inteiro, e história mundial é um campo de história que examina acontecimentos de uma perspectiva global (além do aspecto nacional). A terra, por outro lado, refere-se à planeta como uma entidade física, e distingue de outras planetas e objetos físicos. Em teologia cristã, o 'Mundo' conota a ordem mortal corrupta da sociedade fora da comunidade de crentes. Frequentemente é citado ao lado da carne e o Demônio como uma fonte de tentação que cristãos devem fugir. O adjetivo mundialmente refere-se a mundo neste sentido: O 'mortal', 'banal', 'dedicou aos interesses deste mundo'. A natureza, em seu sentido mais amplo, é equivalente ao "mundo natural" ou "universo físico". O termo "natureza" faz referência aos fenômenos do mundo físico, e também à vida em geral. Geralmente não inclui os objetos construídos pelo homem. A palavra "natureza" provém da palavra latina natura, que significa "qualidade essencial, disposição inata, o curso das coisas e o próprio universo". Natura é a tradução para o latim da palavra grega physis (φύσις), que em seu significado original fazia referência à forma inata que crescem espontaneamente plantas e animais. O conceito de natureza como um todo — o universo físico — é um conceito mais recente que adquiriu um uso cada vez mais amplo com o desenvolvimento do método científico moderno nos últimos séculos.

A palavra Universo é geralmente definida como englobando tudo. Entretanto, usando uma definição alternativa, alguns cosmologistas têm especulado que o "Universo", composto do "espaço em expansão como o conhecemos", é somente um dos muitos "universos", desconectados ou não, que são chamados multiversos. Por exemplo, em Interpretação de muitos mundos (IMM), novos "universos" são gerados a cada medição quântica. Acredita-se, neste momento, que esses universos são geralmente desconectados do nosso, portanto, impossíveis de serem detectados experimentalmente. Observações de partes antigas do universo (que situam-se muito afastadas) sugerem que o Universo vem sendo regido pelas mesmas leis físicas e constantes durante a maior parte de sua extensão e história. No entanto, na teoria da bolha, pode haver uma infinidade de "universos" criados de várias maneiras, e talvez cada um com diferentes constantes físicas.

Cosmologia (do grego κοσμολογία, κόσμος="cosmos"/"ordem"/"mundo" + -λογία="discurso"/"estudo") é o ramo da astronomia que estuda a origem, estrutura e evolução do Universo a partir da aplicação de métodos científicos  A Cosmologia muitas vezes é confundida com a Astrofísica que é o ramo da Astronomia que estuda a estrutura e as propriedades dos objetos celestes e o universo como um todo através da Física teórica. A confusão ocorre porque ambas ciências sob alguns aspectos seguem caminhos paralelos, e muitas vezes considerados redundantes, embora não o sejam.

Sol (do latim sol, solis) é a estrela central do Sistema Solar. Todos os outros corpos do Sistema Solar, como planetas, planetas anões, asteroides, cometas e poeira, bem como todos os satélites associados a estes corpos, giram ao seu redor. Responsável por 99,86% da massa do Sistema Solar, o Sol possui uma massa 332 900 vezes maior que a da Terra, e um volume 1 300 000 vezes maior que o do nosso planeta. A distância da Terra ao Sol é de cerca de 150 milhões de quilômetros, ou 1 unidade astronômica (UA). Na verdade, esta distância varia com o ano, de um mínimo de 147,1 milhões de quilômetros (0,9833 UA) no perélio (ou periélio) a um máximo de 152,1 milhões de quilômetros (1,017 UA) no afélio, em torno de 4 de julho. A luz solar demora aproximadamente 8 minutos e 18 segundos para chegar à Terra. Energia do Sol na forma de luz solar é armazenada em glicose por organismos vivos através da fotossíntese, processo do qual, direta ou indiretamente, dependem todos os seres vivos que habitam nosso planeta. A energia do Sol também é responsável pelos fenômenos meteorológicos e o clima na Terra. É composto primariamente de hidrogênio (74% de sua massa, ou 92% de seu volume) e hélio (24% da massa solar, 7% do volume solar), com traços de outros elementos, incluindo ferro, níquel, oxigênio, silício, enxofre, magnésio, néon, cálcio e crômio.

O Sistema Solar compreende o conjunto constituído pelo Sol e todos os corpos celestes que estão sob seu domínio gravitacional. A estrela central, maior componente do sistema (respondendo por mais de 99,85% da massa total), gera sua energia através da fusão de hidrogênio em hélio, dois de seus principais constituintes. Os quatro planetas mais próximos do Sol (Mercúrio, Vênus, Terra e Marte) possuem em comum uma crosta sólida e rochosa, razão pela qual se classificam no grupo dos planetas telúricos. Mais afastados, os quatro gigantes gasosos, Júpiter, Saturno, Urano e Netuno, são os componentes de maior massa do sistema logo após o próprio Sol. Dos cinco planetas anões, Ceres é o que se localiza mais próximo do centro do Sistema Solar, enquanto todos os outros, Plutão, Haumea, Éris e Makemake, se encontram além da órbita de Netuno.

          

 Raia espectral, risca espetral ou linha espectral é o resultado de uma transição quântica que pode ser observado macroscopicamente. Estas linhas se apresentam, como revelações em algum tipo de material, e são a maneira mais simples de se detectar as transições quânticas. Quando uma transição entre níveis de energia ocorre em uma determinada amostra, ela emite ou absorve radiação eletromagnética em frequências discretas características. Onde essa radiação incide sobre a chapa reveladora, a cor da mesma é mudada. Colocando-se um prisma que separa as frequências da luz emitida antes da chapa reveladora, a chapa irá revelar em alturas discretas, formando as linhas espectrais. Pode-se determinar em quais frequencias discretas determinada amostra emitiu, e assim estudar suas características microscópicas.

Desvio para o vermelho - Em termos muito simples o desvio para o vermelho (também conhecido pelo termo inglês redshift) corresponde a uma alteração na forma como a freqüência das ondas de luz é observada no espectroscópio em função da velocidade relativa entre a fonte emissora e o receptor observador. Devido à invariância da velocidade da luz no vácuo e admitindo um emissor e um receptor em repouso relativo, um raio de luz é captado como uma cor padrão em função de sua frequência. Na descrição ondulatória, o período (inverso da frequência da luz) é definido pelo intervalo de tempo medido entre duas cristas consecutivas da onda. Quando o emissor e o observador estão em repouso relativo, ambos medem a mesma frequência. Se o emissor (fonte de luz) se move na direcção do receptor, o intervalo de tempo que o receptor mede entre duas cristas consecutivas será inferior ao medido pelo emissor, logo o receptor observa um desvio para a gama de cores de mais elevada freqüência (desvio para o azul no espectro). Se o emissor (fonte) se afasta do receptor observador, o intervalo de tempo que este mede entre duas cristas consecutivas aumenta, observando um desvio para a gama de cores de mais baixa freqüência (desvio para o vermelho no espectro). O mesmo fenômeno ocorre quando o receptor se move em direção ou em fuga da fonte, pois o que importa é a velocidade relativa entre a fonte e o receptor. O desvio para o vermelho pode ter três causas distintas: o Efeito Doppler descrito acima, o campo gravitacional da fonte (a luz perde energia ao subir no campo gravitacional da estrela) e a expansão do Universo ("redshift" cosmológico). No "redshift" cosmológico o desvio ocorre devido à expansão do espaço em si, isto é, o comprimento de onda aumenta diretamente como resultado da expansão do espaço.

A Interpretação de muitos mundos (ou IMM) é uma interpretação da mecânica quântica que propõe a existência de múltiplos "universos paralelos". A IMM foi formulada inicialmente por Hugh Everett para a explicação de alguns processos não determinísticos (tais como medição) na mecânica quântica. Embora varias versões de IMM tenham sido propostas desde o trabalho original de Everett, todas compartilham duas idéias chaves. A primeira delas é a existência de uma função estado para todo universo a qual obedece a equação de Schrödinger para todo tempo e para a qual não há processo de colapso da onda. A segunda idéia é que este estado universal é uma sobreposição quântica de vários, possivelmente infinitos, estados de idênticos universos paralelos não comunicantes. As idéias da IMM originaram-se na tese de Ph. D. de Hugh Everett na Universidade de Princeton, mas a frase “muitos mundos” é devida a Bryce DeWitt, que posteriormente desenvolveu algumas das idéias presentes no trabalho original de Everett. A formulação de DeWitt tornou-se tão popular que muitos confundem-na com o trabalho original de Everett. Ao longo da história, varias cosmologias têm sido propostas para explicar as observações do Universo. O primeiro modelo geocêntrico quantitativo foi desenvolvido pelos gregos antigos, que propunham que o Universo possui espaço infinito e tem existido eternamente, mas contém um único conjunto de círculos concêntricos esferas de tamanho finito - o que corresponde a estrelas fixas, o Sol e vários planetas girando sobre uma esférica mas imóvel Terra. Ao longo dos séculos, observações mais precisas e melhores teorias levaram ao modelo heliocêntrico de Copérnico e ao modelo newtoniano do Sistema Solar respectivamente. Outras descobertas na astronomia levaram a conclusão de que o Sistema Solar está contido em uma galáxia composta de milhões de estrelas, a Via Láctea, e de que outras galáxias existem fora dela, tão longe quanto os instrumentos astronômicos podem alcançar. Estudos cuidadosos sobre a distribuição dessas galáxias e suas raias espectrais contribuíram muito para a cosmologia moderna. O descobrimento do desvio para o vermelho e da radiação cósmica de fundo em micro-ondas revelaram que o Universo continua se expandindo e aparentemente teve um princípio.

