

Table	of	Contents
Cover
Title	Page
Copyright
Dedication
Preface
Chapter	1:	ARM®	CORTEX®-M4	Development	Systems

1.1	Introduction
Reference

Chapter	2:	Analog	Input	and	Output
2.1	Introduction
2.2	TLV320AIC3104	(AIC3104)	Stereo	Codec	for	Audio	Input	and	Output
2.3	WM5102	Audio	Hub	Codec	for	Audio	Input	and	Output
2.4	Programming	Examples
2.5	Real-Time	Input	and	Output	Using	Polling,	Interrupts,	and	Direct	Memory	Access
(DMA)
2.6	Real-Time	Waveform	Generation
2.7	Identifying	the	Frequency	Response	of	the	DAC	Using	Pseudorandom	Noise
2.8	Aliasing
2.9	Identifying	The	Frequency	Response	of	the	DAC	Using	An	Adaptive	Filter
2.10	Analog	Output	Using	the	STM32F407'S	12-BIT	DAC
References

Chapter	3:	Finite	Impulse	Response	Filters
3.1	Introduction	to	Digital	Filters
3.2	Ideal	Filter	Response	Classifications:	LP,	HP,	BP,	BS
3.3	Programming	Examples

Chapter	4:	Infinite	Impulse	Response	Filters
4.1	Introduction
4.2	IIR	Filter	Structures
4.3	Impulse	Invariance
4.4	BILINEAR	TRANSFORMATION
4.5	Programming	Examples
Reference

Chapter	5:	Fast	Fourier	Transform
5.1	Introduction
5.2	Development	of	the	FFT	Algorithm	with	RADIX-2
5.3	Decimation-in-Frequency	FFT	Algorithm	with	RADIX-2
5.4	Decimation-in-Time	FFT	Algorithm	with	RADIX-2
5.5	Decimation-in-Frequency	FFT	Algorithm	with	RADIX-4
5.6	Inverse	Fast	Fourier	Transform
5.7	Programming	Examples
5.8	Frame-	or	Block-Based	Programming
5.9	Fast	Convolution
Reference

Chapter	6:	Adaptive	Filters
6.1	Introduction
6.2	Adaptive	Filter	Configurations
6.3	Performance	Function
6.4	Searching	for	the	Minimum
6.5	Least	Mean	Squares	Algorithm
6.6	Programming	Examples

Index
End	User	License	Agreement

List	of	Illustrations
Chapter	1:	ARM®	CORTEX®-M4	Development	Systems

Figure	1.1	Texas	Instruments	TM4C123	LaunchPad.

Figure	1.2	STMicroelectronics	STM32F407	Discovery.

Figure	1.3	AIC3104	audio	booster	pack.

Figure	1.4	Wolfson	Pi	audio	card.

Chapter	2:	Analog	Input	and	Output

Figure	2.1	Basic	digital	signal	processing	system.

Figure	2.2	Simplified	block	diagram	representation	of	input	side	of	AIC3104	codec
showing	selected	blocks	and	signal	paths	used	by	the	example	programs	in	this	book
(left	channel	only).

Figure	2.3	Simplified	block	diagram	representation	of	output	side	of	AIC3104	codec

showing	selected	blocks	and	signal	paths	used	by	the	example	programs	in	this	book
(left	channel	only).

Figure	2.4	Analog	input	and	output	connections	on	the	AIC3104	audio	booster	pack.

Figure	2.5	Analog	input	and	output	connections	on	the	Wolfson	audio	card.

Figure	2.6	Pulse	output	on	GPIO	pin	PE2	by	program	tm4c123_loop_dma.c.

Figure	2.7	Delay	introduced	by	use	of	DMA-based	i/o	in	program
tm4c123_loop_dma.c.	Upper	trace	shows	rectangular	pulse	of	duration	1	ms	applied	to
LINE	IN,	lower	trace	shows	output	from	LINE	OUT.	BUFSIZE	=	256,	sampling	rate	48
kHz.

Figure	2.8	Delay	introduced	by	use	of	interrupt-based	i/o	in	program
tm4c123_loop_intr.c.	Upper	trace	shows	rectangular	pulse	of	duration	1	ms	applied	to
LINE	IN,	lower	trace	shows	output	from	LINE	OUT.	Sampling	rate	48	kHz.

Figure	2.9	Delay	introduced	by	use	of	DMA-based	i/o	in	program
stm32f4_loop_dma.c.	Upper	trace	shows	rectangular	pulse	of	duration	1	ms	applied	to
LINE	IN,	lower	trace	shows	output	from	LINE	OUT.	BUFSIZE	=	256,	sampling	rate	48
kHz.

Figure	2.10	Delay	introduced	by	use	of	interrupt-based	i/o	in	program
stm32f4_loop_intr.c.	Upper	trace	shows	rectangular	pulse	of	duration	1	ms	applied	to
LINE	IN,	lower	trace	shows	output	from	LINE	OUT.	Sampling	rate	48	kHz.

Figure	2.11	Block	diagram	representation	of	program	tm4c123_delay_intr.c.

Figure	2.12	Block	diagram	representation	of	program	tm4c123_echo_intr.c.

Figure	2.13	Block	diagram	representation	of	program	tm4c123_flanger_intr.c.

Figure	2.14	(a)	impulse	response	and	(b)	magnitude	frequency	response	of	flanger
implemented	using	program	tm4c123_flanger_intr.c	at	an	instant	when	delay	 	is	equal
to	104.2	µs.	The	notches	in	the	magnitude	frequency	response	are	at	frequencies	4800
and	14,400	Hz.

Figure	2.15	(a)	Impulse	response	and	(b)	magnitude	frequency	response	of	modified
flanger	implemented	using	program	tm4c123_flanger_intr.c	at	an	instant	when	delay	
is	equal	to	208.3	µs.	The	notches	in	the	magnitude	frequency	response	are	at
frequencies	0,	4800,	9600,	14,400,	and	19,200	Hz.

Figure	2.16	Output	waveform	produced	using	program
tm4c123_flanger_dimpulse_intr.c	at	an	instant	when	delay	 	is	equal	to	approximately
400	µs.

Figure	2.21	Rectangular	pulse	output	on	GPIO	pin	PD15	by	program
stm32f4_sine_intr.c.

Figure	2.17	Spectrum	and	spectrogram	of	flanger	output	for	pseudorandom	noise	input.

In	the	spectrogram,	the	 -axis	represents	time	in	seconds	and	the	 -axis	represents
frequency	in	Hz.

Figure	2.18	Sample	values	stored	in	array	lbuffer	by	program	stm32f4_loop_buf_intr.c
plotted	using	MATLAB	function	stm32f4_logftt().	Input	signal	frequency	was	350	Hz.

Figure	2.19	(a)	1-kHz	sinusoid	generated	using	program	tm4c123_sine48_intr.c	viewed
using	Rigol	DS1052E	oscilloscope	connected	to	(black)	LINE	OUT	connection	on
audio	booster	pack.	(b)	Magnitude	of	FFT	of	signal	plotted	using	MATLAB.

Figure	2.20	(a)	1-kHz	sinusoid	generated	using	program	tm4c123_sine48_intr.c	viewed
using	Rigol	DS1052E	oscilloscope	connected	to	scope	hook	on	audio	booster	pack.	(b)
Magnitude	of	FFT	of	signal	plotted	using	MATLAB.

Figure	2.22	Output	from	program	tm4c123_sineDTMF_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Figure	2.23	Output	from	program	stm32f4_square_intr.c	viewed	using	Rigol	DS1052
oscilloscope.

Figure	2.24	Output	from	program	stm32f4_square_intr.c	viewed	in	both	time	and
frequency	domains	using	Rigol	DS1052	oscilloscope.

Figure	2.25	Output	from	program	tm4c123_square_intr.c	viewed	using	Rigol	DS1052
oscilloscope.

Figure	2.26	Output	from	program	tm4c123_square_intr.c	viewed	in	both	time	and
frequency	domains	using	Rigol	DS1052	oscilloscope.

Figure	2.27	Output	from	program	tm4c123_square_1khz_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Figure	2.28	Output	from	program	stm32f4_dimpulse_intr.c	viewed	in	time	and
frequency	domains	using	Rigol	DS1052	oscilloscope.

Figure	2.29	Output	from	program	tm4c123_dimpulse_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Figure	2.30	Output	waveform	generated	by	program	tm4c123_ramp_intr.c.

Figure	2.31	Output	waveform	generated	by	program	tm4c123_am_intr.c.

Figure	2.32	Output	from	program	tm4c123_prbs_intr.c	viewed	using	Rigol	DS1052
oscilloscope	and	Goldwave.

Figure	2.33	Output	from	program	tm4c123_prbs_deemph_intr.c	viewed	using	Rigol
DS1052	oscilloscope	and	Goldwave.

Figure	2.34	Output	from	program	tm4c123_prbs_hpf_intr.c	viewed	using	Rigol
DS1052	oscilloscope	and	Goldwave.

Figure	2.35	Output	from	program	tm4c123_prbs_biquad_intr.c	viewed	using	Rigol
DS1052	oscilloscope	and	Goldwave.

Figure	2.36	Output	from	program	tm4c123_prandom_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Figure	2.38	Sample	values	read	from	the	WM5102	ADC	and	stored	in	array	lbuffer	by
program	stm32f4_loop_buf_intr.c.

Figure	2.37	Square	wave	input	signal	used	with	program	stm32f4_loop_buf_intr.c.

Figure	2.39	Sample	values	read	from	the	WM5102	ADC	and	stored	in	array	lbuffer	by
program	tm4c123_loop_buf_intr.c.

