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The Bruene Directional Coupler and Transmission Lines
Gary Bold, ZL1AN. morseman@nzart.org.nz

Abstract

The Bruene directional coupler indicates “forward” and “reflected” power. Its operation is
invariably explained using transmission line concepts, which leads some to wrongly believe that
it must always be connected directly to a line. There are also many misconceptions about
what happens on a transmission line, and in particular, what happens at the source end. This
document addresses these misconceptions.

Unfortunately, many derivations require complex exponential notation, phasor representations
of voltage and current, and network theorems. There isn't any alternative if rigor is to be
maintained.

Section 1 gives some background on the Bruene coupler.

Section 2 explains its operation when terminated in a resistance.

Section 3 works a simple numerical example on a matched transmission line and load.
Section 3 repeats this calculation for a mismatched line and load.

Section 4 explains the correct interpretation of the powers read by the Bruene meter.

Section 5 explains that a mismatched source always generates additional reflections, and
shows how the steady-state waves on the line build up by summing these reflections.

Section 6 develops the theory of section 6 further, and shows how the final waves build up in
the mismatched line example given in section 4.

Four appendices follow:

Appendix A develops the general theory of line reflection where both source and load are
mismatched, and the line may be lossy.

Appendix B works a simple example to illustrate appendix A.
Appendix C explains what happens upon reflection from a Thevenin source.

Appendix D shows, using the Poynting vector, that power always travels from the source to
the load at all times, everywhere on the line.

1 The Bruene Coupler

Warren Bruene, then WOTTK, a long-time Collins design engineer, published the original article describing
the directional coupler that bears his name in QST in April, 1959.1 This was used in the Collins 302C
Wattmeter in 1960.

This is not the only form of directional coupler used in SWR/power meters. Strip-line and resistance-bridge
detectors are also common, though less so now, due to the ease with which suitable small toroids can be
obtained, and because the Bruene coupler can be permanently inserted in the line, and is not frequency
dependent.

The operation of the Bruene coupler is traditionally derived as if it's inserted in a transmission line, using
the concepts of “forward” and “reflected” waves, which are assumed to exist on the line before and after
it, and which flow through it. But the coupler also works when connected to the input of a line, where
there is no line on the “input” side, or when connected to a transmatch, or even to a pure resistance -
which must always be done to calibrate it. There are no standing waves inside a transmatch or resistance,
and the coupler itself doesn’t contain a transmission line, so there must be an alternative way of explaining
its operation. This we now do.

'Download Bruene’s QST article from http://www.arrl.org/tis/info/pdf /5904024 . pdf
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Figure 1: Top: Practical Bruene directional coupler. Middle: Simplified to aid in derivation of power
estimation equations. Bottom: Even further simplified.

2 The “Practical” Bruene Meter

If you look inside a typical modern meter using the Bruene principle, you probably won't see the circuit
almost always used to explain its operation (Bruene's original version), which was published in Break-In
September/October 2006,2 you'll see a version of the more practical circuit of figure 1, top.

Figure 1 differs in that there's only one voltage-sampling capacitive divider, which is connected to the mid-
point of the secondary of the current-sampling toroidal transformer. The “forward” and “reverse” (diode
and smoothing capacitor samplers) are not connected in bridge configurations, but to voltage summer
circuits. Vg and I, are the instantaneous (AC, signal) voltage and current on the sampling wire that
runs from the input to the output, through the toroid. This wire is not a transmission line. The output
is connected to a pure resistance Ry. The inductor labelled "RFC" holds the relatively high impedance
midpoint of the capacitive divider at DC ground, necessary because the diode rectifying circuits are also
referenced to ground. In some meters it is omitted. Often it's parallelled by a resistor which doesn't affect
the derivation below.

Figure 1, middle, shows that portion of the circuit involved in deriving the “reverse” voltage. The trans-
former secondary has been replaced by its equivalent circuit, a voltage generator proportional to, and in
quadrature with, the line current, in series with half of the secondary inductance.

Figure 1, bottom, shows an even further simplification, retaining only the elements necessary to derive the
equations.

Neglecting the loading effect of the diode detection circuit (the calibration resistance R.,; is much higher
than the 2R connected across the secondary), we see that the midpoint of the resistance 2R must be, by
symmetry, at the same voltage as that of the secondary centre-tap, set by the capacitive voltage divider.
Hence we can isolate it from the “forward” components by substituting half of the terminating resistance,
R, terminated by the mid-point voltage V... Then the current through R is given by

2«SWR Meters; How they work” David Conn, VE3KL, Break-In, September/October 2006, pp 8 - 10. Reprinted from
The Canadian Amateur, July/August 2005.
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jwMI;
I = - 1
" R+ jwL/2 (1)
butwL > R (we choose this) (2)
2M
I ~ —1
SO IR I L (3)
2M
VR - RIR - RTIL (4)
V
but I, = R—L (Vi, I, are related by the load resistance, Ry) (5)
L
2M 2M
therefore Vp = RT;—LL = VLT% (6)
using Kirchhoff's voltage law, V,,, = Vo — Vg (7)
Ch1 2M R
=V — 8
b (a +Cy L RL) ®)
but CQ > Cl (9)
Ci 2M R
S oL 2 A 1
so V, Vi, (02 17 RL) (10)

The AC voltage V,,, is rectified, smoothed and indicated by the voltmeter. To calibrate, we make Ry, = 502
and adjust C'; to make the two terms inside the bracket equal, so that V,,, = 0. Physically, this means that
the voltage derived from the current-sampling toroid is exactly equal and opposite to that derived from the
voltage-sampling capacitive divider, so that their algebraic sum is zero.