Em Cosmologia, a radiação cósmica de fundo em micro-ondas é uma forma de radiação eletromagnética, cuja existência foi prevista teoricamente por George Gamov, Ralph Alpher e Robert Herman em 1948, e que foi descoberta experimentalmente em 1965 por Arno Penzias e Robert Woodrow Wilson. Ela se caracteriza por apresentar um espectro térmico de corpo negro com intensidade máxima na faixa de micro-ondas. A radiação cósmica de fundo em micro-ondas é, ao lado do afastamento das galáxias e da abundância de elementos leves, uma das mais fortes evidências observacionais do modelo do Big Bang, que descreve a evolução do universo. Penzias e Wilson receberam o Nobel de Física em 1978 por essa descoberta.

De acordo com o modelo científico vigente do Universo, conhecido como Big Bang, o Universo surgiu de um único ponto ou singularidade onde toda a matéria e energia do universo observável encontrava-se concentrada numa fase densa e extremamente quente chamada Era de Planck. A partir da Era Planck, o Universo vem se expandindo até sua atual forma, possivelmente com curtos períodos (menos que 10−32 segundos) de inflação cósmica. Diversas medições experimentais independentes apoiam teoricamente tal expansão e a Teoria do Big Bang. Esta expansão tem-se acelerado por ação da energia escura, uma força oposta à gravidade que está agindo mais que esta devido ao fato das dimensões do Universo serem grandes o bastante para dissipar a força gravitacional. Porém, devido ao escasso conhecimento a respeito da energia escura, é ainda pequeno o entendimento do fenômeno e sua influência no destino do Universo. Atuais interpretações de observações astronômicas indicam que a idade do Universo é de 13,73 (± 0,12) bilhões de anos, e seu diâmetro é de 93 bilhões de anos-luz ou 8,80 ×1026 metros. De acordo com a teoria da relatividade geral, o espaço pode expandir-se tão rápido quanto a velocidade da luz, embora possamos ver somente uma pequena fração do universo devido à limitação imposta pela velocidade da luz. É incerto se a dimensão do espaço é finita ou infinita.

 

O Big Bang, também por vezes denominada em português como a Grande Explosão, é a teoria cosmológica dominante do desenvolvimento inicial do universo. Os cosmólogos usam o termo "Big Bang" para se referir à ideia de que o universo estava originalmente muito quente e denso em algum tempo finito no passado e, desde então tem se resfriado pela expansão ao estado diluído atual e continua em expansão atualmente. A teoria é sustentada por explicações mais completas e precisas a partir de evidências científicas disponíveis e da observação. De acordo com as melhores medições disponíveis em 2010, as condições iniciais ocorreram por volta de 13,3 a 13,9 bilhões de anos atrás. O Universo subdivide-se em Aglomerados de Galáxias, que se subdividem em grupos de galáxias (com aproximadamente entre 3 e 5 milhões de anos luz de diâmetro), que se subdividem em galáxias, que se subdividem em sistemas solares, que contêm corpos celestes, como estrelas, planetas, asteroides, entre outros. O Big Bang, também por vezes denominada em português como a Grande Explosão, é a teoria cosmológica dominante do desenvolvimento inicial do universo. Os cosmólogos usam o termo "Big Bang" para se referir à ideia de que o universo estava originalmente muito quente e denso em algum tempo finito no passado e, desde então tem se resfriado pela expansão ao estado diluído atual e continua em expansão atualmente. A teoria é sustentada por explicações mais completas e precisas a partir de evidências científicas disponíveis e da observação. De acordo com as melhores medições disponíveis em 2010, as condições iniciais ocorreram por volta de 13,3 a 13,9 bilhões de anos atrás.

Em cosmologia, a era de Planck, também chamada de época de Planck ou ainda período de Planck é o mais antigo período de tempo (o mais longínquo de nosso atual momento) na história do universo, entre zero e 10−43 segundos (um tempo de Planck), durante o qual as quatro forças fundamentais estavam unificadas e não existiam partículas elementares. A mecânica quântica padrão diz que não tem sentido falar-se de intervalos menores que um tempo de Planck ou de distâncias menores que um comprimento de Planck. Em consequência, a história do universo deve ser contada a partir do momento em que culmina o primeiro tempo de Planck. Igualmente, o volume do universo deve-se contar a partir do primeira comprimento de Planck de diâmetro em lugar de zero, de maneira que nunca houve uma singularidade de densidade infinita.

A expansão métrica do espaço-tempo ou expansão métrica do universo é uma peça chave da ciência atual para compreender o Universo, através da qual o próprio espaço-tempo é descrito por um métrica que relaciona-se com o tempo de tal maneira que as dimensões espaciais parecem crescer ou estender-se à medida que o Universo envelhece. Explica como se expande o Universo no modelo do Big Bang, uma característica de nosso Universo suportada por todos os experimentos e observações cosmológicas, cálculos astrofísicos e medidas até agora. A métrica que descreve formalmente a expansão no modelo padrão do Big Bang designa-se como Métrica de Friedman-Lemaître-Robertson-Walker ou Modelo FLRW. A expansão do espaço é conceitualmente diferente de outros tipos de expansões e explosões que são vistas na natureza. Nossa compreensão do "cenário do Universo" (o espaço-tempo) necessita que o espaço, o tempo e a distância não sejam absolutos, senão que são obtidos a partir de uma métrica que pode modificar-se. Na métrica de expansão do espaço, mais que objetos num espaço fixo distribuindo-se até o vazio, é o espaço que contém os objetos e que está modificando-se propriamente falando. É como se os objetos não se movessem por si mesmos, é o espaço que está "crescendo" de alguma maneira entre eles. Devido a que é a métrica que define a distância que está alterando-se mais que os objetos movendo-se no espaço, esta expansão (e o movimento resultante são objetos afastando-se) não está limitada pela velocidade da luz, limitação esta que é resultante da relatividade especial. A teoria e as observações sugerem que muito no princípio da história do Universo houve uma fase "inflacionária" onde esta métrica alterou-se muito rapidamente. A dependência do tempo restante que observamos desta métrica é a assim chamada expansão de Hubble, quantificando o afastamento de todos os objetos gravitacionalmente relacionados no Universo. O Universo em expansão é portanto uma característica fundamental do Universo em que habitamos, um Universo fundamentalmente diferente do Universo estático que Albert Einstein considerou ao princípio quando desenvolveu sua teoria gravitacional.

 

O derradeiro destino do Universo é um tema em cosmologia física. As teorias científicas rivais predizem se o Universo terá duração finita ou infinita. Uma vez que a noção de que o Universo iniciou com o Big Bang se tornou popular entre os cientistas, o destino final do Universo se converteu em uma pergunta cosmológica válida, dependendo da densidade média do Universo e a taxa de expansão. O Universo está atualmente em expansão. Entretanto, as medições que Allan R. Sandage realizou nos anos 1960 com seu telescópio de 200 polegadas (aproximadamente 5 metros) mostram que o ritmo de expansão atual é menor que o de há 1 bilhão de anos. Este fato pode implicar ou não que a expansão se detenha, permitindo duas alternativas para o destino último do Universo. Segundo as teorias cosmológicas atuais, a quantidade de matéria que há no Universo é a que decidirá o futuro do mesmo. Tem-se uma idéia bastante aproximada da quantidade de matéria visível que existe, mas não da quantidade de matéria escura, dependendo então desta o futuro do Universo. Pode-se calcular que se a densidade do Universo é menor que três átomos por metro cúbico, será insuficiente para travar a expansão, o Universo expandir-se-á indefinidamente (Big Rip) e será condenado a uma morte fria em meio da obscuridade mais absoluta. Neste caso os fenômenos físicos se encerrariam em uns 35 bilhões de anos. Mas se a massa for suficiente para deter a expansão, terá lugar o Big Crunch ou, o que é o mesmo, o Universo, forçado pela grande quantidade de massa, começará a comprimir-se até que, dentro de uns 20 bilhões de anos, acabe por colapsar em uma singularidade, algo parecido ao Big Bang, mas ao inverso ("Big Crunch"). Neste caso após o Big Crunch é possível que o Universo comece de novo com outro (ou, segundo o modelo cíclico, o mesmo) Big Bang.