Figure	2.40	Sample	values	read	from	the	AIC3104	ADC	and	stored	in	array	buffer	by
program	tm4c123_sine48_loop_intr.c.

Figure	2.41	Connection	diagram	for	program	tm4c123_sysid_CMSIS_intr.c.

Figure	2.42	The	impulse	response	and	magnitude	frequency	identified	using	program
tm4c123_sysid_CMSIS_intr.c	with	connections	as	shown	in	Figure	2.41,	displayed
using	MATLAB	function	tm4c123_logfft().	Sampling	frequency	8000	Hz,	128-
coefficient	adaptive	filter.

Figure	2.43	The	impulse	response	and	magnitude	frequency	identified	using	program
tm4c123_sysid_CMSIS_intr.c	with	a	first-order	low-pass	analog	filter	connected
between	LINE	IN	and	LINE	OUT	sockets,	displayed	using	MATLAB	function
tm4c123_logfft().	Sampling	frequency	8000	Hz,	128-coefficient	adaptive	filter.

Figure	2.44	The	impulse	response	and	magnitude	frequency	identified	using	program
tm4c123_sysid_CMSIS_intr.c	with	connections	as	shown	in	Figure	2.41	and	de-
emphasis	enabled,	displayed	using	MATLAB	function	tm4c123_logfft().	Sampling
frequency	8000	Hz,	128-coefficient	adaptive	filter.

Figure	2.45	The	impulse	response	and	magnitude	frequency	identified	using	program
stm32f4_sysid_CMSIS_intr.c	with	LINE	OUT	connected	directly	to	LINE	OUT,
displayed	using	MATLAB	function	stm32f4_logfft().	Sampling	frequency	8000	Hz,
128-coefficient	adaptive	filter.

Figure	2.46	Connection	diagram	for	program	tm4c123_sysid_CMSIS_intr.c.

Figure	2.47	The	impulse	response	and	magnitude	frequency	identified	using	program
tm4c123_sysid_CMSIS_intr.c	with	connections	as	shown	in	Figure	2.46,	displayed
using	MATLAB	function	tm4c123_logfft().	Sampling	frequency	16,000	Hz,	192-
coefficient	adaptive	filter.

Figure	2.48	Pulse	output	on	GPIO	pin	PE2	by	program	tm4c123_sysid_CMSIS_intr.c
running	at	a	sampling	rate	of	16	kHz	and	using	192	adaptive	filter	coefficients.

Figure	2.49	Output	from	program	stm32f4_sine8_dac12_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Figure	2.50	Output	from	program	stm32f4_square_dac12_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Figure	2.51	Output	from	program	stm32f4_dimpulse_dac12_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Figure	2.52	Output	from	program	stm32f4_prbs_dac12_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Chapter	3:	Finite	Impulse	Response	Filters

Figure	3.1	Block	diagram	representation	of	a	generic	FIR	filter.

Figure	3.2	Poles	and	zeros	and	region	of	convergence	for	causal	sequence	 ,
,	plotted	in	the	 -plane.

Figure	3.3	Poles	and	zeros	and	region	of	convergence	for	anticausal	sequence	
,	 ,	plotted	in	the	 -plane.

Figure	3.4	Possible	region	of	convergence,	plotted	in	the	 -plane,	corresponding	to	a
right-sided	causal	sequence	 	for	a	system	with	two	real-valued	poles.

Figure	3.6	Possible	region	of	convergence,	plotted	in	the	 -plane,	corresponding	to	a
two-sided	noncausal	sequence	 	for	a	system	with	two	real-valued	poles.

Figure	3.7	Poles	and	zeros	and	region	of	convergence	for	 	plotted	in	the	
-plane,	for	 .	Corresponding	sequence	 	is	causal	and	stable.

Figure	3.9	Poles	and	zeros	and	region	of	convergence	for	 	plotted	in	the	
-plane,	for	 .	Corresponding	sequence	 	is	causal	and	unstable.

Figure	3.10	Poles	and	zeros	and	region	of	convergence	for	 	plotted	in	the
-plane,	for	 .	Corresponding	sequence	 	is	anticausal	and

stable.

Figure	3.12	Poles	and	zeros	and	region	of	convergence	for	 	plotted	in	the
-plane,	for	 .	Corresponding	sequence	 	is	anticausal	and

unstable.

Figure	3.13	Time-domain	and	 -domain	block	diagram	representations	of	a	discrete-
time	LTI	system.

Figure	3.14	Mapping	from	the	 -plane	to	the	 -plane.

Figure	3.15	Ideal	filter	magnitude	frequency	responses.	(a)	Low-pass	(LP).	(b)	High-
pass	(HP).	(c)	Band-pass	(BP).	(d)	Band-stop	(BS).

Figure	3.16	Ideal	low-pass	frequency	response	defined	over	normalized	frequency
range	 .

Figure	3.17	Sixty-one	of	the	infinite	number	of	values	in	the	discrete-time	impulse
response	obtained	by	taking	the	inverse	DTFT	of	the	ideal	low-pass	frequency
response	of	Figure	3.16.

Figure	3.18	The	discrete-time	impulse	response	of	Figure	3.17	truncated	to	
values.

Figure	3.19	The	continuous,	periodic	magnitude	frequency	response	obtained	by	taking
the	DTFT	of	the	truncated	impulse	response	shown	in	Figure	3.18	(plotted	against
normalized	frequency).

Figure	3.20	A	33-point	Hanning	window.

Figure	3.21	The	magnitude	frequency	response	corresponding	to	the	filter	coefficients
of	Figure	3.22	(plotted	against	normalized	frequency).

Figure	3.22	The	filter	coefficients	of	Figure	3.17	multiplied	by	the	Hanning	window	of
Figure	3.20.

Figure	3.23	The	magnitude	frequency	responses	of	Figure	3.19	and	3.21	plotted	on	a
logarithmic	scale,	against	normalized	frequency	 .

Figure	3.24	Ideal	high-pass	filter	magnitude	frequency	response.

Figure	3.25	Ideal	band-pass	filter	magnitude	frequency	response.

Figure	3.26	Ideal	band-stop	filter	magnitude	frequency	response.

Figure	3.27	Theoretical	magnitude	frequency	response	of	the	five-point	moving
average	filter	(sampling	rate	8	kHz).

Figure	3.28	Magnitude	frequency	response	of	the	five-point	moving	average	filter
demonstrated	using	program	stm32f4_average_prbs_intr.c	and	displayed	using	(a)
Rigol	DS1052E	oscilloscope	(lower	trace)	and	(b)	Goldwave.

Figure	3.29	Connection	diagram	for	use	of	program	tm4c123_sysid_CMSIS_intr.c	to
identify	the	characteristics	of	a	moving	average	filter	implemented	using	two	sets	of
hardware.

Figure	3.30	Impulse	response	of	the	five-point	moving	average	filter	identified	using
two	launchpads	and	booster	packs	and	programs	tm4c123_sysid_CMSIS_intr.c	and
tm4c123_average_intr.c.

Figure	3.31	Magnitude	frequency	response	of	the	five-point	moving	average	filter
identified	using	two	sets	of	hardware	and	programs	tm4c123_sysid_CMSIS_intr.c	and
tm4c123_average_intr.c.

Figure	3.32	Connection	diagram	for	program	tm4c123_sysid_average_CMSIS_intr.c.

Figure	3.33	Magnitude	frequency	response	of	an	eleven-point	moving	average	filter
implemented	using	program	tm4c123_average_prbs_intr.c	and	displayed	using
Goldwave.

Figure	3.34	Magnitude	frequency	response	of	a	five-point	moving	average	filter	with
Hanning	window	implemented	using	program	stm32f4_average_prbs_intr.c	and
displayed	using	Goldwave.

Figure	3.35	MATLAB	fdatool	window	corresponding	to	design	the	of	an	FIR	band-stop
filter	centered	at	2700	Hz.

Figure	3.36	MATLAB	fdatool	window	corresponding	to	design	of	FIR	band-pass	filter
centered	at	1750	Hz.

Figure	3.37	Output	generated	using	program	tm4c123_fir_prbs_intr.c	and	coefficient
file	bs2700.h	displayed	using	(a)	Rigol	DS1052E	oscilloscope	and	(b)	GoldWave.

Figure	3.38	Output	generated	using	program	tm4c123_fir_prbs_intr.c	using	coefficient
files	(a)	pass2b.h	and	(b)	hp55.h.

Figure	3.39	Magnitude	of	the	FFT	of	the	output	from	program
stm32f4_fir_prbs_buf_intr.c	using	coefficient	header	file	bp1750.h.

Figure	3.40	Filter	coefficients	used	in	program	stm32f4_fir_prbs_buf_intr.c
(bp1750.h).

Figure	3.41	Magnitude	of	the	FFT	of	the	filter	coefficients	used	in	program
stm32f4_fir_prbs_buf_intr.c.

Figure	3.42	A	200	Hz	square	wave	passed	through	three	different	low-pass	filters
implemented	using	program	tm4c123_fir3lp_intr.c.

Figure	3.43	Output	generated	using	program	tm4c123_fir_4types_intr.c.

Figure	3.44	Pseudorandom	noise	filtered	using	program	tm4c123_notch2_intr.c.

Figure	3.45	Block	diagram	representation	of	scrambler	implemented	using	program
tm4c123_scrambler_intr.c.

Figure	3.46	Pulses	output	on	GPIO	pin	PE2	by	programs	tm4c123_fir_prbs_intr.c	and
tm4c123_fir_prbs_dma.c.