The corresponding voltage at the detection point of the “forward” circuit is given by the same equation,
except that the terms inside the brackets add instead of subtracting, because the voltage induced by its
half the current transformer is in the opposite phase. That is,

Ci 2M R ) (11)

Forward voltage is V,,, =~ Vp <02 + I &
If the terminating resistance is now changed in value, keeping the line voltage V7, constant, the line current,
11, will change, and V,,, will rise. You can see this from the second term inside the brackets of equation 11,
which is inversely proportional to Ry. Similarly, substituting any reactive impedance will cause unbalance
because the current-derived waveform phase will change from 180°. Thus, all that “zero reflected power”
tells you is that the impedance seen at the meter output is exactly 50 €2, resistive. And this is true whether
you're connected to a transmatch, a transmission line, or a pound of butter.

If the meter is connected directly to a transmission line, it still just sees an impedance, the input impedance
of the line. But this impedance has a value which is very restricted. It's somewhere on a constant SWR
circle drawn about the centre of a Smith chart normalized for the line characteristic impedance, which is
the resistance which has been used to calibrate for zero reflected power. The “forward” and “reflected”
readings don't allow you to determine this input impedance value, but they do allow you to determine
which SWR circle they're on, and thus the SWR.

Both the “propagating wave” and “impedance terminated” treatments of the coupler given above are
equally valid.

It's interesting that (as Bruene points out in his original article) the detected voltage decreases as the
number of turns on the toroid secondary increases. This is because a toroid’s mutual inductance, M is
proportional to the number of turns, n, while inductance, L, increases as n2. However, you can't reduce
n arbitrarily to achieve greater sensitivity, because this progressively limits the lowest operating frequency,
which is proportional to L.

Now consider what happens on a transmission line itself, in matched and unmatched situations. For
simplicity, we invoke a lossless line of length A/4 having characteristic impedance of 502, and purely
resistive loads. For a lossless line, zq is also resistive, and is sometimes called R,.>

3The results are valid for lossy and reactive loads as well, but the algebra becomes tedious.
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3 Example 1: A Matched Line

Figure 2 (a) shows a lossless line having characteristics impedance z, = R, = 50 0.4 It's terminated in a
pure resistance Ry, also of 502, and is fed from a source that develops a voltage V;,, = 5V,.,,s at its input.

O O
5VI Ry = 500 Ri= 500
O O
(a)
O O
5VI R, = 500 R= 100Q
O O
(b)

Figure 2: (a) A lossless line

The input impedance of the line is resistive, and the same as R, or 50€2. The input power, and the output
power passed to the load, Pj,.q4, are the same, and are given by

2 2
Vin _ 5 _ 0.5 Watt (12)

Pin = ]Dload:R 50
o

In conventional terminology, there is no ‘“reflected wave”. A single “forward wave" propagates down the
line and its power is completely absorbed by the load. The amplitude of this wave is equal to the input
voltage, 5 Volt.

4 Example 2: A Mis-matched Line

Figure 2(b) shows the same line, now terminated in a pure resistance of 100 2. The line is now mismatched,
and acts as a quarter-wave impedance transformer. Such a line's impedances obey the equation

RinR;, = R? (13)
R?2 502

i = —2 = =925Q. 14

so i R, 100 2 (14)

and the input power developed in this resistance by the same input voltage will be

52
P, = — =1Watt 15
in 5 a (15)

Again, all of this power is passed to, and is dissipated in the load.> We can calculate the voltage across
the load from the power dissipated in it, using conservation of energy.

P = P, = Vi (16)
load — n — RL
soVi, = PuRr=+1x100 =10 volt. (17)

4The characteristic impedance of a lossless line is always real, purely resistive.
®The power delivered to the load is higher, even though the line is mismatched in the second example, because we
are applying the same voltage across a lower input resistance.
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Because the line is now not terminated in its characteristic resistance, it will now have a standing wave
ratio, SWR, which we calculate using the voltage reflection coefficient, p, given by®

R, —R, 50 1

— _— = — = — 1
p R,+R; 150 3 (18)
1+p 4
and SWR =, 2 (19)

In conventional (and correct) treatments, the resulting voltage variation on the line is now interpreted
as the sum of a forward wave, of amplitude V¢, and a reverse wave, of amplitude V,. These propagate
independently, and each behaves as if travelling in a matched line of characteristic resistance R,, which
makes them both simple and useful. They are related by V. = pV;. The maximum and minimum voltages
on the line are given by the constructive and destructive interference of these waves, so that

Vinaz = Vf + V= Vf (1 + p) (20)
Voin = Vi—Vo=Vy(1-p) 1)

In this special case of resistive termination where R; > R,, the load voltage will be at a SWR maximum,
and the voltage a quarter wavelength back, at the input, will be at a minimum. We can use these values
to find V; and V;.. Adding the equations above,

Vmax + szn = 2Vf (22)
max min 1
soVy = Vinas &+ Vinin _ 1045 _ 7.5 volt (23)
2 2
7.5
and V. = pVy= 3 = 2.5 volt. (24)

Before considering the significance of these results, we calculate the powers that each wave apparently
carries.