Ano-luz (símbolo: ly, do inglês light-year) é uma medida de comprimento, com valor aproximado de 10 trilhões de quilômetros (1016 metros, perto de 6 trilhões de milhas). Conforme a definição da União Astronômica Internacional (UAI), um ano-luz é a distância que a luz atravessa no vácuo em um Ano Juliano. A medida ‘’Ano-luz’’ geralmente é usada para mensurar distâncias de estrelas e outras distâncias na escala intergaláctica, especialmente nas publicações populares ou não especializadas na área de ciência. A unidade de medida preferida pelos astrônomos é o parsec, pois esta pode ser mais facilmente derivada e comparada com dados da observação. Em astronomia, um Ano Juliano (símbolo:a) é a unidade de medida de tempo definido como exatos 365,25 dias de 86.400 SI segundos cada (Sistema Internacional de Unidades), totalizando 31.557.600 segundos. O ano juliano é a medida média de ano no calendário juliano usado pelas sociedades ocidentais em séculos anteriores, e dá o nome a unidade de medida. Não obstante, devido as durações da medidas do Ano Juliano designarem duração e não data, o Ano juliano não corresponde aos anos do Calendário Juliano, ou qualquer outro calendário.

 

Os aglomerados de galáxias ou cúmulos de galáxias são uma das maiores estruturas do Universo. Nelas inúmeras galáxias estão interagindo gravitacionalmente umas com as outras, chocando-se muitas vezes entre si mas normalmente estando equilibradas a uma certa distância. Jan Hendrik Oort foi o primeiro a demonstrar que as galáxias não estão distribuídas aleatoriamente no espaço, mas concentram-se em grupos. Mais tarde, quando a descoberta já estava assimilada pela comunidade científica, acreditou-se que os aglomerados de galáxias fossem as estruturas maiores encontradas no Universo. Entretanto, em 1953 descobriu-se os superaglomerados de galáxias, ou expressamente falando "aglomerados de aglomerados de galáxias", estruturas ainda maiores do Universo. Um dos mais impressionantes é o Aglomerado de Abell, são milhões de galáxias aparentemente infinitas.

Uma estrela é uma grande e luminosa esfera de plasma, mantida íntegra pela gravidade. Ao fim de sua vida, uma estrela pode conter também uma proporção de matéria degenerada. A estrela mais próxima da Terra é o Sol, que é a fonte da maior parte da energia do planeta. Outras estrelas são visíveis da Terra durante a noite, quando não são ofuscadas pela luz do Sol ou bloqueadas por fenômenos atmosféricos. Historicamente, as estrelas mais importantes da esfera celeste foram agrupadas em constelações e asterismos, e as estrelas mais brilhantes ganharam nomes próprios. Extensos catálogos de estrelas foram compostos pelos astrônomos, o que permite a existência de designações padronizadas. Pelo menos durante uma parte da sua vida, uma estrela brilha devido à fusão nuclear do hidrogênio no seu núcleo, liberando energia que atravessa o interior da estrela e irradia para o espaço sideral. Quase todos os elementos que ocorrem na natureza mais pesados que o hélio foram criados por estrelas, seja pela nucleossíntese estelar durante as suas vidas ou pela nucleossíntese de supernova quando as estrelas explodem. Os astrônomos podem determinar a massa, idade, composição química e muitas outras propriedades de uma estrela observando o seu espectro, luminosidade e movimento no espaço. A massa total de uma estrela é o principal determinante da sua evolução e possível destino. Outras características de uma estrela são determinadas pela história da sua evolução, inclusive o diâmetro, rotação, movimento e temperatura. Um diagrama da temperatura de muitas estrelas contra suas luminosidades, conhecido como Diagrama de Hertzsprung-Russell (Diagrama H-R), permite determinar a idade e o estado evolucionário de uma estrela. Uma estrela se forma pelo colapso de uma nuvem de material composta principalmente de hidrogênio e traços de elementos mais pesados. Uma vez que o núcleo estelar seja suficientemente denso, parte do hidrogênio é gradativamente convertido em hélio pelo processo de fusão nuclear. O restante do interior da estrela transporta a energia a partir do núcleo por uma combinação de processos radiantes e convectivos. A pressão interna da estrela impede que ela colapse devido a sua própria gravidade. Quando o combustível do núcleo (hidrogênio) se exaure, as estrelas que possuem pelo menos 40% da massa do Sol se expandem para se tornarem gigantes vermelhas, em alguns casos fundindo elementos mais pesados no núcleo ou em camadas em torno do núcleo. A estrela então evolui para uma forma degenerada, reciclando parte do material para o ambiente interestelar, onde será formada uma nova geração de estrelas com uma maior proporção de elementos pesados. Sistemas binários e multiestelares consistem de duas ou mais estrelas que estão gravitacionalmente ligadas, movendo-se umas em torno das outras em órbitas estáveis. Quando duas dessas estrelas estão em órbitas relativamente próximas, sua interação gravitacional pode causar um impacto significativo na sua evolução. As estrelas podem ser parte de uma estrutura de relacionamento gravitacional muito maior, como um aglomerado ou uma galáxia.

Um planeta (do grego πλανήτης, forma alternativa de πλάνης "errante") é um corpo celeste que orbita uma estrela ou um remanescente de estrela, com massa suficiente para se tornar esférico pela sua própria gravidade, mas não a ponto de causar fusão termonuclear, e que tenha limpado de planetesimais a sua região vizinha (dominância orbital). O termo planeta é antigo, com ligações com a história, ciência, mitologia e religião. Os planetas eram vistos por muitas culturas antigas como divinos ou emissários de deuses. À medida que o conhecimento científico evoluiu, a percepção humana sobre os planetas mudou, incorporando diversos tipos de objetos. Em 2006, a União Astronômica Internacional (UAI) adotou oficialmente uma resolução definindo planetas dentro do Sistema Solar, a qual tem sido elogiada e criticada, permanecendo em discussão entre alguns cientistas.  Ptolomeu imaginava que os planetas orbitavam a Terra, em movimentos do epiciclo e círculo deferente. Embora a ideia de que os planetas orbitavam o Sol tivesse sido sugerida muitas vezes, somente no século XVII esta visão foi suportada por evidências pelas primeiras observações telescópicas, realizadas por Galileu Galilei. Através da cuidadosa análise dos dados das observações, Johannes Kepler descobriu que as órbitas dos planetas não são circulares, mas elípticas. À medida que as ferramentas de observação foram desenvolvidas, os astrônomos perceberam que os planetas, como a Terra, giravam em torno de eixos inclinados e que alguns compartilhavam características como calotas polares e estações do ano. Desde o início da era espacial, observações mais próximas por meio de sondas demonstraram que a Terra e os outros planetas também compartilham características como vulcanismo, furacões, tectônica e até mesmo hidrologia.  Os planetas são geralmente divididos em dois tipos principais: os grandes e de baixa densidade planetas gigantes gasosos e os menores e rochosos planetas terrestres. Pelas definições da UAI, há oito planetas no Sistema Solar: em ordem crescente de distância do Sol, são os quatro planetas terrestres Mercúrio, Vênus, Terra e Marte, e depois os quatro gigantes gasosos Júpiter, Saturno, Urano e Netuno. Seis dos planetas são orbitados por um ou mais satélites naturais.  Além disso, o Sistema Solar possui também pelo menos cinco planetas anões e centenas de milhares de corpos menores do Sistema Solar.  Desde 1992, centenas de planetas orbitando outras estrelas (planetas extrassolares ou exoplanetas) foram descobertos na Via Láctea. Desde dezembro de 2010, mais de 500 planetas extrassolares conhecidos estão listados na Enciclopédia de Planetas Extrassolares, variando desde planetas terrestres maiores que a Terra até gigantes gasosos maiores do que Júpiter. A ideia de planeta evoluiu ao longo da história, desde as estrelas errantes divinas da antiguidade até os objetos concretos da era científica. O conceito se expandiu para incluir mundos não apenas no Sistema Solar, mas em centenas de outros sistemas extrassolares. As ambiguidades nas definições de planeta levaram a muita controvérsia científica.  Na antiguidade, os astrônomos notaram como certas luzes se moviam no céu em relação às outras estrelas. Os antigos gregos chamaram essas luzes "πλάνητες ἀστέρες" (planetes asteres: estrelas errantes) ou simplemente "πλανήτοι" (planētoi: errantes), a partir do que derivou a palavra atual "planeta". Nas antigas Grécia, China e Babilônia e em quase todas as civilizações pré-modernas, acreditava-se quase universalmente que a Terra era o centro do universo e que todos os planetas a circundavam. A razão para esta percepção era que todos os dias as estrelas e planetas pareciam girar em torno da Terra, bem como a percepção, de aparente senso comum, de que a Terra era sólida, estável e imóvel.  A primeira civilização que se sabe ter possuído uma teoria funcional para os planetas foi a babilônica, que viveu na Mesopotâmia no primeiro e segundo milênios a.C. O mais antigo texto astronômico planetário remanescente é a tábua de Vênus de Ammisaduqa, uma cópia do século VII a.C. de uma lista de observações dos movimentos do planeta Vênus que provavelmente data do segundo milênio a.C. Os astrólogos babilônicos também lançaram as fundações do que se tornou depois a astrologia ocidental. O Enuma anu enlil, escrito durante o período neoassírio no século VII a.C., compreende uma lista de professias e suas relações com vários fenômenos celestiais, inclusive os movimentos dos planetas. Os sumérios, predecessores dos babilônicos que são considerados uma das primeiras civilizações, e a quem se credita a invenção da escrita, tinham identificado pelo menos Vênus até 1500 a.C. Um pouco depois, o outro planeta interno, Mercúrio, e os planetas externos Marte, Júpiter e Saturno foram identificados pelos astrônomos babilônicos. Eles permaneceriam como os únicos planetas conhecidos até a invenção do telescópio, no início da era moderna.