Chapter	4:	Infinite	Impulse	Response	Filters

Figure	4.1	Direct	form	I	IIR	filter	structure.

Figure	4.2	Direct	form	II	IIR	filter	structure.

Figure	4.3	Direct	form	II	transpose	IIR	filter	structure.

Figure	4.4	Cascade	form	IIR	filter	structure.

Figure	4.5	Fourth-order	IIR	filter	with	two	direct	form	II	sections	in	cascade.

Figure	4.6	Parallel	form	IIR	filter	structure.

Figure	4.7	Fourth-order	IIR	filter	with	two	direct	form	II	sections	in	parallel.

Figure	4.8	Relationship	between	analog	and	digital	frequencies,	 	and	 ,	due	to
frequency	warping	in	the	bilinear	transform.

Figure	4.9	(a)	Magnitude	frequency	response	of	filter	 .	(b)	Phase	response	of	filter	
.

Figure	4.10	Impulse	responses	 	(scaled	by	sampling	period)	and	 	of
continuous-time	filter	 	and	its	impulse-invariant	digital	implementation.

Figure	4.11	Output	from	program	tm4c123_iirsos_prbs_intr.c	using	coefficient	file
impinv.h,	viewed	using	the	FFT	function	of	a	Rigol	DS1052E	oscilloscope.

Figure	4.12	Output	from	program	tm4c123_iirsos_prbs_intr.c	using	coefficient	file
impinv.h,	viewed	using	Goldwave.

Figure	4.13	Output	from	program	tm4c123_iirsos_delta_intr.c	using	coefficient	file
impinv.h,	viewed	using	the	FFT	function	of	a	Rigol	DS1052E	oscilloscope.

Figure	4.14	The	magnitude	frequency	response	of	the	filter	implemented	by	program
tm4c123_iirsos_delta_intr.c	using	coefficient	file	impinv.h,	plotted	using	MATLAB
function	tm4c123_logfft().

Figure	4.15	Output	from	program	tm4c123_iirsos_prbs_intr.c	using	coefficient	file
bilinear.h,	viewed	using	the	FFT	function	of	a	Rigol	DS1052E	oscilloscope.

Figure	4.18	The	magnitude	frequency	response	of	the	filter	implemented	by	program
tm4c123_iirsos_delta_intr.c	using	coefficient	file	bilinear.h,	plotted	using	MATLAB
function	tm4c123_logfft().

Figure	4.19	The	effect	of	the	bilinear	transform	on	the	magnitude	frequency	response	of
the	example	filter.

Figure	4.20	MATLAB	fdatool	window	showing	the	magnitude	frequency	response	of	a
fourth-order	elliptic	low-pass	filter.

Figure	4.21	MATLAB	fdatool	window	showing	the	magnitude	frequency	response	of	a
second-order	Chebyshev	low-pass	filter.

Figure	4.16	Output	from	program	tm4c123_iirsos_prbs_intr.c	using	coefficient	file
bilinear.h,	viewed	using	Goldwave.

Figure	4.22	Impulse	response	and	magnitude	frequency	response	of	the	filter
implemented	by	program	tm4c123_iirsos_delta_intr.c,	using	coefficient	file	elliptic.h,
plotted	using	MATLAB	function	tm4c123_logfft().

Figure	4.23	Output	from	program	tm4c123_iirsos_delta_intr.c,	using	coefficient	file
elliptic.h	viewed	using	a	Rigol	DS1052E	oscilloscope.

Figure	4.24	MATLAB	fdatool	window	showing	the	magnitude	frequency	response	of
an	18th-order	band-pass	filter	centered	on	2000	Hz.

Figure	4.25	Output	from	program	tm4c123_iirsos_prbs_intr.c,	using	coefficient	file
bp2000.h	viewed	using	a	Rigol	DS1052E	oscilloscope.

Figure	4.26	Output	from	program	tm4c123_iirsos_prbs_intr.c,	using	coefficient	file
bp2000.h	viewed	using	Goldwave.

Figure	4.27	Connection	diagram	for	program	tm4c123_sysid_biquad_intr.c.

Figure	4.28	Frequency	response	of	signal	path	through	DAC,	connecting	cable,	and
ADC	shown	in	Figure	4.27	with	biquad	filters	disabled.

Figure	4.29	Frequency	response	of	signal	path	through	DAC,	connecting	cable,	and
ADC	shown	in	Figure	4.27	with	biquad	filters	programmed	as	a	fourth-order	elliptic
low-pass	filter	and	enabled.

Figure	4.30	fdatool	used	to	design	a	fourth-order	elliptic	band-pass	filter.

Figure	4.31	Frequency	response	of	signal	path	through	DAC,	connecting	cable,	and
ADC	shown	in	Figure	4.27	with	biquad	filters	programmed	as	a	fourth-order	elliptic
band-pass	filter	and	enabled.

Figure	4.32	Block	diagram	representation	of	Equation	(4.53).

Figure	4.33	Block	diagram	representation	of	Equation	(4.54).

Figure	4.34	Output	samples	generated	by	program	stm32f4_sinegenDTMF_intr.c
plotted	using	MATLAB	function	stm32f4_logfft().

Figure	4.35	Output	signal	generated	by	program	stm32f4_sinegenDTMF_intr.c	viewed
using	a	Rigol	DS1052E	oscilloscope.

Figure	4.36	Pole-zero	map	for	notch	filter	described	by	Equation	(4.56)	for	 	and	
.

Figure	4.37	Frequency	response	of	notch	filter	described	by	Equation	(4.56)	for	
and	 .

Figure	4.38	Pseudorandom	noise	filtered	by	program	tmc123_iirsos_prbs_intr.c	using
header	file	iir_notch_coeffs.h.

Chapter	5:	Fast	Fourier	Transform

Figure	5.1	Twiddle	factors	 	for	 	represented	as	vectors	in	the	complex	plane.

Figure	5.2	Decomposition	of	8-point	DFT	into	two	4-point	DFTs	using	decimation-in-
frequency	with	radix-2.

Figure	5.3	Decomposition	of	4-point	DFT	into	two	2-point	DFTs	using	decimation-in-
frequency	with	radix-2.

Figure	5.4	2-point	FFT	butterfly	structure.

Figure	5.5	Block	diagram	representation	of	8-point	FFT	using	decimation-in-frequency
with	radix-2.

Figure	5.6	Decomposition	of	8-point	DFT	into	two	4-point	DFTs	using	decimation-in-
time	with	radix-2.

Figure	5.7	Decomposition	of	4-point	DFT	into	two	2-point	DFTs	using	decimation-in-
time	with	radix-2.

Figure	5.8	Block	diagram	representation	of	8-point	FFT	using	decimation-in-time	with
radix-2.

Figure	5.9	Complex	contents	of	array	samples	(TESTFREQ	=	800.0)	before	calling

function	dft(),	viewed	in	a	Memory	window	in	the	MDK-ARM	debugger.

Figure	5.10	Complex	contents	of	array	samples	(TESTFREQ	=	800.0)	before	calling
function	dft(),	plotted	using	MATLAB	function	stm32f4_plot_complex().

Figure	5.11	Complex	contents	of	array	samples	(TESTFREQ	=	800.0)	after	calling
function	dft(),	plotted	using	MATLAB	function	stm32f4_plot_complex().

Figure	5.12	Complex	contents	of	array	samples	(TESTFREQ	=	900.0)	after	calling
function	dft(),	plotted	using	MATLAB	function	stm32f4_plot_complex().

Figure	5.13	MDK-ARM	Register	window	showing	Sec	item.

Figure	5.14	Output	signal	from	program	tm4c123_dft128_dma.c	viewed	using	an
oscilloscope.

Figure	5.15	Output	signal	from	program	stm32f4_dft128_dma.c	viewed	using	an
oscilloscope.

Figure	5.16	Partial	contents	of	array	outbuffer,	plotted	using	MATLAB	function
tm4c123_plot_real(),	for	input	sinusoid	of	frequency	1750	Hz.

Figure	5.17	Detail	of	output	signal	from	program	tm4c123_dft128_dma.c	for	input
sinusoid	of	frequency	1781	Hz.

Figure	5.18	Detail	of	output	signal	from	program	tm4c123_dft128_dma.c	for	input
sinusoid	of	frequency	1750	Hz.

Figure	5.19	Partial	contents	of	array	outbuffer,	plotted	using	MATLAB	function
tm4c123_plot_real(),	for	input	sinusoid	of	frequency	1781	Hz.

Figure	5.20	Detail	of	output	signal	from	program	tm4c123_dft128_dma.c,	modified	to
apply	a	Hamming	window	to	blocks	of	input	samples,	for	input	sinusoid	of	frequency
1750	Hz.

Figure	5.21	Detail	of	output	signal	from	program	tm4c123_dft128_dma.c,	modified	to
apply	a	Hamming	window	to	blocks	of	input	samples,	for	input	sinusoid	of	frequency
1781	Hz.

Figure	5.22	Partial	contents	of	array	outbuffer,	plotted	using	MATLAB	function
tm4c123_plot_real(),	for	input	sinusoid	of	frequency	1750	Hz.	(Hamming	window
applied	to	blocks	of	input	samples.)

Figure	5.23	Partial	contents	of	array	outbuffer,	plotted	using	MATLAB	function
tm4c123_plot_real(),	for	input	sinusoid	of	frequency	1781	Hz.	(Hamming	window
applied	to	blocks	of	input	samples.)

Figure	5.24	Output	signal	generated	by	program	tm4c123_fft128_sinetable_dma.c,
displayed	using	a	Rigol	DS1052E	oscilloscope.