5 Power Calculations on the Mismatched Line

Directional coupled SWR meters are usually calibrated in terms of “forward” and “reflected” power, though
they do not measure power directly. They detect the voltages and currents of these two waves, and deduce
the powers indicated by assuming that each propagates in a line of characteristic resistance R,, the same as
that of the calibration, “zero reflected power” resistance. This is why the scales are nonlinear, and roughly
follow a square-root law, modified by the practical conduction characteristics of the rectifying diodes used
in the AC (signal) to DC rectifiers.

The power in the forward and reflected waves, Py and P, respectively, are given by

Vi o752
f .
Py = L — 1% 1195 Watt 25
7 Ry 50 ° (25)
V2 252
P = =22 (125 Watt 2%
Ry 50 @ (26)

(27)

5The derivation of p, also called p, is done in all standard texts, including mine, “Electromagnetism” Gary E.J. Bold,
Physics Department, University of Auckland, latest edition, $15 (NZ), chapter 11. This text also gives a simplified,
traditional treatment of the Bruene coupler. To be rigorous, we should use the magnitude of p, or |p|, but here p is real
and positive, so I've left the magnitude signs out.
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The difference of these powers is 1 Watt, the same as the power that we have independently shown to
be dissipated in the load, using conservation of energy. This can be shown to be always true, for any
line length and terminating impedance, although the algebra becomes tiresome for the general case. This
justifies the conventional rule

“To find the true power passed to the load, subtract the “reverse” power from the “forward”
power.

The “forward” power would be better called “total” or “forward plus reflected” power, and some authors
have advocated this. The only reason that directional couplers are calibrated in power for both “waves” is
to allow this subtraction to be done.

This relationship holds even in extreme practical cases, where a 100 Watt transmitter operating into a
very mismatched line may indicate 900 Watt forward power and 800 Watt reflected power. Nothing in the
system is generating 800 Watt. It is only the difference in the powers that has any significance.

6 Formation of “Forward” and “Reflected” Waves

It's often assumed that the “forward” wave is directly generated by the voltage applied to the line, and the
“reflected” wave, with amplitude related to the load impedance is derived from this, and “carries power
back” towards the source.

However, in example 2 the amplitude of the forward wave, V/, is constant at all points on the line, and has
been shown to be 7.5 volt. This is greater than the voltage applied to the line input! Therefore this wave
cannot have been excited directly by the input voltage alone. In fact, both of the forward and reflected
waves are superpositions of (in principle) an infinite number of counter-travelling waves. The proof of this
was commonly performed in formal University courses 50 years ago’ and still exists in some texts.

We first consider a simplified situation, where the source voltage is derived from a zero-impedance source,
so that V4 remains unaltered by any change in the line input impedance. The general development of the
relationships derived here is given in appendix A of this document.®

Consider a voltage V1 suddenly applied at one end of a (possibly lossy) transmission line, causing a wave
which travels towards the load. Since it doesn’t know about the load until it gets there, it travels through
the appropriate characteristic impedance of the line. Let its complex amplitude when it reaches the load
be Vy, where?

Vi = Ve (28)

where v = the complex propagation constant of the line, (29)

v = (R+jwl) (G + jwC) (30)

where R, L,C and G = the standard line constants, “quantity per unit length” (31)
¢ = the physical line length. (32)

Satisfying boundary conditions at the load z;, means that a reflected wave is now generated, with complex
amplitude V,. at the load, where

"I was shown this proof, when a student, in Radiophysics III in 1960 by Professor Kurt Kreilesheimer.

8the general proof is performed in some texts, see for example Theory and Problems of Transmission Lines, Robert
Chipman, Schaum’s outline series, McGraw-Hill, 1968, chapter 8. It applies only to a linear source, but we’ll consider
the implications of this when we come to it.

9As is usual in these calculations, we represent wave amplitude and phase changes by a complex exponential repre-
senting a rotating phasor in the complex plane, which enormously simplifies the algebra. “Complex” algebra does not
mean “complicated”, but the representation of a network quantity by “real” and “imaginary” (or “quadrature”) compo-
nents, carrying information about both amplitude and phase. The “actual” wave amplitude and phase can subsequently
be found by just taking the real part of the resulting expressions. This is explained in all more advanced texts. See
for example “Linear Steady-state Network Theory’ Gary E.J. Bold, Physics Department, University of Auckland, latest
edition, chapters 2 and 3, $15 (NZ)
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V, = pVie " = poVy (

and po = the voltage reflection coefficient at the load, (
ZL — %o

2L+ 2o (

Vi = Vie " = the amplitude of the reflected wave arriving at the load. (

This is the standard treatment, and generally the mathematics stops here, because ps is found to completely
determine the SWR and impedance at any point on the line. What happens now to the reflected wave
when it eventually reaches the source end can be, and usually is, ignored.

But electromagnetic wave theory, derived from Maxwell's equations'? says unambiguously that there must
be a reflection whenever any impedance discontinuity is encountered, and such a discontinuity must occur
when the reflected wave again reaches the source, unless the input is fed from a linear source having an
output impedance z; = z,, exactly the same as the characteristic impedance of the line. This would be a
“complex-conjugate match”, and cannot in general hold, since all transmitters work with all lines, and all
are unlikely to have exactly this impedance. More about this later.