Albert Einstein (Ulm, 14 de março de 1879 — Princeton, 18 de abril de 1955) foi um físico teórico alemão, radicado nos Estados Unidos a partir de 1933, que desenvolveu a teoria da relatividade geral, um dos dois pilares da física moderna (ao lado da mecânica quântica). Embora mais conhecido por sua fórmula de equivalência massa-energia, E = mc2 (que foi chamada de "a equação mais famosa do mundo"), foi laureado com o Prêmio Nobel de Física de 1921 "por suas contribuições à física teórica e, especialmente, por sua descoberta da lei do efeito fotoelétrico", que foi fundamental no estabelecimento da teoria quântica. No início de sua carreira, Einstein acreditava que a mecânica newtoniana não era mais suficiente para reconciliar as leis da mecânica clássica com as leis do campo eletromagnético. Isto o levou ao desenvolvimento da teoria da relatividade especial. Einstein percebeu, no entanto, que o princípio da relatividade também poderia ser estendido para campos gravitacionais, e com a sua posterior teoria da gravitação, de 1916, publicou um artigo sobre a teoria da relatividade geral. Continuou a lidar com problemas da mecânica estatística e teoria quântica, o que levou às suas explicações sobre a teoria das partículas e o movimento browniano. Também investigou as propriedades térmicas da luz, o que lançou as bases da teoria dos fótons da luz. Em 1917, aplicou a teoria da relatividade geral para modelar a estrutura do universo como um todo. Einstein estava nos Estados Unidos quando Adolf Hitler chegou ao poder na Alemanha, em 1933, e não voltou para a Alemanha, onde tinha sido professor da Academia de Ciências de Berlim. Estabeleceu-se então nos Estados Unidos, onde naturalizou-se em 1940. Na véspera da Segunda Guerra Mundial, ajudou a alertar o presidente Franklin D. Roosevelt que a Alemanha poderia estar desenvolvendo uma arma atômica, recomendando aos Estados Unidos começar uma pesquisa semelhante, o que levou ao que se tornaria o Projeto Manhattan. Einstein apoiou as forças aliadas, denunciando no entanto a utilização da fissão nuclear como uma arma. Mais tarde, com o filósofo britânico Bertrand Russell, assinou o Manifesto Russell-Einstein, que destacou o perigo das armas nucleares. Einstein foi afiliado ao Instituto de Estudos Avançados de Princeton até sua morte em 1955. Realizou diversas viagens ao redor do mundo, deu palestras públicas em conceituadas universidades e conheceu personalidades celebres de sua época, tanto na física quanto fora do mundo acadêmico. Publicou mais de 300 trabalhos científicos, juntamente com mais de 150 obras não científicas. Suas grandes conquistas intelectuais e originalidade fizeram da palavra "Einstein" sinônimo de gênio. 100 físicos renomados elegeram-no, em 1999, o mais memorável físico de todos os tempos.

A Teoria da Relatividade é a denominação dada ao conjunto de duas teorias científicas: a Relatividade Restrita (ou Especial) e a Relatividade Geral. A Relatividade Especial é uma teoria publicada em 1905 por Albert Einstein, concluindo estudos precedentes do físico neerlandês Hendrik Lorentz, entre outros. Ela substitui os conceitos independentes de espaço e tempo da Teoria de Newton pela ideia de espaço-tempo como uma entidade geométrica unificada. O espaço-tempo na relatividade especial consiste de uma variedade diferenciável de 4 dimensões, três espaciais e uma temporal (a quarta dimensão), munida de uma métrica pseudo-riemanniana, o que permite que noções de geometria possam ser utilizadas. É nessa teoria, também, que surge a ideia de velocidade da luz invariante. O termo especial é usado porque ela é um caso particular do princípio da relatividade em que efeitos da gravidade são ignorados. Dez anos após a publicação da teoria especial, Einstein publicou a Teoria Geral da Relatividade, que é a versão mais ampla da teoria, em que os efeitos da gravitação são integrados, surgindo a noção de espaço-tempo curvo.

Georges Lemaître propôs o que ficou conhecido como a teoria Big Bang da origem do Universo, embora ele tenha chamado como "hipótese do átomo primordial". O quadro para o modelo se baseia na teoria da relatividade de Albert Einstein e hipóteses simplificadoras (como homogeneidade e isotropia do espaço). As equações principais foram formuladas por Alexander Friedmann. Depois Edwin Hubble descobriu em 1929 que as distâncias de galáxias distantes eram geralmente proporcionais aos seus desvios para o vermelho, como sugerido por Lemaître em 1927. Esta observação foi feita para indicar que todas as galáxias muito distantes e aglomerado de galáxias têm uma velocidade aparente diretamente para fora do nosso ponto de vista: quanto mais distante, maior a velocidade aparente. Se a distância entre os aglomerados de galáxias está aumentando hoje, todos deveriam estar mais próximos no passado. Esta idéia tem sido considerada em detalhe volta no tempo para as densidades e temperaturas extremas, e grandes aceleradores de partículas têm sido construídos para experimentar e testar tais condições, resultando em significativa confirmação da teoria, mas estes aceleradores têm capacidades limitadas para investigar em tais regimes de alta energia. Sem nenhuma evidência associada com a maior brevidade instantânea da expansão, a teoria do Big Bang não pode e não fornece qualquer explicação para essa condição inicial, mas sim, que ela descreve e explica a evolução geral do Universo desde aquele instante. As abundâncias observadas de elementos leves em todo o cosmos se aproximam das previsões calculadas para a formação destes elementos de processos nucleares na expansão rápida e arrefecimento dos minutos iniciais do Universo, como lógica e quantitativamente detalhado de acordo com a nucleossíntese do Big Bang.

Georges-Henri Édouard Lemaître (Charleroi, 17 de julho de 1894 — Louvain, 20 de junho de 1966) foi um padre católico, astrônomo e físico belga. Lemaître propôs o que ficou conhecido como teoria da origem do Universo do Big Bang, que ele chamava de "hipótese do átomo primordial" que posteriormente foi desenvolvida por George Gamow. O asteróide 1565 Lemaître foi assim chamado em sua homenagem. Lemaître estudou Matemática e Ciências Físicas na Universidade de Louvain. Entrou no seminário em 1920 para ser ordenado padre em 1923. Em seguida, interessa-se particularmente pela teoria da relatividade de Albert Einstein, que ele encontra diversas vezes. Trabalhou no Observatório de Cambridge sob a direção de Arthur Stanley Eddington, e depois no Instituto de Tecnologia de Massachusetts, onde redige sua tese sobre os campos gravitacionais da relatividade geral. Retorna à Bélgica em 1925, onde foi nomeado professor na Universidade de Louvain, onde leciona até 1964. Em 1927, independentemente dos trabalhos de Alexander Friedmann, Georges Lemaître afirma que o universo está em expansão, baseando-se nos trabalhos de Vesto Slipher, o que foi mais tarde confirmado por Edwin Hubble. Foi o primeiro a formular a lei de proporcionalidade entre distância e velocidade de afastamento das galáxias. Esta lei, figurando em seu artigo de 1927, redigido em francês, não será traduzida na sua versão inglesa realizada por Arthur Eddington, e será descoberta empiricamente por Hubble alguns anos mais tarde. Nela, Lemaître propõe uma evolução a partir de um «átomo primitivo». A hipótese de Lemaître estipula que todo o universo (não somente a matéria, mas também o próprio espaço) estava comprimido num único átomo chamado de "átomo primordial" ou "ovo cósmico". O estudioso afirmava que a matéria comprimida naquele átomo se fragmentou numa quantidade descomunal de pedaços e cada um acabou se fragmentando em outros menores sucessivamente até chegar aos átomos atuais numa gigantesca fissão nuclear. Lemaître propôs uma teoria precussora da hoje chamada Teoria do Big Bang, mais tarde desenvolvida por George Gamow. Essa teoria foi chamada sarcasticamente de « Big Bang » por Fred Hoyle, fervente defensor da teoria do universo estacionário, em 1948 ou 1950, durante uma transmissão de rádio. Em 1965, um ano antes de sua morte e já doente em um hospital, recebe com alegria a notícia de que sua Teoria do Big Bang fora confirmada pelos experimentos de Arno Penzias e Robert Woodrow Wilson e era tida como a teoria padrão pela comunidade científica.