Figure	5.25	Output	signal	from	program	tm4c123_graphicEQ_CMSIS_dma.c,
displayed	using	Goldwave,	for	a	pseudorandom	noise	input	signal.	bass_gain	=	0.1,

mid_gain	=	0.1,	treble_gain	=	0.25.

Chapter	6:	Adaptive	Filters

Figure	6.1	Basic	adaptive	filter	structure.

Figure	6.2	Simplified	block	diagram	of	basic	adaptive	filter	structure.

Figure	6.3	Basic	adaptive	filter	structure	configured	for	prediction.

Figure	6.4	Basic	adaptive	filter	structure	configured	for	system	identification.

Figure	6.5	Basic	adaptive	filter	structure	configured	for	noise	cancellation.

Figure	6.6	Alternative	representation	of	basic	adaptive	filter	structure	configured	for
noise	cancellation	emphasizing	the	difference	 	in	paths	from	a	single	noise	source
to	primary	and	reference	sensors.

Figure	6.7	Basic	adaptive	filter	structure	configured	for	equalization.

Figure	6.8	Block	diagram	representation	of	FIR	filter.

Figure	6.9	Performance	function	for	single	weight	case.

Figure	6.10	Steepest	descent	algorithm	illustrated	for	single	weight	case.

Figure	6.11	Plots	of	(a)	desired	output,	(b)	adaptive	filter	output,	and	(c)	error
generated	using	program	stm32f4_adaptive.c	and	displayed	using	MATLAB	function
stm32f4_plot_real().

Figure	6.12	Block	diagram	representation	of	program	tm4c213_adaptnoise_intr.c.

Figure	6.13	Block	diagram	representation	of	program
tm4c123_noise_cancellation_intr.c.

Figure	6.14	Impulse	response	and	magnitude	frequency	response	of	IIR	filter	identified
by	the	adaptive	filter	in	program	tm4c123_noise_cancellation_intr.c	and	plotted	using
MATLAB	function	tm4c123_logfft().

Figure	6.15	Block	diagram	representation	of	program
tm4c123_adaptIDFIR_CMSIS_intr.c.

Figure	6.16	Output	from	program	stm32f4_adaptIDFIR_CMSIS_intr.c	using	coefficient
header	file	bs55.h	viewed	using	Rigol	DS1052E	oscilloscope.

Figure	6.17	Output	from	adaptive	filter	in	program
tm4c123_adaptIDFIR_CMSIS_init_intr.c.

Figure	6.18	Block	diagram	representation	of	program
tm4c123_iirsosadapt_CMSIS_intr.c.

Figure	6.19	Output	from	adaptive	filter	in	program	tm4c123_iirsosadapt_CMSIS_intr.c
viewed	using	a	Rigol	DS1052E	oscilloscope.

Figure	6.20	Adaptive	filter	coefficients	from	program

tm4c123_iirsosadapt_CMSIS_intr.c	plotted	using	MATLAB	function	tm4c123_logfft().

Figure	6.21	Connection	diagram	for	program	tm4c123_sysid_CMSIS_intr.c	in	Example
6.14.

Figure	6.22	Adaptive	filter	coefficients	from	program	tm4c123_sysid_CMSIS_intr.c
plotted	using	MATLAB	function	tm4c123_logfft()

Figure	6.23	Adaptive	filter	coefficients	from	program	tm4c123_sysid_CMSIS_dma.c
plotted	using	MATLAB	function	tm4c123_logfft().	(a)	BUFSIZE	=	32	(b)	BUFSIZE	=
64.

List	of	Tables
Chapter	2:	Analog	Input	and	Output

Table	2.1	Summary	of	DMA	Control	Structures	Used	and	Flags	Set	in	Interrupt	Service
Routines	SSI0IntHandler()	and	SSI1IntHandler()	in	Program	tm4c123_loop_dma.c

Chapter	5:	Fast	Fourier	Transform

Table	5.1	Execution	Times	for	Functions	dft(),	dftw(),	fft()	and	arm_cfft_f32()

DIGITAL	SIGNAL	PROCESSING	USING
THE	ARM®	CORTEX®-M4
DONALD	S.	REAY
Heriot-Watt	University

	

	

	

Copyright	©	2016	by	John	Wiley	&	Sons,	Inc.	All	rights	reserved
Published	by	John	Wiley	&	Sons,	Inc.,	Hoboken,	New	Jersey

Published	simultaneously	in	Canada
ARM	and	Cortex	are	registered	trademarks	of	ARM	Limited	(or	its	subsidiaries)	in	the	EU	and/or	elsewhere.	All	rights
reserved.

MATLAB	and	Simulink	are	registered	trademarks	of	The	MathWorks,	Inc.	See	www.mathworks.com/	trademarks	for	a	list	of
additional	trademarks.	The	MathWorks	Publisher	Logo	identifies	books	that	contain	MATLAB®	content.	Used	with	Permission.
The	book's	or	downloadable	software's	use	of	discussion	of	MATLAB®	software	or	related	products	does	not	constitute
endorsement	or	sponsorship	by	the	MathWorks	of	a	particular	use	of	the	MATLAB®	software	or	related	products.

For	MATLAB®	product	information,	or	information	on	other	related	products,	please	contact:

The	MathWorks,	Inc.,	3	Apple	Hill	Drive,	Natick.	MA	01760-2098	USA,	Tel:	508-647-7000,	Fax:	508-647-7001,	E-mail:
info@mathworks.com,	Web:	www.mathworks.com,	How	to	buy:	www.mathworks.com/store
No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	scanning,	or	otherwise,	except	as	permitted	under	Section	107	or	108	of	the
1976	United	States	Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or	authorization	through	payment
of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	Inc.,	222	Rosewood	Drive,	Danvers,	MA	01923,	(978)	750-
8400,	fax	(978)	750-4470,	or	on	the	web	at	www.copyright.com.	Requests	to	the	Publisher	for	permission	should	be	addressed
to	the	Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax	(201)	748-
6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	While	the	publisher	and	author	have	used	their	best	efforts	in	preparing	this	book,	they
make	no	representations	or	warranties	with	respect	to	the	accuracy	or	completeness	of	the	contents	of	this	book	and
specifically	disclaim	any	implied	warranties	of	merchantability	or	fitness	for	a	particular	purpose.	No	warranty	may	be	created
or	extended	by	sales	representatives	or	written	sales	materials.	The	advice	and	strategies	contained	herein	may	not	be	suitable
for	your	situation.	You	should	consult	with	a	professional	where	appropriate.	Neither	the	publisher	nor	author	shall	be	liable	for
any	loss	of	profit	or	any	other	commercial	damages,	including	but	not	limited	to	special,	incidental,	consequential,	or	other
damages.
For	general	information	on	our	other	products	and	services	or	for	technical	support,	please	contact	our	Customer	Care
Department	within	the	United	States	at	(800)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	also	publishes	its	books	in	a	variety	of	electronic	formats.	Some	content	that	appears	in	print	may	not	be	available	in
electronic	formats.	For	more	information	about	Wiley	products,	visit	our	web	site	at	www.wiley.com.
Library	of	Congress	Cataloging-in-Publication	Data:

Reay,	Donald	(Donald	S.),	author.
Digital	signal	processing	using	the	ARM	Cortex-M4	/	Donald	Reay.

pages	cm
Includes	bibliographical	references	and	index.

ISBN	978-1-118-85904-9	(pbk.)
1.	Signal	processing–Digital	techniques.	2.	ARM	microprocessors.	I.	Title.

TK5102.9.R4326	2015
621.382′2–dc23

2015024771

http://www.mathworks.com
mailto:info@mathworks.com
http://www.mathworks.com
http://www.mathworks.com/store
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com

To	Reiko

Preface
This	book	continues	the	series	started	in	1990	by	Rulph	Chassaing	and	Darrell	Horning's
Digital	Signal	Processing	with	the	TMS320C25,	which	tracked	the	development	of
successive	generations	of	digital	signal	processors	by	Texas	Instruments.	More	specifically,
each	book	in	the	series	up	until	now	has	complemented	a	different	inexpensive	DSP
development	kit	promoted	for	teaching	purposes	by	the	Texas	Instruments	University	Program.
A	consistent	theme	in	the	books	has	been	the	provision	of	a	large	number	of	simple	example
programs	illustrating	DSP	concepts	in	real	time,	in	an	electrical	engineering	laboratory	setting.

It	was	Rulph	Chassaing's	belief,	and	this	author	continues	to	believe,	that	hands-on	teaching	of
DSP,	using	hardware	development	kits	and	laboratory	test	equipment	to	process	analog	audio
frequency	signals,	is	a	valuable	and	effective	way	of	reinforcing	the	theory	taught	in	lectures.

The	contents	of	the	books,	insofar	as	they	concern	fundamental	concepts	of	digital	signal
processing	such	as	analog-to-digital	and	digital-to-analog	conversion,	finite	impulse	response
(FIR)	and	infinite	impulse	response	(IIR)	filtering,	the	Fourier	transform,	and	adaptive
filtering,	have	changed	little.	Every	academic	year	brings	another	cohort	of	students	wanting	to
study	this	material.	However,	each	book	has	featured	a	different	DSP	development	kit.

In	2013,	Robert	Owen	suggested	to	me	that	hands-on	DSP	teaching	could	be	implemented	using
an	inexpensive	ARM®	Cortex-M4®	microcontroller.	I	pointed	out	that	a	Texas	Instruments
C674x	processor	was	very	significantly	more	computationally	powerful	than	an	ARM	Cortex-
M4.	But	I	also	went	ahead	and	purchased	a	Texas	Instruments	Stellaris	LaunchPad.	I
constructed	an	audio	interface	using	a	Wolfson	WM8731	codec	and	successfully	ported	the
program	examples	from	my	previous	book	to	that	hardware	platform.