The reality of source reflections are well known to engineers who send short pulses down lines. This is
why professional signal generators have an output impedance of 50 {2, resistive, to match the characteristic
resistance of the line between source and load, removing the possibility of reflection here. The reality of
such reflections is easily demonstrated using an oscilloscope and pulse-generator.

If the source is mismatched, the second reflection now occurring on this first reflected wave at the line
input can also be characterized by a reflection coefficient p1, and another forward travelling wave will be
generated, of complex amplitude V7, where

‘/i/ = ppoX/vfe_fy2 (37)
Zs — 20
where = 38
p1 P (38)
and z; = some, as yet undefined, source impedance. (39)

Now there are two forward waves.

When this one reaches the load, its amplitude will be

VJZ = ppoer_Qw (40)
this second forward wave generates a second reflected wave, having amplitude
V= pipdVpe (41)

This process continues indefinitely. Summing, the total forward and reflected waves at the load end will be

Vi) = Vy (1 + pipae” 0+ p2pse 1 4 ) (42)

(Vi)e = Vipa (1 + pipae” 0 4 p2pRe 4 ) (43)

dividing, 8; ))t = P (44)
)t

Equation 44 is identical to that given by considering only the first forward and reflected waves, and again
depends only on the load.

We see that the value of p; doesn’t matter, because all terms containing it cancel. This is fortunate,
because it isn't clear to me what it is. In a linear system, z; in equation 38 would be the source impedance.

0These 4 vector equations were derived by Heaviside from Maxwell’s original ones, which were incomprehensible to
almost everybody. They are derived in all advanced electromagnetic texts, including mine. They explain all electromag-
netic phenomena. There is no doubt about their validity.
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But the hf transmitter output stage driving the line contains transistors operating in a non-linear manner,
usually class B or C, and linear circuit theory, in particular Thevenin's theorem, isn't applicable. It may even
be that the transmitter's output impedance varies over an operating cycle, but even this will not matter,
because the same value of p; occurs in matching terms in both forward and reflected waves, evaluated at
the same time, which are divided to form equation 44.

The only observable effect of this summation of forward and reflected waves is to change the input
impedance of the line. For a lossless line, this is given by the (standard) equation!!

o JRosin(BL) + zr, cos(5Y)
i = e Jzr sin(B¢) + R, cos(50)

where R, = z, = line characteristic impedance,
zr, = the terminating impedance, possibly complex,
= physical length of the line,

phase constant = VLC = —,
c

27 f = angular frequency of the source,

a € @ ~
Il

(
(
(
w
(
(
= phase velocity on the line. (
We also see that the total forward wave has an amplitude which is the sum of an assemblage of sub-waves,
and is not in general equal to the applied voltage alone. This is shown by the mismatched-line example 2
above, where the line is energized by a source of 5V, and the amplitude of the forward wave is 7.5V. This
amplitude is a result of the summation shown in equation 42. Similarly for the reflected wave amplitude.

We were only able to compute the actual magnitudes of the forward and reflected waves in this (carefully
chosen) example because the positions of the maximum and minimum (load and source) of the resulting
total wave on the line were known.

Furthermore, we see, and will next show, that these amplitudes are the total amplitudes under steady-state
conditions, that is, after the initial “wave build-ups” have reached their asymptotic values. Actually, these
“asymptotic values” are never, strictly attained, because even though both po and p; are always less than
one, so that each subsequent forward and backward wave becomes progressively smaller, neither wave
component ever becomes zero for a lossless line.12 However, after a sufficient number of reflections, each
will become vanishingly small. For a “lossy” line, and all lines are actually “lossy”, some power will be
dissipated in the line.

This derivation shows that the “standard” forward and reflected waves take a finite, though small, time to
form, since energy has to travel up and down the line to create the wave assemblages that are summed.
However, this process can be pretty well considered “instantaneous” at hf, since typically a maximum of
10 or so line-lengths are travelled before contributions become vanishingly small - about half a microsecond
on a typical 10 metre length of coax having a velocity factor of 66%.

7 Formation of Waves in Example 2

We now show that in the mismatched example considered, the steady-state, final amplitudes of the forward
and reflected waves deduced agree with the summation of the multiply reflected waves that progressively
build up as shown in the previous section.

For simplicity, again assume that the line is energized by a 5V source, having zero internal impedance z;
- that is, reflections cannot alter this input voltage. This is a special case of a time-independent, linear
source, chosen to make the calculation simpler, and to show that the results hold even in this extreme case
(complete reflection at the source). The reflection factor at the line input, p1, defined just as that at the
load end, po, is

1 derived, again, in all standard texts.
12This is analogous to the exponentially changing voltage across a charging capacitor, which never actually reaches its
final value either. However, we normally assume that it has done so after about 5 time constants have elapsed.
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2s— 20 0-—=50
2e+2, 0450

pr = -1 (52)

1
while po = 3 before. (53)

This value of p; means that waves arriving back at the source will be completely reflected, but undergo a
phase change of 180°. The first forward wave will start with an amplitude of 5V, the same as the source.
The first reflected wave resulting from this will have an amplitude of 5/3V, and travel back towards the
source. At the source, it is completely reflected, but with a phase change of 180°. However, since it has
travelled a total distance of A\/2 (a quarter wave down and a quarter wave back) it will arrive 180° retarded
in phase. This phase retardation cancels with the phase change at source reflection, so it's reflected
amplitude is in phase with that of the initial wave. The sum of these two waves will therefore be