Fred Hoyle, Kt. (Bingley, Yorkshire, 24 de junho de 1915 — Bournemouth, Dorset, 20 de agosto de 2001) foi um astrônomo britânico famoso por algumas teorias que iam de encontro à opinião científica corrente e um escritor de ficção científica, incluindo alguns livros co-escritos pelo filho, Geoffrey Hoyle. Fred Hoyle passou a maior parte da carreira no Instituto de Astronomia da Universidade de Cambridge, de que foi diretor vários anos. Uma antiga publicação de Hoyle faz um uso interessante do Princípio antrópico. Tentando descobrir o funcionamento da nucleossíntese estelar, ele observou que uma reação nuclear particular, o processo triplo-alfa, que gerou o carbono, requereria que o núcleo do carbono tivesse uma energia bem específica para ocorrer. A grande quantidade de carbono no universo, que torna a vida tal como a conhecemos possível, demonstrou que essa reação nuclear tinha que funcionar. Baseado nessa noção, ele previu os níveis de energia do núcleo do carbono que foram mais tarde comprovados em laboratório. Seu colaborador, William Alfred Fowler, foi laureado com o Nobel de Física de 1983 (com Subrahmanyan Chandrasekhar), mas por alguma razão a contribuição original de Hoyle não foi levada em conta, e muitos ficaram surpresos que um astrônomo tão notável jamais recebesse o prêmio. O próprio Fowler, em um esboço autobiográfico ressaltou os esforços pioneiros de Hoyle:

The concept of nucleosynthesis in stars was first established by Hoyle in 1946. This provided a way to explain the existence of elements heavier than helium in the universe, basically by showing that critical elements such as carbon could be generated in stars and then incorporated in other stars and planets when that star "dies". The new stars formed now start off with these heavier elements and even heavier elements are formed from them. Hoyle theorized that other rarer elements could be explained by supernovas, the giant explosions which occasionally occur throughout the universe, whose temperatures and pressures would be required to create such elements.

O conceito de nucleossíntese nas estrelas foi estabelecido primeiramente por Hoyle em 1946. Isso forneceu uma explicação para a existência de elementos mais pesados que o hélio no universo, basicamente mostrando que elementos críticos como o carbono poderiam ser produzidos nas estrelas e mais tarde incorporados em outras estrelas e planetas quando a estrela "morre". As novas estrelas formadas recentemente já são formadas com esses elementos pesados, e elementos ainda mais pesados são formados a partir deles. Hoyle estabeleceu a teoria de que outros elementos raros podiam ser explicados por supernovas, as explosões gigantes que ocorrem ocasionalmente no universo, cujas temperaturas e pressões seriam requeridas para criar tais elementos.

Hoyle, após a descoberta da expansão do universo por Edwin Hubble, discordou da sua interpretação: Hoyle (com Thomas Gold e Hermann Bondi, com quem ele trabalhara no campo de radares na Segunda Guerra Mundial) apoiou a teoria de um "Universo estacionário". A teoria tentou explicar como o universo poderia ser eterno e essencialmente imutável ainda que apresentando galáxias que se afastam umas das outras. A teoria apoiava-se na formação de matéria entre as galáxias de tempos em tempos, de modo que mesmo que as galáxias se afastassem umas das outras, novas galáxias que se desenvolviam entre elas enchiam o espaço que elas deixavam vago. O universo resultante está em um "estado estacionário" da mesma maneira que um rio que flui - as moléculas individuais de água movem-se, mas novas aparecem e o rio parece ser imutável. Essa teoria era a única alternativa séria ao Big Bang que concordava com as observações da época, a saber o desvio para o vermelho das observações de Hubble, e Hoyle foi um forte crítico do Big Bang. Ironicamente, foi ele o responsável pela aparição do termo "Big Bang" em um programa de rádio da BBC, The Nature of Things, enquanto criticava a teoria; o texto foi publicado em 1950. Hoyle e outros adeptos da teoria do universo estacionário não forneceram nenhuma informação sobre o surgimento espontâneo de matéria, a não ser o postulado da existência de algum tipo de "campo de criação", mas argumentaram que a criação contínua de matéria não era mais inexplicável do que o surgimento de todo o universo do nada, apesar de que essa criação de matéria devesse acontecer de maneira regular. No final, as crescentes evidências observadas convenceram a grande maioria dos cosmologistas que o modelo de estado estacionário era incorreto e que o Big Bang era a teoria que melhor explicava as observações. No entanto, Hoyle agarrou-se à sua teoria, criticando a falta de precisão das observações astronômicas. Em 1993, em uma tentativa de explicar algumas evidências contra o modelo de universo estacionário, ele apresentou uma versão modificada chamada "Cosmologia quase estacionária" ("quasi-steady state cosmology", QSS) ou CEQE, mas a teoria não usufruiu uma grande audiência. A evidência que resultou na vitória da teoria do Big Bang sobre a teoria do Universo estacionário, pelo menos na mente da maioria dos cosmologistas, incluiu a descoberta da radiação cósmica de fundo em micro-ondas, a distribuição de galáxias "jovens" e quasares no Universo, uma estimativa mais consistente da idade do universo (durante algum tempo, para constrangimento da teoria do Big Bang, as rochas terrestres pareciam ser mais velhas do que a idade estimada do universo) e mais recentemente as observações do satélite COBE, que mostraram que perturbações cruciais no universo inicial permitiam a criação de galáxias.

 

Em Cosmologia, a nucleossíntese primordial (ou nucleossíntese do Big Bang) se refere ao período durante o qual se formaram determinados elementos químicos leves: o abundante H-1 (ou hidrogênio "leve"), seu isótopo o deutério (H-2 ou D), os isótopos do hélio He-3 e He-4, o isótopo do lítio Li-7 e o Berílio. A surpreendente coincidência entre os valores previstos e as abundâncias destos elementos determinadas a partir das observações podem se considerar um completo êxito da teoria.

Fred Hoyle é creditado como o criador do termo Big Bang durante uma transmissão de rádio de 1949 - (Principais fatos do ano: 4 de Abril – A OTAN é criada; 18 de Abril - Início da construção do USS United States (CVA-58); 29 de Agosto - União Soviética testa sua primeira bomba atômica; 7 de Setembro – A Republica Federal da Alemanha é oficialmente fundada; 1 de Outubro – Criada a República Popular da China; 12 de Outubro - Criada a República Democrática Alemã; 8 de Dezembro – Os Nacionalistas Chineses encerram sua evacuação para Taiwan; Iniciou-se a produção industrial da pilha alcalina). Popularmente é relatado que Hoyle, que favoreceu um modelo cosmológico alternativo chamado "teoria do estado estacionário", tinha por objetivo criar um termo pejorativo, mas Hoyle explicitamente negou isso e disse que era apenas um termo impressionante para destacar a diferença entre os dois modelos. Hoyle mais tarde ajudou consideravelmente no esforço de compreender a nucleossíntese estelar, a via nuclear para a construção de alguns elementos mais pesados até os mais leves. Após a descoberta da radiação cósmica de fundo em micro-ondas em 1964, e especialmente quando seu espectro (ou seja, a quantidade de radiação medida em cada comprimento de onda) traçou uma curva de corpo negro, muitos cientistas ficaram razoavelmente convencidos pelas evidências de que alguns dos cenários propostos pela teoria do Big Bang devem ter ocorrido.

O Big Bang, ou grande explosão, também conhecido como modelo da grande explosão térmica, parte do princípio de Friedmann, onde, enquanto o Universo se expande, a radiação contida e a matéria se esfriam. Para entender a teoria do Big Bang, deve-se em primeiro lugar entender a expansão do Universo, de um ponto A para um ponto B, assim, podemos, a partir deste momento retroceder no espaço, portanto no tempo, até o Big Bang.

Em 1927, o padre e cosmólogo belga Georges Lemaître (1894-1966) derivou independentemente as equações de Friedmann a partir das equações de campo de Einstein e propôs que os desvios espectrais observados em nebulosas se deviam a expansão do universo, que por sua vez seria o resultado da "explosão" de um "átomo primordial".

Em 1929, Edwin Hubble forneceu base observacional para a teoria de Lemaitre ao medir um desvio para o vermelho no espectro ("redshift") de galáxias distantes e verificar que este era proporcional às suas distâncias o que ficou conhecido como Lei de Hubble-Homason.