This	book	is	aimed	at	senior	undergraduate	and	postgraduate	electrical	engineering	students
who	have	some	knowledge	of	C	programming	and	linear	systems	theory,	but	it	is	intended,	and
hoped,	that	it	may	serve	as	a	useful	resource	for	anyone	involved	in	teaching	or	learning	DSP
and	as	a	starting	point	for	teaching	or	learning	more.

I	am	grateful	to	Robert	Owen	for	first	making	me	aware	of	the	ARM	Cortex-M4;	to	Khaled
Benkrid	at	the	ARM	University	Program	and	to	the	Royal	Academy	of	Engineering	for	making
possible	a	six-month	Industrial	Secondment	to	ARM	during	which	teaching	materials	for	the
STM32f01	platform	were	developed;	to	Gordon	McLeod	and	Scott	Hendry	at	Wolfson
Microelectronics	for	their	help	in	getting	the	Wolfson	Pi	audio	card	to	work	with	the
STM32f01	Discovery;	to	Sean	Hong,	Karthik	Shivashankar,	and	Robert	Iannello	at	ARM	for
all	their	help;	to	Joan	Teixidor	Buixeda	for	helping	to	debug	the	program	examples;	to	Cathy
Wicks	at	the	TI	University	Program	and	Hieu	Duong	at	CircuitCo	for	developing	the	audio
booster	pack;	and	to	Kari	Capone	and	Brett	Kurzman	at	Wiley	for	their	patience.	But	above	all,
I	thank	Rulph	Chassaing	for	inspiring	me	to	get	involved	in	teaching	hands-on	DSP.

Donald	S.	Reay

Edinburgh

2015

Chapter	1
ARM®	CORTEX®-M4	Development	Systems

1.1	Introduction
Traditionally,	real-time	digital	signal	processing	(DSP)	has	been	implemented	using
specialized	and	relatively	expensive	hardware,	for	example,	digital	signal	processors	or	field-
programmable	gate	arrays	(FPGAs).	The	ARM®	Cortex®-M4	processor	makes	it	possible	to
process	audio	in	real	time	(for	teaching	purposes,	at	least)	using	significantly	less	expensive,
and	simpler,	microcontrollers.

The	ARM	Cortex-M4	is	a	32-bit	microcontroller.	Essentially,	it	is	an	ARM	Cortex-M3
microcontroller	that	has	been	enhanced	by	the	addition	of	DSP	and	single	instruction	multiple
data	(SIMD)	instructions	and	(optionally)	a	hardware	floating-point	unit	(FPU).	Although	its
computational	power	is	a	fraction	of	that	of	a	floating-point	digital	signal	processor,	for
example,	the	Texas	Instruments	C674x,	it	is	quite	capable	of	implementing	DSP	algorithms,	for
example,	FIR	and	IIR	filters	and	fast	Fourier	transforms	for	audio	signals	in	real-time.

A	number	of	semiconductor	manufacturers	have	developed	microcontrollers	that	are	based	on
the	ARM	Cortex-M4	processor	and	that	incorporate	proprietary	peripheral	interfaces	and	other
IP	blocks.	Many	of	these	semiconductor	manufacturers	make	available	very-low-cost
evaluation	boards	for	their	ARM	Cortex-M4	microcontrollers.	Implementing	real-time	audio
frequency	example	programs	on	these	platforms,	rather	than	on	more	conventional	DSP
development	kits,	constitutes	a	reduction	of	an	order	of	magnitude	in	the	hardware	cost	of
implementing	hands-on	DSP	teaching.	For	the	first	time,	students	might	realistically	be
expected	to	own	a	hardware	platform	that	is	useful	not	only	for	general
microcontroller/microprocessor	programming	and	interfacing	activities	but	also	for
implementation	of	real-time	DSP.

1.1.1	Audio	Interfaces
At	the	time	that	the	program	examples	presented	in	this	book	were	being	developed,	there	were
no	commercially	available	low-cost	ARM	Cortex-M4	development	boards	that	incorporated
high-quality	audio	input	and	output.	The	STMicroelectronics	STM32F407	Discovery	board
features	a	high-quality	audio	digital-to-analog	converter	(DAC)	but	not	a	correspondinganalog-
to-digital	converter	(ADC).	Many	ARM	Cortex-M4	devices,	including	both	the
STMicroelectronics	STM32F407	and	the	Texas	Instruments	TM4C123,	feature	multichannel
instrumentation-quality	ADCs.	But	without	additional	external	circuitry,	these	are	not	suitable
for	the	applications	discussed	in	this	book.

The	examples	in	this	book	require	the	addition	(to	an	inexpensive	ARM	Cortex-M4
development	board)	of	an	(inexpensive)	audio	interface.

In	the	case	of	the	STMicroelectronics	STM32F407	Discovery	board	and	of	the	Texas
Instruments	TM4C123	LaunchPad,	compatible	and	inexpensive	audio	interfaces	are	provided
by	the	Wolfson	Pi	audio	card	and	the	CircuitCo	audio	booster	pack,	respectively.	The	low-
level	interfacing	details	and	the	precise	performance	characteristics	and	extra	features	of	the
two	audio	interfaces	are	subtly	different.	However,	each	facilitates	the	input	and	output	of
high-quality	audio	signals	to	and	from	an	ARM	Cortex-M4	processor	on	which	DSP	algorithms
may	be	implemented.

Almost	all	of	the	program	examples	presented	in	the	subsequent	chapters	of	this	book	are
provided,	in	only	very	slightly	different	form,	for	both	the	STM32F407	Discovery	and	the
TM4C123	LaunchPad,	on	the	partner	website
http://www.wiley.com/go/Reay/ARMcortexM4.

However,	in	most	cases,	program	examples	are	described	in	detail,	and	program	listings	are
presented,	only	for	one	or	other	hardware	platform.	Notable	exceptions	are	that,	in	Chapter	2,
low-level	i/o	mechanisms	(implemented	slightly	differently	in	the	two	devices)	are	described
in	detail	for	both	hardware	platforms	and	that	a	handful	of	example	programs	use	features
unique	to	one	or	other	processor/audio	interface.

This	book	does	not	describe	the	internal	architecture	or	features	of	the	ARM	Cortex-M4
processor	in	detail.	An	excellent	text	on	that	subject,	including	details	of	its	DSP-related
capabilities,	is	The	Definitive	Guide	to	ARM®	Cortex®-M3	and	Cortex®-M4	Processors	by
Yiu	[1].

1.1.2	Texas	Instruments	TM4C123	LaunchPad	and	STM32F407
Discovery	Development	Kits
The	Texas	Instruments	and	STMicroelectronics	ARM	Cortex-M4	processor	boards	used	in	this
book	are	shown	in	Figures	1.1	and	1.2.	The	program	examples	presented	in	this	book	assume
the	use	of	the	Keil	MDK-ARM	development	environment,	which	is	compatible	with	both
development	kits.	An	alternative	development	environment,	Texas	Instruments'	Code
Composer	Studio,	is	available	for	the	TM4C123	LaunchPad	and	the	program	examples	have
been	tested	using	this.	Versions	of	the	program	examples	compatible	with	Code	Composer
Studio	version	6	are	provided	on	the	partner	website
http://www.wiley.com/go/Reay/ARMcortexM4.

http://www.wiley.com/go/Reay/ARMcortexM4
http://www.wiley.com/go/Reay/ARMcortexM4

Figure	1.1	Texas	Instruments	TM4C123	LaunchPad.

Figure	1.2	STMicroelectronics	STM32F407	Discovery.

The	CircuitCo	audio	booster	pack	(for	the	TM4C123	LaunchPad)	and	the	Wolfson	Pi	audio
card	(for	the	STM32F407	Discovery)	are	shown	in	Figures1.3	and	1.4.	The	audio	booster
pack	and	the	launchpad	plug	together,	whereas	the	Wolfson	audio	card,	which	was	designed	for
use	with	a	Raspberry	Pi	computer,	must	be	connected	to	the	Discovery	using	a	custom	ribbon
cable	(available	from	distributor	Farnell).

Figure	1.3	AIC3104	audio	booster	pack.

Figure	1.4	Wolfson	Pi	audio	card.

Rather	than	presenting	detailed	instructions	here	that	may	be	obsolete	as	soon	as	the	next
version	of	MDK-ARM	is	released,	the	reader	is	directed	to	the	“getting	started”	guide	at	the
partner	website	http://www.wiley.com/go/Reay/ARMcortexM4.	and	before	progressing	to
the	next	chapter	of	this	book	will	need	to	install	MDK-ARM,	including	the	“packs”	appropriate
to	the	hardware	platform	being	used	and	including	the	CMSIS	DSP	library,	download	the
program	examples	from	the	website,	and	become	familiar	with	how	to	open	a	project	in	MDK-
ARM,	add	and	remove	files	from	a	project,	build	a	project,	start	and	stop	a	debug	session,	and
run	and	halt	a	program	running	on	the	ARM	Cortex-M4	processor.