)
Viir+ Vi = 5+ 3 Volt (54)

This second forward wave also undergoes a load reflection, then a source reflection. It's contribution will
be V3 where

1
Vfg = giQ = — Volt (55)

This series of reflections continues indefinitely, until, in practice, the contribution of further reflections
becomes vanishingly small. Summing, the total forward wave amplitude will be

(Vf)t = Vi +Vp+Vi+... (56)
5 5 5
= Stgtgtogto (57)
1 1 1
= 1+-—4+=-+—=++...
5<+3+9+w+ ) (58)

The series inside the brackets can be summed to infinity using the rule for geometric progressions, '3 giving

e = 5(=575) =3 (55) =2 (5) )
(V))e = 7.5 Volt (60)

which is the same as that deduced earlier from a calculation involving the SWR and maximum and minimum
voltage values. A similar calculation shows that the amplitude of the reflected wave is also correct, 2.5
Volt. This confirms that

e the forward and reflected wave amplitudes deduced from the SWR are indeed the steady-state,
asymptotic values,

e these arise quite naturally from assuming that the amplitude of the first forward wave is the same as
that of the source voltage, and adding further reflections from both the source and load.

Appendix A shows that such a summation also gives the correctg steady-state wave amplitudes when the
source impedance, zs has a finite value, that is, for any general linear Thevenin source. In this case the
open-circuit voltage of the source is reduced to a lower value at the line input because of the line's loading

1—r"

131f & series can be written as S = 1+ r 4+ r? + ... where r < 1, the sum to n terms is S =

1
1—7

. As n — oo, the

second term in the numerator, r", becomes vanishingly small, and the sum becomes S =
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effect on the source. The derivation also holds for a lossy line of any length, terminated in any impedance.
However, in these general cases the algebra becomes unwieldy since p; and po are in general complex, so
that subsequent reflections may have any phase angles, and complex algebra is necessary for the summation.

To check your understanding of this, energize the mismatched line of example 2 with a Thevenin source
having an open-circuit voltage of 15V and an output resistance of 50€2. You should find that the final
voltage at the line input and power dissipated in the load are the same, 5V and 1 Watt respectively, but
now 2 Watt is dissipated in the source. Only one forward wave, of amplitude 7.5V should exist, and one
reflected wave, of amplitude 2.5V. Thus, even though the line is matched at the source, more power is
wasted to generate the same power in the load!

Appendices

A Standing Waves: General Case

Figure A shows a linear Thevenin source generating open-circuit voltage vs having output impedance z;
connected to the input of a line having characteristic impedance z,, terminated in a load impedance zy,.
All these impedances may be complex, and all may be different.

The line is mismatched at both ends, so reflections will occur at load and source. Consider the source to
be switched on at ¢ = 0. Then, since no energy has yet been injected into the line, its input impedance
will be z,. By the voltage division theorem, the voltage at the input of the line will be v1, where

Zo
_ 61
U1 Uszo_’_zS ( )
L 6,0 00—
Vs T IR % L
o oo—!

Appendix figure A. A completely general situation, where both source and load are mismatched to a general
(lossy) line.

This generates a forward wave, having amplitude v, which propagates to the end of the line. When it
reaches the load, let its amplitude be vy;. A reflected wave is generated, of amplitude v,1 where

v = vie (62)

v = povie (63)

This first reflected wave travels back down the line to the source, where the mismatch causes it to be
reflected with reflection coefficient p;.'* This reflection generates a second forward wave. The reflected
voltage adds algebraically to the initial input voltage v at the source. The current drawn from the source
must now also change to accommodate this changed voltage. In effect, the source has “become aware” of
the load from the information carried by the reflected wave, and the input impedance of the line must also
change.

The second forward wave propagates to the load, where its amplitude is vf2. A second reflected wave is
generated, of amplitude v, where

v = pipovie” " (64)
vp = pipsuie " (65)

14 An explanation of what happens upon wave reflection from a Thevenin source is given in Appendix C.
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This process continues, generating a sequence of multiple forward and reflected waves, which continually
diminish in amplitude, since the magnitudes of both p; and ps are less than 1. Summing all the forward
waves, we get the total forward wave amplitude at the load, v;. Similarly for the total reflected wave, v,.

sovy = Vg1 +Up2t+Uz+ ... (66)
= ve "+ prppvie > + vlp%pge_Me +... (67)
= ve (1 + pipae” 2 4 p2pRe= M 4 ) (68)
%o —~ —2v¢ 2 2 4yl

= 1 v v . 69
vy USZO+ZS€ ( + p1p2e + pipze + ) (69)
similarly, v, = povie* (1 + prpre” 2 + p%p%e_‘”é + .. ) (70)
— o 4 1 —2+4 2 2 —4+L o 71
Ur pQUSZOJrZSe ( + p1pz2e + pipae + ) ( )

Equations 69 and 71 represent the steady-state, asymptotic values of the wave amplitudes existing on the
line when a sufficient time has elapsed for subsequent reflections to be vanishingly small. Note that they
are now referenced to the value of v, the open circuit source voltage. The ratio of these is

v
< = P2 (72)

Uy

since all other terms are the same, and cancel. This shows that even in the general case, where both
source and load are mismatched, only the reflection coefficient at the load is required to specify the ratios
of the steady-state forward and reflected waves, and thus the SWR. This also allows these wave's final,
steady-state amplitudes to be calculated directly.