Como a temperatura é a medida da energia média das partículas, e esta é proporcional à matéria do universo, de uma forma simplificada, ao dobrar o tamanho do universo, sua temperatura média cairá pela metade. Isto é, ao reduzir o tecido universal, portanto aumentando sua densidade, aquela dobrará; podemos ter um ponto de partida de temperatura máxima, e massa concentrada numa singularidade, que nos dará o tempo aproximado do início da aceleração da expansão do tecido universal, e sua gradual e constante desaceleração térmica. Para entender este processo, há que se usar um exemplo prático, a visão deve ser quadridimensional. Como os sentidos humanos somente percebem o espaço tridimensional (Coordenadas x,y,z), ilustrando a partir de um modelo em três dimensões fica mais compreensível, pois o tempo estaria numa coordenada "d", o que dificulta ao leitor comum a compreensão da evolução do tempo e espaço simultaneamente. Imaginemos uma bolha de sabão, suponhamos que esta bolha seja preenchida por um fluido, deixemos o fluido de lado e concentremo-nos na superfície propriamente dita da bolha. Esta no início é um ponto de água com sabão, por algum motivo desconhecido, que não importa, começa a aumentar através da inserção de um gás, tomando a forma esférica. Observemos que, na medida em que o ar penetra preenchendo o interior da bolha de sabão (a exemplo de uma bexiga), começa a haver a expansão volumétrica do objeto. Nos concentremos no diâmetro da bolha e na espessura da parede. Verificaremos que, à medida que seu diâmetro aumenta, a espessura diminui, ficando mais e mais tênue, pois a matéria está se desconcentrando e se espalhando em todas as direções. De uma maneira simplificada, podemos afirmar que o aumento do diâmetro da bolha é o universo em expansão, o aumento da área da superfície é a diminuição da densidade material, a redução da espessura da parede é a constante térmica que diminui à medida que o universo se expande.

No modelo quadridimensional, não existe a fronteira, ou a parede; o conceito é volumétrico no domínio tempo, portanto, só visualizável através de cálculo. Porém pode-se tentar mostrar algo sobre a quarta dimensão, basta um pouco de imaginação e uma boa dose de visualização tridimensional. Para que entendamos um objeto tridimensional em visualização bidimensional, temos que desenhá-lo de forma que enxerguemos uma parte de cada vez. Imagine o mesmo exemplo da bolha, agora vista em duas dimensões, temos largura e profundidade, mas não temos noção da dimensão altura. Para que possamos representá-la e entendê-la, precisaremos fazer diversos desenhos no domínio da Altura, iniciando na parte mais baixa e assim por diante, representando círculos que, se vistos bidimensionalmente sobrepostos, apresentarão um círculo dentro do outro, (semelhantes aos mapas topográficos). Porém, devidas limitações no desenho, a primeira impressão que teremos (se não soubermos que é uma esfera) não será de uma esfera, e sim de meia esfera.

Para a representação tridimensional, os eixos (x,y,z), e o eixo tempo (t) inserido, (isto é, em quatro dimensões, porém representada em três), a analogia é semelhante, poderemos vislumbrar a meia esfera de acordo com nossas observações e medições, a outra metade somente poderemos teorizar. Podemos inclusive usar a mesma esfera, porém , em vez de olharmos um círculo dentro de outro, representando a imagem topográfica, imaginemos uma esfera dentro de outra, maior e maior, como se o fotografássemos em momentos em que estivesse inflando , assim temos uma visão quadridimensional num universo tridimensional, onde a superfície da esfera, aumentando a cada passar de tempo, seria a expansão quadridimensional do Universo. Esta visão não deve ser encarada como antropocêntrica, pois de qualquer ponto do espaço vemos o Universo se expandindo em todas as direções, ou seja, sempre nos parecerá estarmos no centro, não importa de qual ponto estejamos observando. Portanto, devemos imaginar, não estando no centro da esfera, mas num ponto onde absolutamente tudo se afasta em todas as direções, embora os nossos sentidos nos digam estarmos no centro.

Conforme descrito no início do artigo, em 1927, o padre e cosmólogo belga Georges Lemaître (1894-1966), derivou independentemente as equações de Friedmann a partir das equações de Einstein e propôs que os desvios espectrais observados em nebulosas se deviam a expansão do universo, que por sua vez seria o resultado da "explosão" de um "átomo primordial". A teoria do Big Bang, grande explosão, tornou-se a explicação da expansão do universo desde suas origens, no tempo, (arbitrando-se o conceito de que o tempo teve uma origem). Segundo essa teoria, o universo surgiu há pelo menos 13,7 bilhões de anos, a partir de um estado inicial de temperatura e densidade altamente elevadas. Embora essa explicação tenha sido proposta na década de 1920, sua versão atual é da década de 1940 e deve-se sobretudo ao grupo de George Gamow que deduziu que o Universo teria surgido após uma grande explosão resultante da compressão de energia.

Voltando no tempo, no início do século XX, a Astronomia desviou sua atenção das estrelas e dos planetas. Nos últimos oitenta anos a Cosmologia se voltou para as galáxias e espaço exterior. Um dos muitos responsáveis por esta mudança de perspectiva foi Edwin Hubble, do Observatório Monte Wilson. Em 1924, foram publicadas fotografias provando que as manchas de luz difusas e distantes, chamadas de Nebulosas, (este nome devido à crença de que se tratava de massas informes de gás e poeira), na verdade eram gigantescos sistemas de aglomerados de estrelas, semelhantes à Via Láctea.

Hubble dedicou-se ao estudo das galáxias, medindo suas distâncias, localizando sua distribuição no espaço e analisando seus movimentos,e suas características no espaço. Com o passar do tempo, notou-se que aqueles movimentos não eram ao acaso, como o deslocamento das moléculas de um gás na termodinâmica, porém obedecem a uma trajetória centrífuga. Cada galáxia distante afasta-se da Via Láctea numa velocidade proporcional à distância em que se encontra desta, quanto maior a distância, maior a velocidade. Hubble e seu colega Milton L. Homason pesquisaram para descobrir a proporção dos movimentos e sua aceleração, deduzindo uma equação conhecida como Lei de Hubble-Homason em que: Vm=16r, onde Vm é a velocidade de afastamento da galáxia, dada em quilômetros por segundo, e r expressa a distância entre a Terra e a galáxia em estudo, dada em unidades de milhões de anos luz, e, segundo esta, se uma galáxia estiver situada a cem milhões de anos luz, esta se afasta a 1600 quilômetros por segundo.

Aparentemente, o Universo está se expandindo em torno de nós, novamente é afirmado que isto não deve ser encarado como antropocentrismo, pois todos os pontos do universo estão se afastando relativamente uns aos outros simultaneamente, conforme já explicado. A observação, feita em 1929 por Hubble, significa que no início do tempo-espaço a matéria estaria de tal forma compactada que os objetos estariam muito mais próximos uns dos outros. Mais tarde, observou-se em simulações que de fato exista aparentemente a confirmação de que entre dez a vinte bilhões de anos atrás toda a matéria estava exatamente no mesmo lugar, portanto, a densidade do Universo seria infinita. As observações em modelos e as conjecturas dos cientistas apontam para a direção em que o Universo foi infinitesimalmente minúsculo, e infinitamente denso. Nessas condições, as leis convencionais da física não podem ser aplicadas, pois quando se tem a dimensão nula e a massa infinita, qualquer evento antes desta singularidade não pode afetar o tempo atual, pois ao iniciar o universo, expandindo a massa e ao mesmo tempo se desenvolvendo em todas as direções, indica que o tempo também esteve nesta singularidade, logo o tempo era nulo.

Segundo Gamow, na expansão do universo a partir de seu estado inicial de alta compressão, numa explosão repentina, o resultado foi uma violentíssima redução de densidade e temperatura; após este ímpeto inicial, a matéria passou a predominar sobre a antimatéria. Ainda segundo Gamow toda a matéria existente hoje no universo encontrava-se concentrada no chamado "átomo inicial", ou "ovo cósmico", e que uma incalculável quantidade de energia, depois de intensamente comprimida, repentinamente explodiu, formando ao avançar do tempo gases, estrelas e planetas. A temperatura média do universo diminui à medida que se expande. Alguns autores afirmam que a partir de um determinado momento, quando universo for totalmente resfriado, ele vai começar a diminuir de tamanho novamente, voltando a sua primeira forma, do átomo inicial. Se o tempo iniciou numa grande explosão, juntamente com o espaço e com a matéria-energia no Universo mutável, num Universo imutável um começo no tempo é necessário se impor para que se possa ter uma visão dinâmica do processo da criação inicial (não confundir com Criação Teológica), esta se deu tanto numa maneira de se ver o início da dualidade tempo matéria, quanto em outra. Partindo-se da premissa de que o Universo é mutável no domínio do tempo, pois de outra forma não se consegue observar a expansão deste, deve haver razões físicas para que o Universo realmente tivesse um começo, pois não se consegue imaginar a existência de um universo antes do Big Bang, e se não existia nada antes, o que fez o desequilíbrio da singularidade que acabou criando um Universo caótico e em mutação? Voltando-se no tempo e espaço, chega-se que desde o começo, o Universo se expande de acordo com leis bastante regulares. É portanto razoável que estas se mantenham durante e antes da grande explosão, logo na singularidade está a chave para se descobrir como houve o momento de aceleração inicial nos eventos iniciais do Universo atual.