Some	of	the	example	programs	implement	DSP	algorithms	straightforwardly,	and	with	a	view
to	transparency	and	understandability	rather	than	computational	efficiency	or	elegance.	In
several	cases,	ARM's	CMSIS	DSP	library	functions	are	used.	These	are	available	for	both	the
STMicroelectronics	and	Texas	Instruments	processors	as	part	of	the	MDK-ARM	development
environment.	In	appropriate	circumstances,	these	library	functions	are	particularly
computationally	efficient.	This	is	useful	in	some	of	the	program	examples	where	the	demands
of	running	in	real-time	approach	the	limits	of	what	is	achievable	with	the	ARM	Cortex-M4.
One	difference	between	the	two	devices	used	in	this	book	is	that	STM32F407	uses	a	processor

http://www.wiley.com/go/Reay/ARMcortexM4

clock	speed	of	168	MHz,	whereas	the	TM4C123	clock	speed	is	84	MHz.	As	presented	in	the
book,	all	of	the	program	examples	will	run	in	real	time	on	either	device.	However,	if	the
parameter	values	used	are	changed,	for	example,	if	the	number	of	coefficients	in	an	FIR	filter
is	increased,	it	is	likely	that	the	limits	of	the	slower	device	will	be	reached	more	readily	than
those	of	the	faster	one.

All	of	the	program	examples	have	been	tested	using	the	free,	code	size-limited,	version	of
MDK-ARM.	The	aim	of	hands-on	DSP	teaching,	and	the	intention	of	this	book,	is	not	to	teach
about	the	architecture	of	the	ARM	Cortex-M4.	The	device	is	used	because	it	provides	a
capable	and	inexpensive	platform.	Nor	is	it	the	aim	of	hands-on	DSP	teaching,	or	the	intention
of	this	book,	to	teach	about	the	use	of	MDK-ARM.	The	aim	of	hands-on	DSP	teaching	is	to
reinforce	DSP	theory	taught	in	lectures	through	the	use	of	illustrative	examples	involving	the
real-time	processing	of	audio	signals	in	an	electrical	engineering	laboratory	environment.	That
is	to	say	where	test	equipment	such	as	oscilloscopes,	signal	generators,	and	connecting	cables
are	available.

1.1.3	Hardware	and	Software	Tools
To	perform	the	experiments	described	in	this	book,	a	number	of	software	and	hardware
resources	are	required.

1.	 An	ARM	Cortex-M4	development	board	and	audio	interface.	Either	aTexas	Instruments
TM4C123	LaunchPad	and	a	CircuitCo	audio	booster	pack	or	an	STMicroelectronics
STM32F407	Discovery	board	and	a	Wolfson	Microelectronics	Pi	audio	card	are	suitable
hardware	platforms.

2.	 A	host	PC	running	an	integrated	development	environment	(IDE)	and	with	a	spare	USB
connection.	The	program	examples	described	in	this	book	were	developed	and	tested	using
the	Keil	MDK-ARM	development	environment.	However,	versions	of	the	program
examples	for	the	TM4C123	LaunchPad	and	project	files	compatible	with	Texas	Instruments
Code	Composer	Studio	IDE	are	provided	on	the	partner	website
http://www.wiley.com/go/Reay/ARMcortexM4.

3.	 The	TM4C123	LaunchPad	and	the	STM32F407	Discovery	board	use	slightly	different
USB	cables	to	connect	to	the	host	PC.	The	launchpad	is	supplied	with	a	USB	cable,	while
the	STM32F407	Discovery	is	not.

4.	 Whereas	the	audio	booster	pack	and	the	launchpad	plug	together,	the	Wolfson	Pi	audio	card
does	not	plug	onto	the	STM32F407	Discovery	board.	Connections	between	the	two	can	be
made	using	a	custom	ribbon	cable,	available	from	distributor	Farnell.

5.	 An	oscilloscope,	a	signal	generator,	a	microphone,	headphones,	and	various	connecting
cables.	Several	of	these	items	will	be	found	in	almost	any	electrical	engineering
laboratory.	If	you	are	using	the	STM32F407	Discovery	and	Wolfson	Pi	audio	card,	then	a
microphone	is	unnecessary.	The	audio	card	has	built-in	digital	MEMS	microphones.	The
Wolfson	Pi	audio	card	is	also	compatible	with	combined	microphone	and	headphone
headsets	(including	those	supplied	with	Apple	and	Samsung	smartphones).	Stereo	3.5	mm

http://www.wiley.com/go/Reay/ARMcortexM4

jack	plug	to	3.5	mm	jack	plug	cables	and	stereo	3.5	mm	jack	plug	to	(two)	RCA	(phono)
plugs	and	RCA	to	BNC	adapters	are	the	specific	cables	required.

6.	 Project	and	example	program	files	from	the	partner	website
http://www.wiley.com/go/Reay/ARMcortexM4.

Reference
1	.Yiu,	J.,	“The	Definitive	Guide	to	ARM®	Cortex®-M3	and	Cortex®-M4	Processors”,	Third
Edition,	Elsevier	Inc.,	2014.

http://www.wiley.com/go/Reay/ARMcortexM4

Chapter	2
Analog	Input	and	Output

2.1	Introduction
A	basic	DSP	system,	suitable	for	processing	audio	frequency	signals,	comprises	a	digital
signal	processor	(DSP)	and	analog	interfaces	as	shown	in	Figure	2.1.	The	Texas	Instruments
TM4C123	LaunchPad	and	audio	booster	pack	provide	such	a	system,	using	a	TM4C123
ARM®	Cortex®-M4	processor	and	a	TLV320AIC3104	(AIC3104)	codec	[1].	The	STMicro
STM32F407	Discovery	and	the	Wolfson	audio	card	provide	such	a	system,	using	an
STM32407	ARM®	Cortex®-M4	processor	and	a	WM5102	codec	[2].	The	term	codec	refers
to	the	coding	of	analog	waveforms	as	digital	signals	and	the	decoding	of	digital	signals	as
analog	waveforms.	The	AIC3104	and	WM5102	codecs	perform	both	the	analog-to-digital
conversion	(ADC)	and	digital-to-analog	conversion	(DAC)	functions	shown	in	Figure	2.1.

Figure	2.1	Basic	digital	signal	processing	system.

Both	the	AIC3104	and	WM5102	codecs	communicate	with	their	associated	processors
(TM4C123	and	STM32F407)	using	I2C	bus	for	control	(writing	to	the	codec's	control
registers)	and	I2S	for	(audio)	data	transfer.

2.1.1	Sampling,	Reconstruction,	and	Aliasing
Within	DSPs,	signals	are	represented	as	sequences	of	discrete	sample	values,	and	whenever
signals	are	sampled,	the	possibility	of	aliasing	arises.	Later	in	this	chapter,	the	phenomenon	of
aliasing	is	explored	in	more	detail.	Suffice	to	say	at	this	stage	that	aliasing	is	undesirable	and
that	it	may	be	avoided	by	the	use	of	an	antialiasing	filter	placed	at	the	input	to	the	system
shown	in	Figure	2.1	and	by	suitable	design	of	the	DAC.	In	a	low-pass	system,	an	effective
antialiasing	filter	is	one	that	allows	frequency	components	at	frequencies	below	half	the
sampling	frequency	to	pass	but	that	attenuates	greatly,	or	stops,	frequency	components	at
frequencies	greater	than	or	equal	to	half	the	sampling	frequency.	A	suitable	DAC	for	a	low-
pass	system	is	itself	a	low-pass	filter	having	characteristics	similar	to	the	aforementioned
antialiasing	filter.	The	term	DAC	commonly	refers	to	an	electronic	device	that	converts
discrete	sample	values	represented	in	digital	hardware	into	a	continuous	analogue	electrical
signal.	When	viewed	purely	from	a	signal	processing	perspective,	a	DAC	acts	as	a

reconstruction	filter.	Although	they	differ	in	a	number	of	respects,	both	the	AIC3104	and
WM5102	codecs	contain	both	digital	and	analog	antialiasing	and	reconstruction	filters	and
therefore	do	not	require	additional	external	filters.

2.2	TLV320AIC3104	(AIC3104)	Stereo	Codec	for	Audio
Input	and	Output
The	audio	booster	pack	makes	use	of	a	TLV320AIC3104	(AIC3104)	codec	for	analog	input
and	output	(see	Figures	2.2	and	2.3).	The	AIC3104	is	a	low-power	stereo	audio	codec,	based
on	sigma-delta	technology,	and	designed	for	use	in	portable	battery-powered	applications.	It
features	a	number	of	microphone	and	line-level	inputs,	configurable	for	single-ended	or
differential	connection.	On	its	output	side,	a	number	of	differential	and	high-power	outputs	are
provided.	The	high-power	outputs	are	capable	of	driving	headphones.	A	number	of	different
sampling	rates	ranging	from	8	to	96	kHz	are	supported	by	the	device.	The	analog-to-digital
converter	(ADC),	or	coder,	part	of	the	codec	converts	an	analog	input	signal	into	a	sequence	of
(16-bit,	24-bit,	or	32-bit	signed	integer)	sample	values	to	be	processed	by	the	DSP.	The
digital-to-analog	converter	(DAC),	or	decoder,	part	of	the	codec	reconstructs	an	analog	output
signal	from	a	sequence	of	(16-bit,	24-bit,	or	32-bit	signed	integer)sample	values	that	have	been
processed	by	the	DSP	and	written	to	the	DAC.

Figure	2.2	Simplified	block	diagram	representation	of	input	side	of	AIC3104	codec	showing
selected	blocks	and	signal	paths	used	by	the	example	programs	in	this	book	(left	channel	only).

Figure	2.3	Simplified	block	diagram	representation	of	output	side	of	AIC3104	codec	showing
selected	blocks	and	signal	paths	used	by	the	example	programs	in	this	book	(left	channel	only).