B Example to Illustrate The Derivation

Figure B shows the mismatched quarter-wave line used in example 2 in this paper, but now fed from a
linear Thevenin source having an output resistance of 25¢). To facilitate comparison with earlier results,
the source voltage, v, has been set at 10V. Since we energized the line in this first example with 5V, and
the input resistance of the line was found to be 252, we set the open-circuit source voltage at 10V so
that final conditions on the line will be the same. That is, using the symbols of appendix A, the final,
steady-state input voltage on the line will be

Zo 25 _
v] = USZO+ZS =10 (25+25> =5V (73)
Lossless
25Q) line
O O
10V T SV Ro = 500 R= 100Q
O O
n= 25Q
| Quarter
wave

Appendix figure B: The lossless, quarter-wave line used in the first illustration fed from a linear Thevenin
source.

The final value of the forward wave can be found in terms of the initial conditions by immediately applying
equation 69. Rather than doing this, we will follow the progressive buildup of the forward wave to its final
value. Again, switch on the source at ¢ = 0. The line initially contains no energy, so its input impedance
is not yet 25 €2, but 502, the same as R,. Hence the initial line input voltage will be
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50
= 10(—2"—) =6.6666 V. 4
v 0(50+25) 6.6666 (74)

A first forward wave of this amplitude will be generated, and travel to the load. Note that this amplitude
is not the same as the final, steady-state amplitude, which we determined to be 7.5V.

This wave will be reflected from the load with reflection coefficient p2 = 1/3 and travel back to the source.
The reflection coefficient at the source, p1, is negative,

255-50 1
_ __1 75
1 25+50 3 (75)

But the returning wave, having now travelled forward and back, half a wavelength, has reversed its phase,
so the amplitude of the second forward wave, and the sum of the two forward waves, will be

vig = pipavie (76)
where e = —1 (2 line lengths travelled) (77)
1 1 1
S0 vy = <—3> (3> 6.6666 (—1) = 6.6666 <9> — 0.7407V. (78)
1
and the sum vy +vpp = 6.6666 (1 + 9) = 7.407V (79)

We see that the forward wave amplitude has increased closer to its final value, but it's not there yet.
Adding in all subsequent forward waves, the final forward wave amplitude will be

1 1 1
vy 6.6666 (1 +ot =t ) — 6.6666 | —— (80)

9 " 81 L
9

vy = 7.5V (81)

Equation 80 is seen to express the summation represented symbolically in equation 69, and again the result
has been obtained using the geometric progression formula. The final forward wave amplitude is thus
the same as we deduced from simpler arguments in section 4. A similar calculation shows that the final
reflected wave amplitude is also correct.

C Reflection from a Thevenin source

What happens in reflection from the source, which contains an impedance and a voltage generator, seems
to be more perplexing than reflection from an impedance alone.

The sources used in the examples above are linear, Thevenin sources. Such a source has two components,
an impedance in series with an “ideal” voltage generator.'® Thevenin's famous theorem states that

e Any circuit consisting of an arbitrary number of voltage sources and linear impedances connected in
an arbitrary fashion, with any two nodes designated as the output terminals, may be represented by
an equivalent source having just two components, found as follows:

5 Thevenin’s theorem was historically proved by Gauss, forgotten, and re-discovered by Thevenin and others.
Thevenin’s original, and most other, proofs are somewhat contrived, and may appear incomprehensible. The sim-
plest and yet completely rigorous proof requires matrix algebra. The only place I know that it appears is in my text,
Theoretical and Computer Analysis of Systems and Networks, Gary E.J. Bold and Sze M. Tan, any edition, chapter 3,
section 6, University of Auckland Physics Department, $20 (NZ)



Bruene Coupler and Transmission lines. Version 1.2 May 14, 2007 13

e The source impedance, zg, is that impedance measured or calculated between the output terminals
when all voltage sources inside are replaced by short circuits.

e The voltage source is that voltage measured between the output terminals of the original network
when all external loads are removed.

The voltage source thus obtained (the circle with containing the sinewave with accompanying arrow) has
zero impedance, which is what is meant by an ideal source.

But reflection of any type of wave can only occur when the wave encounters an impedance discontinuity.
Thus reflected waves on the transmission line do not even know that the source voltage generator exists,
because it has zero impedance.

This may seem strange, because the voltage source is certainly there, so should it not add or subtract
somehow with the wave? Yes, but we are working with linear circuit elements, and this means that the
two processes of wave reflection from the impedance, and subsequent modification of input conditions on
the line by the voltage source should be considered separately and then combined.

The impedance element generates the reflected wave. The voltage source element adds its value to that
of the reflected wave. This process is used in appendices A and B, and is shown to give the correct results.

D The Direction of Power Travel.

The “forward” and “reflected” voltage waves definitely travel backwards and forwards on the line, and so
it seems that power must be also. But we have seen that the “reflected” power is just reversed and sent
back towards the load, so that the indicated “forward” power is actually the “forward plus reflected power.