Existe uma outra teoria, entre muitas que, antes do big bang, houve outro universo, idêntico ao atual onde as galáxias ao invés de se afastarem, se aproximariam (O dia em que o universo quicou - Gravitação quântica em laços). Nessa teoria, o universo se manteria eternamente, em sístole e diástole, se expandindo e contraindo em sequência, como um coração bombeando sangue, sem início ou fim. De fato tem-se apenas que, com os conhecimentos que detêm-se hoje acerca da matéria e energia, é possível delinear com razoável precisão os processos associados ao Big Bang que ocorreram após um dado tempo contado a partir do "tempo zero", o que implica dizer que, para os processos anteriores a este tempo limite, entra-se em um campo muito mais especulativo do que propriamente científico. O que se conhece acerca do Big Bang é descrito como processos ocorrendo no espaço-tempo. Considerações acerca deste ter sido criado no instante zero ou existir antes, acerca da existência de outro universo com características distintas das encontradas no universo que nos abriga, ou qualquer outra afirmação relativa ao que ocorre antes deste tempo limite definido pela nossa compreensão factual transcendem assim - até a presente data - os limites científicos e o paradigma científicamente aceito acerca do Big Bang. A pergunta sobre o que ocorreu antes deste tempo limite é contudo certamente pertinente à teoria. O Grande Colisor de Hádrons (LHC) construído na europa traz consigo a esperanças de, em breve, poder-se compreender de facto o comportamento da matéria-energia, e por tal do espaço-tempo, em densidades tão altas quanto as esperadas para antes deste tempo limite - geralmente aceito pela maioria como próximo ao denominado tempo de planck. Embora muitas vezes apoiadas em sólidas bases matemáticas, considerações antes apresentadas estendem-se assim para todas as teorias - ainda não científicas justo pela ausência de fatos - que afirmam conhecimento acerca do que ocorreu antes deste tempo limite, entre as quais destacam-se certamente a teoria das cordas, teoria que propõe a existência de multiversos e de onze dimensões - ao invés de apenas as quatro do espaço-tempo - e as teorias do Big Bang Frio; e do Big Crunch e do Universo oscilante.

A nucleossíntese foi a formação inicial dos primeiros núcleos atômicos elementares (hidrogênio e hélio). Ela ocorreu porque a atuação da Força Nuclear Forte acabou atraindo prótons e nêutrons que se comprimiram em núcleos primitivos. Sabe-se que esta força nuclear forte só é eficaz em distâncias da ordem de 10-13 cm. Presume-se que a nucleossíntese ocorreu 100 segundos após o impulso inicial, e que esta foi seguida de um processo de repentino resfriamento devido à irradiação que, segundo alguns, ocasionou o surgimento dos núcleos — segundo outros, o surgimento dos núcleos ocasionou o resfriamento. Em função da nucleossíntese, a matéria propriamente dita passou a dominar o universo primitivo, pois sabe-se que a densidade de energia em forma de matéria passou, a partir daquele momento, a ser maior do que a densidade em forma de radiação. Isso se deu em torno de 10 mil anos após o impulso inicial.

Com a queda da temperatura universal, os núcleos atômicos de hidrogênio, hélio e lítio recém-formados se ligaram aos elétrons, formando assim átomos completos desses elementos. Presume-se que isso se deu em torno de 300 mil anos após o chamado marco zero. A temperatura universal estava então em torno de 3.000 K. O processo, ou a era da formação atômica, segundo alguns pesquisadores, durou cerca de um milhão de anos aproximadamente. À medida que se expandia a matéria, a radiação que permeava o meio se expandia simultaneamente pelo espaço, porém em velocidade muito maior, ultrapassando a primeira. Daquela energia irradiada sobraram alguns resquícios em forma de micro-ondas, que foram detectadas em 1965 por Arno A. Penzias e Robert W. Wilson, tendo sido chamada de radiação de fundo. O satélite COBE, em 1992, descobriu flutuações na radiação de fundo recebida que explicariam a formação das galáxias logo após a Grande Explosão. Um exemplo ilustrativo da expansão repentina a que se seguiu após o evento inicial, seria que a matéria comprimida num volume hipotético do tamanho de uma cabeça de alfinete, em torno de 1 mm de diâmetro, se expandiria para cerca de 2 mil vezes o tamanho do nosso sol.

Antes de completar um segundo de idade, o Universo estava na era da formação dos prótons e nêutrons. Os nêutrons tendem a decair espontaneamente em prótons, porém prótons recém formados pelo decaimento não decaem. Devido a experimentos em aceleradores de partículas, sabe-se que o universo naquela era, (1 segundo aproximadamente), ficou com 7 prótons para cada nêutron — uma massa turbilhonante das partículas mais elementares. Era também mais denso do que o ferro e tão opaco que nenhuma luz conseguiria penetrá-lo.

Outro dado apontado pelas pesquisas realizadas leva à cifra de aproximadamente 500 mil anos, em média, do resfriamento universal acelerado. Supõe-se que as partículas elementares, ao se fundirem formando hidrogênio e hélio, formaram imensos bolsões de gás que poderiam ter sido causados por pequenas alterações da gravidade, resultando assim em protogaláxias que teriam originado estrelas entre 1 e 2 bilhões de anos após o Big Bang. A evolução estelar aponta para as gigantes vermelhas e supernovas, que durante a sua vida, geraram o carbono e demais átomos. Todos os elementos, presume-se, seriam espalhados no meio interestelar a partir das supernovas; uma data limítrofe para esses eventos estaria em torno de 1,1 bilhão de anos após a explosão inicial.

As supernovas semearam nas galáxias a matéria-prima para posteriores nascimentos de estrelas. A Teoria do Big Bang baseia-se em dois pré-supostos: o primeiro é a Teoria da Relatividade Geral de Albert Einstein, que explica a interação gravitacional da matéria; o segundo pressuposto é o conhecido princípio cosmológico, que diz que o aspecto do universo independe da posição do observador (não há um ponto de observação privilegiado — o universo é isotrópico) e da direção em que ele olhe (o universo apresenta o mesmo aspecto não importando a direção em que se o olhe — o universo é homogêneo).  Da teoria da gravidade de Newton sabe-se que a força gravitacional entre dois corpos depende somente de suas massas e não da matéria de que são constituídos. A teoria geral da relatividade descreve a estrutura do universo e a força da gravidade, isto é, o macro-universo ou as interações do trinômio energia-tempo-matéria, no qual as massas são mais importantes* que as cargas. A mecânica quântica descreve o micro-universo e as interações também do trinômio energia-tempo-matéria, no qual as massas são menos **relevantes que as cargas, embora tratem da mesma natureza, obviamente diferenciando-se o tamanho. As interações, em muitos aspectos, são idênticas às teorias, porém estas são incompatíveis e não se completam. Portanto, falta a chave que teoricamente as une, pois não podem estar ao mesmo tempo corretas e erradas.

Portanto, pode-se deparar com muitas teorias a respeito do início do universo, mas por enquanto apenas uma trata do seu início, ou seja, a teoria do Big-Bang — é a que une as duas teorias de macro e micro-universo.  A questão da relevância é discutível. Acredita-se que o termo mais correto seria ênfase devido às comparações entre os tamanhos e das interações no cosmo. Uma dúvida ainda persistente para os astrofísicos é quanto à natureza da matéria e as distorções que ocorrem nas leis que a regem quando ela começa a ser comprimida ao cair em objetos densíssimos. Os buracos negros são, por natureza, um exercício de abstração intelectual. Não há como saber se as leis da natureza se aplicam em condições tão extremas de compressão gravitacional e distorção do espaço-tempo. Na prática, é impossível criar as condições dos efeitos gravitacionais de um objeto tão denso na Terra; porém, já existem métodos pelos quais é possível a simulação dos efeitos de forma virtual, ou seja, em sistemas de ensaio operados por poderosos supercomputadores. Mesmo com simulações e construção de objetos densíssimos em ambiente virtual, restam questões quanto à possibilidade de compressão de massa cujo volume aplicado é nulo e a densidade infinita — a isso se dá o nome de singularidade de Schwarzschild.

Einstein acreditava que o aumento da intensidade da gravidade cria uma distorção que retarda a percepção temporal. Noutras palavras, objetos muito densos, como buracos negros ou estrelas de nêutrons, retardam o tempo devido aos efeitos gravitacionais. Se fosse possível observar a queda de objetos num buraco negro, presume-se que se veria um objeto mover-se cada vez mais devagar, ao contrário do que poderia naturalmente supor, pois à medida que este se aproxima da singularidade, a distorção temporal agiria de tal forma que não o veríamos parar. Segundo Einstein, há o desvio para o vermelho e este também é dependente da intensidade gravitacional. Se se analisar sob o ponto de vista corpuscular, imaginando-se que a luz é um pacote quântico com massa e que esta partícula ocupa um determinado lugar no espaço, e está acelerada energeticamente (isto é, vibrando), a oscilação gera o comprimento de onda de luz, que se propaga como frente de onda em espaço livre. Longe de campo gravitacional intenso, a frequência emitida tende para o azul. Na medida em que o campo gravitacional começa a agir sobre a partícula, esta começará a se movimentar, ou vibrar, com menos intensidade, logo sua emissão desviará para o vermelho, pois a oscilação foi retardada. Nesse ponto, a análise funde a dualidade matéria-energia. Sabe-se que não é possível analisar a partícula como matéria e energia ao mesmo tempo: ou se considera o ponto de vista vibratório ou o corpuscular. Porém, próximo à singularidade, temos que fazer este exercício de raciocínio, pois a atração gravitacional é tão forte que pode fazer parar o movimento oscilatório, e ao mesmo tempo atrair o objeto para si. Portanto, qualquer que seja o ângulo de observação, a gravidade prende a radiação em si mesma. Logo, a conclusão é que não se pode observar absolutamente nada o que ocorre dentro do raio de Schwarzschild, ou singularidade.