Also	contained	in	the	device	are	several	programmable	digital	filters	and	gain	blocks.	The
codec	is	configured	using	a	number	of	control	registers,	offering	so	many	options	that	it	is
beyond	the	scope	of	this	text	to	describe	them	fully.	However,	choices	of	sampling	frequency,
input	connection,	and	ADC	PGA	gain	are	made	available	in	the	example	programs	through	the
parameters	passed	to	function	tm4c123_aic3104_init().	In	addition,	it	is	possible	to	write
to	any	of	the	codec	control	registers	using	function	I2CRegWrite().

Later	in	this	chapter,	examples	of	enabling	some	of	the	internal	digital	filter	blocks	by	writing
to	the	control	registers	of	the	AIC3104	are	described.	In	Chapter	4,	the	characteristics	of	the
programmable	digital	filters	within	the	AIC3104	are	examined	in	greater	detail.

Data	is	passed	to	and	from	the	AIC3104	via	its	I2S	serial	interface.	MIC	IN	(pink),	LINE	IN
(blue),	LINE	OUT	(green),	and	HP	OUT	(black)	connections	are	made	available	via	four	3.5
mm	jack	sockets	on	the	audio	booster	pack,	and	these	are	connected	to	the	AIC3104	as	shown
in	Figure	2.4.	In	addition,	for	reasons	explained	later	in	this	chapter,	jumpers	J6	and	J7	on	the
audio	booster	pack	allow	connection	of	first-order	low-pass	filters	and	scope	hook	test	points
TP2	and	TP3	to	LINE	OUT	on	the	AIC3104.

Figure	2.4	Analog	input	and	output	connections	on	the	AIC3104	audio	booster	pack.

2.3	WM5102	Audio	Hub	Codec	for	Audio	Input	and
Output
The	Wolfson	audio	card	makes	use	of	a	WM5102	audio	hub	for	analog	input	and	output.	The
WM5102	features	a	low-power,	high-performance	audio	codec.

Data	is	passed	to	and	from	the	WM5102	via	its	I2S	serial	interface,	and	the	device	is
configured	by	writing	to	its	control	registers	via	an	I2C	interface.	In	addition	to	a	number	of
configurable	filter	and	gain	blocks,	the	WM5102	codec	contains	a	programmable	DSP.
However,	use	of	this	proprietary	DSP	is	beyond	the	scope	of	this	book.

LINE	IN	(pink),	LINE	OUT	(green),	and	combined	MIC	IN	and	HP	OUT	(black)	connections
are	made	available	via	three	3.5	mm	jack	sockets	on	the	Wolfson	audio	card.

2.4	Programming	Examples
The	following	examples	illustrate	analog	input	and	output	using	either	the	TM4C123
LaunchPad	and	audio	booster	pack	or	the	STM32F407	Discovery	and	Wolfson	audio	card.	The
program	examples	are	available	for	either	platform,	although	in	most	cases,	only	one	platform
is	mentioned	per	example.	A	small	number	of	example	programs	in	this	chapter	concern
programming	the	internal	digital	filters	in	the	AIC3104	codec	and	are	therefore	applicable	only
to	the	Texas	Instruments	hardware	platform.	A	small	number	of	example	programs	concern	use
of	the	12-bit	DAC	built	in	to	the	STM32F407	processor	and	are	therefore	applicable	only	to
the	STMicroelectronics	hardware	platform.

The	example	programs	demonstrate	some	important	concepts	associated	with	analog-to-digital
and	digital-to-analog	conversion,	including	sampling,	reconstruction,	and	aliasing.	In	addition,
they	illustrate	the	use	of	polling-,	interrupt-,	and	DMA-based	i/o	in	order	to	implement	real-
time	applications.	Many	of	the	concepts	and	techniques	described	in	this	chapter	are	revisited
in	subsequent	chapters.

2.5	Real-Time	Input	and	Output	Using	Polling,
Interrupts,	and	Direct	Memory	Access	(DMA)
Three	basic	forms	of	real-time	i/o	are	demonstrated	in	the	following	examples.	Polling-	and
interrupt-based	i/o	methods	work	on	a	sample-by-sample	basis,	and	processing	consists	of
executing	a	similar	set	of	program	statements	at	each	sampling	instant.	DMA-based	i/o	deals
with	blocks,	or	frames,	of	input	and	output	samples	and	is	inherently	more	efficient	in	terms	of
computer	processing	requirements.	Processing	consists	of	executing	a	similar	set	of	program
statements	after	each	DMA	transfer.	Block-	or	frame-based	processing	is	closely	linked	to,	but
not	restricted	to,	use	with	frequency-domain	processing	(using	the	FFT)	as	described	in

Chapter	5.

The	following	examples	illustrate	the	use	of	the	three	different	i/o	mechanisms	in	order	to
implement	a	simple	talk-through	function.	Throughout	the	rest	of	this	book,	use	is	made
primarily	of	interrupt-	and	DMA-based	methods.	Compared	to	polling-	and	interrupt-based
methods,	there	is	a	greater	time	delay	between	a	signal	entering	the	digital	signal	processing
system	and	leaving	it	introduced	by	the	DMA-based	method.	It	is	possible	to	make	use	of	the
DMA	mechanism	with	a	frame	size	of	just	one	sample,	but	this	rather	defeats	the	purpose	of
using	DMA-based	i/o.

Example	2.1	Basic	Input	and	Output	Using	Polling
(tm4c123_loop_poll.c).

Listing	2.1	Program	tm4c123_loop_poll.c

//	tm4c123_loop_poll.c

#include	“tm4c123_aic3104_init.h”

void	SSI_interrupt_routine(void){while(1){}}

int	main(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right;

		tm4c123_aic3104_init(FS_48000_HZ,

																							AIC3104_MIC_IN,

																							IO_METHOD_POLL,

																							PGA_GAIN_6_DB);

		while(1)

		{

				SSIDataGet(SSI1_BASE,&sample_data.bit32);

				input_left	=	(float32_t)(sample_data.bit16[0]);

				SSIDataGet(SSI0_BASE,&sample_data.bit32);

				input_right	=	(float32_t)(sample_data.bit16[0]);

				sample_data.bit32	=	((int16_t)(input_left));

				SSIDataPut(SSI1_BASE,sample_data.bit32);

				sample_data.bit32	=	((int16_t)(input_right));

				SSIDataPut(SSI0_BASE,sample_data.bit32);

		}

}

The	C	language	source	file	for	program,	tm4c123_loop_poll.c,	which	simply	copies	input
samples	read	from	the	AIC3104	codec	ADC	to	the	AIC3104	codec	DAC	as	output	samples,	is
shown	in	Listing	2.1.	Effectively,	the	MIC	IN	input	socket	is	connected	straight	through	to	the
LINE	OUT	and	HP	OUT	output	sockets	on	the	audio	booster	pack	via	the	AIC3104	codec	and
the	TM4C123	processor.	Function	tm4c123_aic3104_init(),	called	by	program
tm4c123_loop_poll.c,	is	defined	in	support	file	tm4c123_aic3104_init.c.	In	this	way,	the

C	source	file	tm4c123_loop_poll.c	is	kept	as	short	as	possible	and	potentially	distracting
low-level	detail	is	hidden.	The	implementation	details	of	function	tm4c123_aic3104_init()
and	other	functions	defined	in	tm4c123_aic3104_init.c	need	not	be	studied	in	detail	in
order	to	use	the	examples	presented	in	this	book.

2.5.1	I2S	Emulation	on	the	TM4C123
The	TM4C123	processor	does	not	feature	an	I2S	interface.	Instead,	two	synchronous	serial
interface	(SSI)	interfaces,	SSI0	and	SSI1,	are	used	to	emulate	a	bidirectional	stereo	I2S
interface	and	to	pass	audio	data	to	and	from	the	AIC3104	codec.	One	SSI	interface	handles	the
left	channel	and	the	other	handles	the	right	channel.	Details	of	the	I2S	emulation	are	described
in	application	note	SPMA042	[3].

2.5.2	Program	Operation
Following	the	call	to	function	tm4c123_aic3104_init(),	program	tm4c123_loop_poll.c
enters	an	endless	while	loop	and	repeatedly	copies	left	and	right	channel	input	sample	values
into	variables	input_left	and	input_right,	using	function	SSIDataGet(),	before	writing
these	sample	values	to	the	AIC3104	DAC,	using	function	SSIDataPut().	Function
SSIDataGet()	waits	until	there	is	data	in	the	receive	FIFO	of	the	specified	SSI	peripheral,
SSI0_BASE	or	SSI1_BASE,	and	function	SSIDataPut()	waits	until	there	is	space	available	in
the	transmit	FIFO	of	the	specified	SSI	peripheral.	In	this	way,	the	real-time	operationof	the
program	is	controlled	by	the	timing	of	the	I2S	interface,	which,	in	turn,	is	determined	by	the
AIC3104	codec	(acting	as	I2S	master).	Functions	SSIDataGet()	and	SSIDataPut()	are
defined	in	the	TM4C123	device	family	pack	(DFP)	installed	as	part	of	the	MDK-ARM
development	environment.	Although	the	AIC3104	is	configured	to	use	16-bit	sample	values,
function	SSIDataGet()	returns	a	32-bit	value	and	function	SSIDataPut()	is	passed	a	32-bit
value.

Function	SSI_interrupt_routine()	is	not	used	by	program	tm4c123_loop_poll.c	but	has
been	defined	here	as	a	trap	for	unexpected	SSI	peripheral	interrupts.