We now show that at any time, at any point in the line, the direction of power transfer is always towards
the load, and its value is constant anywhere on the line.'6

The voltage and current on a coaxial cable give rise to an associated electromagnetic wave inside it. Such
a wave's power transfer direction is unambiguously defined in terms of its constituent electric and magnetic
field directions.!” Figure 3 (a) shows a cut-away section of a coaxial cable, showing both currents and
fields. The current is at this moment, and at this point, flowing into the page in the centre conductor
towards the load, and out of the page in the outer shield. We will designate this as the positive current
direction. The electric field, vector E, can be deduced from Gauss' Law.!® Here, it is shown pointing
radially from the centre conductor to the outer conductor, implying that the centre conductor is positively
charged. The electric field’s magnitude is given, in terms of the charge, by

o
E = 82

2mer (82)

where ¢ = the charge per unit length on the centre conductor (83)
e = the permittivity of the dielectric, (84)

r = radial distance from the centre. (85)

This electric field vector is related to the instantaneous voltage between the conductors by!'®

v = 2 log, <b> (86)

2me a
where a = the radius of the inner conductor (87)
b = the radius of the outer conductor. (88)

18T have not seen this proved anywhere else. If you have, let me know? Somebody has surely done it before!

"The equivalence of the “EM wave” and “voltage/current” viewpoints is treated in some advanced texts, see Com-
munication Circuits, Lauwrence Ware and Henry Reed, Wiley, third edition, chapter 15.

18Gauss’ Law is explained in any electromagnetic text, including “Electromagnetism”, Bold, Op. cit., chapter 4.

9The voltage is found by integrating the electric field from the inner to the outer conductor. This is where the
logarithm to the exponential base e came from.
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Figure 3: (a) Field lines in a coaxial cable. (b) Field lines in a twin-wire cable.

We see that the magnitudes of the electric field and line voltage are proportional to o, so V' is proportional
to E. We will also designate the voltage giving rise to this field as the positive voltage direction.

The magnetic intensity field, H, is caused by the current in the centre conductor. Lines of equal magnetic
intensity form concentric rings around the centre conductor, inside the cable as shown. Their directions
are given by the right-hand screw rule? and their magnitude can be calculated using Ampere’s circuital
Law as

1
H = — 89
27r (89)
where I = current in the central conductor (90)
r = radial distance from the centre. (91)

Two such alternating E and B fields are always associated with an electric field. The magnitude and
direction of power travel are given by the Poynting Vector?!

P = ExH (92)
where P = the vector instantaneous power in the wave (93)
X = the vector cross product. (94)

The magnitude of P is given by the product of the magnitudes of the E and H fields. The direction is
found by the right-hand screw rule, and is that in which a right-hand (normal) screw would travel if rotated
from the first vector towards the second.

Figure 3 (b), top, shows the field vectors of figure 3 (a) directly above the conductor. E is pointing
upwards, H points to the right. The E to H rotation would cause a right-hand screw to travel into the
page, so this is the direction of power transfer for this current/voltage combination, shown by the dashed
line with arrow. However, these vector fields are both alternating sine waves, so they periodically reverse
their directions. Half a cycle later the E and H arrows will both be negative, as shown by figure 3 (b),
bottom. The cross-product rotation shows the power transfer vector to be still in the same direction. We
will designate this combination of voltage and current as that of the forward wave.

If the current was travelling in the opposite direction in figure 3 (a), out of the page, the direction of the
H vector would reverse. This situation is shown in figure 3 (c), top. Figure 3 (c), bottom, shows the
situation half a cycle later. Now the power transfer vector has also reversed its direction, and comes out
of the page in both diagrams. This combination of voltage and current gives the reflected wave.

20the rotational direction a right-handed screw must be turned to progress in the direction of the current.

21 John Henry Poynting published the first, unwieldy derivation of this vector in 1884, but Oliver Heaviside published a
simpler one, that normally given now in texts, in 1885. Heaviside’s nevertheless requires one inscrutable vector identity.
See Electromagnetism, Bold, op. cit., chapter 9.
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The total voltage at any point in the line, vy, is the sum of the voltages in the forward and reflected waves,
whose magnitudes are related by the voltage reflection coefficient at the load, ps. The maximum and
minimum values of the total voltage will occur when vy is respectively in phase, and in anti-phase with v .

(Ut)max = Uy (1 + p2) (95)
(Ut)min = vy (1 - p2) (96)

In example 2, section 4, these conditions will occur at the load and the source, respectively. Since p is
always less than 1, these total voltages will be in phase with the forward voltage.

The same argument holds for the currents in the forward and reflected waves, since the line current is
related to the line voltage by Ohm's Law, via z,. For simplicity, we assume that z, is real, as for a lossless
line, and we have normalized the lengths of the current and voltage vectors to be the same.?? The total
current at these two points will therefore also be in phase with the total voltage. Figure 4 (a) shows these
voltage and current phasor relationships at the source.

A
Voltage and .
current at I )\/8 °|I°ng line
source r P f /OVf
A A
Vr
y 1 Liotal
f f
Liotal Viotal "
\/ 2 Ve (14 02
total If(1+,O f(1+P )
(a) (b)

Figure 4: (a) Voltage and current at the source, where the total voltage is minimum. (b) Voltage and
current one eighth wavelength towards the load.

Hence the E arrows and H circles at the source and load will point in the directions shown in figure 3 (a),
and the Poynting vector shows that direction of power travel is unambiguously towards the load at these
points. At no time is power flowing in the other direction. In particular, no power flows from the line into
the source.