Como antes do Big-Bang o Universo era uma singularidade, presume-se que o tempo então não existia, pois se objetos densos tendem a retardar o tempo, logo quando se tem matéria infinita em espaço nulo a singularidade é tal que o tempo para. Apesar de ser uma tendência da cosmologia investir num princípio, devemos considerar que o argumento que endossa a teoria do Big Bang é uma expansão do universo que pode ser observada. No entanto, essa dilatação pode ser um fenômeno regional, existente apenas nos limites do universo observável ou no alcance do atual telescópio Espacial Hubble. Diante disso, existe a possibilidade desse fenômeno não atender todo o universo. Nesse caso, o que até hoje foi observado seria somente um processo de dilatação regional de causa ainda desconhecida,e somente o desenvolvimento de telescópios de maior alcance e resolução poderiam confirmá-lo. Não aceitar a constante de afastamento das galáxias mais distantes como uma verdade absoluta, implica endossar outras teorias que melhor se identificariam com o efeito sonda encontrado na informação de luz emitida de fontes muito distantes. A observação da propagação no meio inter-espacial da energia eletromagnética de supernovas, (verdadeiros tsunamis de energia que constantemente varrem o espaço), com a nova tecnologia dos futuros telescópios e radiotelescópios espaciais, brevemente poderá identificar e esclarecer muitas dúvidas sobre o comportamento da luz através da matéria escura. Independente disso, e embora ainda não possa ser confirmado com as imagens de fundo provindas dos limites de observação, habitar e observar apenas parte de um hipotético universo que se desloca linearmente, e, em paralelo com velocidade acelerada, seria uma dessas teorias que atendem a região que esta sendo mapeada. Essa teoria estima que estaríamos em meio a um universo acelerado em paralelo, e cujo efeito retardado da informação da luz que nos chega só seria permitido observar as ondas luminosas com desvio do espectro para o vermelho.

Em linguagem matemática, o ponto de vista das informações "emitidas e recebidas" entre duas partículas que se movem com velocidades próximas à da luz e em paralelo poderiam melhor explicar o fenômeno da expansão. A teoria mais aceita para a origem do universo propõe que ele seja o resultado duma grande explosão, logo após a qual a matéria estava extremamente densa, comprimida e quente. Essa matéria primordial era composta, principalmente, de partículas elementares, como quarks e elétrons. À medida que ela ia se expandindo e esfriando, os quarks se uniam formando partículas maiores chamadas hádrons, os quais podem conter 3 quarks (bárions) ou 2 quarks (mésons). Os prótons e nêutrons formados (que são bárions) se agrupavam em núcleos e os elétrons eram capturados em órbitas em torno dos núcleos, formando átomos. Os núcleos maiores e mais pesados foram criados no interior de estrelas, as quais por sua vez se formaram pela aglomeração de grandes quantidades da matéria primordial. Algumas dessas estrelas ejetaram parte de sua massa para o espaço interestelar, levando à formação de estrelas menores, planetas, nebulosas etc. As substâncias químicas foram criadas pela aglomeração dos átomos em moléculas e, finalmente, os seres vivos originaram-se do agrupamento de vários tipos de moléculas em estruturas complexas.

Enquanto o modelo do Big Bang está bem estabelecido em cosmologia, é provável que seja aprimorado no futuro. Pouco se sabe sobre os primeiros momentos da história do Universo. As equações da relatividade geral clássica indicam uma singularidade na origem do tempo cósmico, embora esta conclusão depende de vários pressupostos. Além disso, a relatividade geral é quebrada antes que o Universo atinja a temperatura de Planck, e um tratamento correto de gravidade quântica pode evitar a singularidade. A teoria do Big Bang não é um acontecimento igual a uma explosão da forma que conhecemos; embora o universo observável com a ajuda das lentes dos modernos telescópios espaciais ainda descreva um resultado de uma explosão (uma fuga cósmica), há quem levante dúvidas se realmente houve algo que explodiu ou se foi uma explosão a causa dessa dilatação observada. Alguns afirmam que o termo "Big Bang" é utilizado como uma aproximação para designar aquilo que também se costuma chamar de "Modelo Cosmológico Padrão". Este consiste numa aplicação da Relatividade Geral ao Universo como um todo. Isso é feito, em um primeiro momento, assumindo-se que o universo é homogêneo e isotrópico em larga escala. Em um segundo momento se introduzem flutuações de densidade no modelo e estuda-se a evolução destas até a formação de galáxias.

O modelo cosmológico padrão é extremamente bem testado experimentalmente e possibilitou a previsão da radiação cósmica de fundo em micro-ondas e da razão entre as abundâncias de hidrogênio e hélio. Se for imaginado um triângulo, com lados maiores do que milhares de vezes o raio de uma galáxia observável qualquer, poder-se-á saber da validade do teorema de Pitágoras pela observação direta. Porém, não se tem ideia de qual é a topologia do universo em larga escala atualmente. Ou, é sabido se ele é infinito ou finito no espaço. O termo Big Bang também designa o instante inicial (singular) no qual o fator de escala (que caracteriza como crescem as distâncias com a expansão) tende a zero. Em abril de 2011, utilizando uma incerteza de Heisenberg persistente, relacionada à posição primordial de uma origem comóvel, um físico brasileiro publicou uma solução para as equações de campo de Einstein, dentro do contexto cosmológico, fornecendo uma temperatura de zero absoluto para o universo primordial: "On the Cold Big bang Cosmology". Em junho de 2011 é publicada uma demonstração onde a incerteza de Heisenberg persistente que leva uma temperatura de zero absoluto para o universo primordial advém de um critério de quantização para a energia.

Referências de Consulta

  1.  Ronaldo Rogério de Freitas Mourão. O livro de ouro do universo. [S.l.]: Ediouro, 2000. 512 p.
  2. Wollack, Edward J. (10 Dezembro 2010). Cosmology: The Study of the Universe. Universe 101: Big Bang Theory. NASA. Arquivado do original em 14 May 2011. Página visitada em 27 Abril 2011.:
  3. Feuerbacher, B. (25 January 2006). Evidence for the Big Bang. Página visitada em 2009-10-16.
  4. Wright, E.L. (9 May 2009). What is the evidence for the Big Bang?. 'Frequently Asked Questions in Cosmology'. UCLA, Division of Astronomy and Astrophysics. Página visitada em 2009-10-16.
  5. Komatsu, E.. (2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation". Astrophysical Journal Supplement 180: 330. DOI:10.1088/0067-0049/180/2/330. Bibcode: 2009ApJS..180..330K.
  6. Menegoni, Eloisa. (2009). "New constraints on variations of the fine structure constant from CMB anisotropies". Physical Review D 80 (8): 087302. DOI:10.1103/PhysRevD.80.087302.
  7.  (1929). "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae". Proceedings of the National Academy of Sciences 15 (3): 168–73. DOI:10.1073/pnas.15.3.168. PMID 16577160.
  8. Gibson, C.H. (21 January 2001). The First Turbulent Mixing and Combustion. IUTAM Turbulent Mixing and Combustion.
  9. Gibson, C.H. (2001). "Turbulence And Mixing In The Early Universe". arΧiv:astro-ph/0110012arΧiv:astro-ph/0110012 [astro-ph].
  10. Gibson, C.H. (2005). "The First Turbulent Combustion". arΧiv:astro-ph/0501416arΧiv:astro-ph/0501416 [astro-ph].
  11. 'Big bang' astronomer dies. BBC News (22 August 2001). Página visitada em 2008-12-07.
  12. Croswell, K.. The Alchemy of the Heavens. [S.l.]: Anchor Books, 1995.
  13. Mitton, S.. Fred Hoyle: A Life in Science. [S.l.]: Aurum Press, 2005. p. 127.
  14. Hawking, S.W.; Ellis, G.F.R.. The Large Scale Structure of Space-Time. Cambridge (UK): Cambridge University Press, 1973. ISBN 0-521-09906-4
  15. http://atlas.zevallos.com.br/bigbang.html
  16. Armando V.D.B. Assis. (2011). "Assis, Armando V.D.B. On the Cold Big Bang Cosmology. Progress in Physics, 2011, v. 2, 58-63". Progress in Physics 2/2011: 58–63.
  17. Armando V.D.B. Assis. (2011). "Assis, Armando V.D.B. A Note on the Quantization Mechanism within the Cold Big Bang Cosmology. Progress in Physics, 2011, v. 4, 40-41". Progress in Physics 4/2011: 40–41.

Bibliografia