At other points on the line, the situation is more complex, but we illustrate what happens at a point where
the power calculation is geometrically straightforward. Figure 4 (b) shows the situation an eighth of a
wavelength towards the load, where the diagrams have been rotated to keep the reference phase of the
incident waves vertical, and voltage and current phasors superimposed. The reflected voltage phasor has
now rotated 90° clockwise, or in the retarded direction, while the reflected current phasor has now rotated
the same amount the other way.

The total voltage and current are no longer in phase. We can calculate the power, P, developed in the line
from a geometrical argument. It is well known that power is also given by the product of the magnitudes
of the voltage and current, and the power factor.

Thatis, P = ‘Vvtotal|'utotal| cos ¢ (97)
where ¢ = the angle between the total current and voltage phasors.  (98)
and cos¢ = the power factor. (99)
so P = (Jogl(t+ oA (lig](1 + p%)"/?) cos 6 (100)
v
= (orta+7) (B 2) coss (101)
(0}

- ’Uf|2 2 g

= % (1 tp ) cos ¢ (102)

2Zalthough these results are true for any line. The algebra just becomes more tedious.
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p

i 2) = ———— 103
Sln(¢/ ) (1 + p2)1/2 ( )
and cosp = 1—2sin(¢/2)=1— 27" (104)
— — e
1—p?
cos(p) = 15,2 (105)
_ |Uf|2 2\ 1 — P2
soP = S (1—|—p>1+p2 (106)
_ ”Uf|2 2
P B (107)
. 7.52 1
Checking, for example 2, P = 50 (1 - 32) = 1 Watt, (108)

which is the same answer as obtained earlier by power conservation. In fact, this relationship holds all along
the line, but is tedious to show in the general case. Since po is always less than one, the total voltage on
the line will always have its largest component in the direction of vf.23 It follows that the electric field will
also have its largest component in this direction. Similarly for the magnetic field.

It follows that the average power vector P, evaluated over a complete cycle, will also always point towards
the load, wherever, and whenever it is evaluated.

We now confirm that the total power carried by the electromagnetic wave inside the line is the same as
that computed from the voltage and current phasors. The electromagnetic power inside the line will be
the value of vector P integrated over the area of the line between the inner and outer conductors. Because
both The £ and H wave magnitudes vary with radius, an integration is necessary. Let V and I be the
instantaneous magnitudes of the total voltage and current on the line. Consider the contribution to the
power, dP, of the field in an annulus around the line centre, at radius 7, and infinitesimal width dr.

dP = FEH2nrdr (109)
1
substituting for £ and H, dP = ( 7 ) (—) r.dr (110)
2mer ) \27r
I b
Integrating, the total power P = oL dr (111)
2me Ja T
ol b
P = —1 - 112
o 2 (112)
: o b
but from equation 86, V. = —1log, () (113)
2me a
where V' = the total voltage across the line at this point. (114)
therefore P = VI (115)

Thus the total instantaneous power carried by the electromagnetic wave inside the line is the same (as
expected) as the power given by the product of voltage across, and the current through, the line. This
relationship holds at any point, at any time, on the line, though V' and I will vary along the line, and are
related by equation 45, through V = I z;,.2*

To summarize, this appendix shows that

e The direction of power travel on the line is always from the source to the load. No power travels in
the other direction, even though the reflected wave does travel from the load to the source.

e The magnitude of this power is invariant along the line, and can be calculated either from the voltage
and current on the line, or from the power carried by the electromagnetic wave inside the line.

Zstrictly speaking, we should use the magnitude of pa, but in the examples worked p2 is always real, so we will stick
with this. The result in the general case can be shown to be the same.

24although zi, has been quoted as the input impedance at the end of the line, in fact this same relationship gives the
impedance at any point in the line. See any text on transmission line theory for verification.
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Conclusions

A Bruene power/SWR meter’s operation can be explained from two points of view. If it is connected
directly to, or in a transmission line, its readings can be interpreted as powers in “forward plus
reflected” and “reflected” waves. Alternatively, it can be considered as measuring the departure of
the impedance seen looking out from its output terminals from a pure resistance of 50 ). This holds
whether it's connected to, or in, a line, or directly to a lumped impedance.

e On a transmission line, unless the source can be replaced by a linear source impedance matched to
the line characteristic impedance, reflections always occur at the source.?

e But rf output stages operating in class B or C' are non-linear, and can't be replaced by Thevenin
sources for input-end reflection coefficient calculation.

e Regardless of whether the source is matched or not, the SWR is determined only by the reflection
coefficient at the load.

e The first forward wave has the same amplitude as the initial line input voltage. But this is not the
same as the final, total forward wave amplitude. Similarly for the reflected wave.

e The final, steady-state amplitudes of the forward and reflected waves result from the summation of
(in principle) an infinite number of reflected waves.

e Steady-state conditions on the line require time to build up. That is, energy has to travel to and fro
on the line a sufficient number of times for reflections to become vanishingly small.

e All line conditions, including the way in which the waves build up, can be deduced even for a lossy
line, a mismatched load and a mismatched linear source, provided that the reflection coefficient of
the source is correctly included, and we use the Thevenin equivalent representation of the source.

e Electromagnetic theory shows that all power travels from the source to the load, anywhere on the
line, at all times. This power is the same at all points on the line. No power flows in the other
direction.

25in general, if the line is lossy, its characteristic impedance will be complex, so a (complex) conjugate match is

required. Of course, this is unlikely to be the case for any real transmitter!