In	this	simple	example,	it	is	not	strictly	necessary	to	convert	the	16-bit	sample	values	read
from	the	AIC3104	ADC	by	function	SSIDataGet()	into	32-bit	floating-point	values.	However,
in	subsequent	program	examples,	DSP	algorithms	are	implemented	using	floating-point
arithmetic	and	input	sample	values	are	converted	into	type	float32_t.	Processing	of	the
floating-point	sample	values	could	be	implemented	by	adding	program	statements	between

				input_right	=	(float32_t)(sample_data.bit16[0]);

and

				sample_data.bit32	=	((int16_t)(input_left));

2.5.3	Running	the	Program
Connect	a	microphone	to	the	(pink)	MIC	IN	socket	on	the	audio	booster	card	and	headphones

to	the	(green)	HP	OUT	socket.	Run	the	program	and	verify	that	the	input	to	the	microphone	can
be	heard	in	the	headphones.

2.5.4	Changing	the	Input	Connection	to	LINE	IN
Change	the	program	statement

tm4c123_aic3104_init(FS_48000_HZ,

																					AIC3104_MIC_IN,

																					IO_METHOD_POLL,

																					PGA_GAIN_6_DB);

to	read

tm4c123_aic3104_init(FS_48000_HZ,

																					AIC3104_LINE_IN,

																					IO_METHOD_POLL,

																					PGA_GAIN_6_DB);

Rebuild	the	project	and	run	the	program	again	using	a	signal	from	a	sound	card,	a	signal
generator,	or	an	MP3	player	connected	to	the	(blue)	LINE	IN	socket	as	input.

2.5.5	Changing	the	Sampling	Frequency
Change	the	sampling	frequency	used	by	passing	parameter	value	FS_8000_HZ	rather	than
FS_48000_HZ	to	the	codec	initialization	function,	that	is,	by	changing	the	program	statement

tm4c123_aic3104_init(FS_48000_HZ,

																					AIC3104_LINE_IN,

																					IO_METHOD_POLL,

																					PGA_GAIN_6_DB);

to	read

tm4c123_aic3104_init(FS_8000_HZ,

																					AIC3104_LINE_IN,

																					IO_METHOD_POLL,

																					PGA_GAIN_6_DB);

Rebuild	the	project	and	run	the	program	again.	Signals	passed	through	the	system	should	sound
less	bright	than	previously	due	to	the	lower	sampling	rate	and	correspondingly	reduced	system
bandwidth.

Valid	parameter	values	(constants)	that	may	be	passed	to	function	tm4c123_AIC3104_init()
are

FS_48000_HZ

FS_44100_HZ

FS_32000_HZ

FS_24000_HZ

FS_22050_HZ

FS_16000_HZ

FS_11025_HZ

FS_8000_HZ

which	set	the	sampling	rate,

IO_METHOD_POLL

IO_METHOD_INTR

IO_METHOD_DMA

which	set	the	i/o	method,

AIC3104_MIC_IN

AIC3104_LINE_IN

which	set	the	input	connection	used,	and

PGA_GAIN_0_DB

PGA_GAIN_1_DB

PGA_GAIN_2_DB

PGA_GAIN_3_DB

PGA_GAIN_4_DB

PGA_GAIN_5_DB

PGA_GAIN_6_DB

PGA_GAIN_7_DB

PGA_GAIN_8_DB

PGA_GAIN_9_DB

PGA_GAIN_10_DB

PGA_GAIN_11_DB

PGA_GAIN_12_DB

which	set	the	gain	of	the	PGA	that	precedes	the	ADC	(shown	in	Figure	2.2).	Parameter	value
PGA_GAIN_6_DB	is	used	by	default	in	order	to	compensate	for	the	potential	divider	circuits
between	the	LINE	IN	socket	on	the	audio	booster	pack	and	LINEIN_L	and	LINEIN_R	on	the
AIC3104	(as	shown	in	Figure	2.4).

Example	2.2

Basic	Input	and	Output	Using	Polling	(stm32f4_loop_poll.c).

Program	stm32f4_loop_poll.c,	shown	in	Listing	2.4,	is	functionally	equivalent	to	program
tm4c123_loop_poll.c	but	runs	on	the	STM32F407	Discovery.	Full	duplex	I2S
communication	between	the	WM5102	codec	and	the	STM32F407	processor	is	implemented	on
the	STM32F407	using	two	I2S	instances	SPI/I2S2	and	I2S2_ext.	SPI/I2S2	is	configured	as	a
receiver	and	I2S2_ext	as	a	transmitter.	The	WM5102	codec,	which	operates	in	master	mode,
generates	the	I2S	word	and	bit	clock	signals	(WCLK	and	BCLK),	and	the	STM32F407	I2S
peripheral	operates	in	slave	mode.

Following	the	call	to	function	stm32f4_wm5102_init(),	program	stm32f4_loop_poll.c
enters	an	endless	while	loop.

Status	flag	SPI_I2S_FLAG_RXNE	in	SPI/I2S2	is	repeatedly	tested	using	function
SPI_I2S_GetFlagStatus()	until	it	is	set,	indicating	that	the	SPI/I2S2	receive	buffer	is	not
empty.	Then,	status	flag	I2S_FLAG_CHSIDE	is	tested.	This	indicates	whether	the	data	received
corresponds	to	the	left	or	the	right	channel.

If	the	value	of	I2S_FLAG_CHSIDE	indicates	that	a	left	channel	sample	value	has	been	received,
function	SPI_I2S_ReceiveData()	is	used	to	read	that	sample	from	SPI/I2S2	into	the
int16_tvariable	input_left,	and	after	waiting	for	status	flag	SPI_I2S_FLAG_TXE	to	be
set,	the	value	of	variable	input_left	is	written	to	I2S2_ext.

If	the	value	of	I2S_FLAG_CHSIDE	indicates	that	a	right	channel	sample	value	has	been
received,	function	SPI_I2S_ReceiveData()	is	used	to	read	that	sample	from	SPI/I2S2	into
the	int16_t	variable	input_right,	and	after	waiting	for	status	flag	SPI_I2S_FLAG_TXE	to	be
set,	the	value	of	variable	input_right	is	written	to	I2S2_ext.

The	endless	while	loop	then	returns	to	testing	status	flag	SPI_I2S_FLAG_RXNE	in	SPI/I2S2.	In
this	way,	the	real-time	operation	of	the	program	is	controlled	by	the	timing	of	the	I2S	interface,
which,	in	turn,	is	determined	by	the	WM5102	codec	(acting	as	I2S	master).

In	this	simple	talk-through	example,	it	is	not	strictly	necessary	to	test	whether	received	samples
correspond	to	the	left	or	right	channel.	However,	the	program	has	been	written	so	that
processing	of	the	signals	on	either	or	both	channels	could	easily	be	added	between,	for
example,	program	statements.

						left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

and

						while(SPI_I2S_GetFlagStatus(I2Sxext,

Listing	2.2	Program	stm32f4_loop_poll.c

//	stm32f4_loop_poll.c

#include	“stm32f4_wm5102_init.h”

int	main(void)

{

		int16_t	left_out_sample,	right_out_sample;

		int16_t	left_in_sample,	right_in_sample;

		stm32_wm5102_init(FS_48000_HZ,

													WM5102_DMIC_IN,

													IO_METHOD_POLL);

		while(1)

		{

				while(SPI_I2S_GetFlagStatus(I2Sx,

										SPI_I2S_FLAG_RXNE)	!=	SET){}

				if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

				{

						left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

						left_out_sample	=	left_in_sample;

						while(SPI_I2S_GetFlagStatus(I2Sxext,

												SPI_I2S_FLAG_TXE)	!=	SET){}

						SPI_I2S_SendData(I2Sxext,	left_out_sample);

				}

				else

				{

						right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

						right_out_sample	=	right_in_sample;

						while(SPI_I2S_GetFlagStatus(I2Sxext,

												SPI_I2S_FLAG_TXE)	!=	SET){}

						SPI_I2S_SendData(I2Sxext,	right_out_sample);

				}

		}

}

Valid	parameter	values	(constants)	that	may	be	passed	to	function	stm32_wm5102_init()	are

FS_48000_HZ

FS_44100_HZ

FS_32000_HZ

FS_24000_HZ

FS_22050_HZ

FS_16000_HZ

FS_11025_HZ

FS_8000_HZ

which	set	the	sampling	rate,

IO_METHOD_POLL

IO_METHOD_INTR

IO_METHOD_DMA

which	set	the	i/o	method,	and

WM5102_MIC_IN

WM5102_DMIC_IN

WM5102_LINE_IN

which	set	the	input	connection	used.

2.5.6	Using	the	Digital	MEMS	Microphone	on	the	Wolfson	Audio
Card
Unlike	the	audio	booster	pack	for	the	TM4C123	LaunchPad,	which	has	separate	MIC	IN	and
HP	OUT	sockets,	the	Wolfson	audio	card	has	a	single	HEADSET	socket	(shown	in	Figure	2.5)
that	may	be	used	for	a	combined	microphone	and	earphone	headset,	conventional	stereo
headphones,	an	electret	microphone	that	uses	a	four-pole	(TRRS)	3.5	mm	jack	plug.	In
addition,	the	Wolfson	audio	card	features	high-quality	stereo	digital	MEMS	microphones	that
may	be	selected	by	passing	parameter	value	WM5102_DMIC_IN	to	function
stm32_wm5102_init().

Figure	2.5	Analog	input	and	output	connections	on	the	Wolfson	audio	card.

2.5.7	Running	the	Program
As	provided,	program	stm32f4_loop_poll.c	accepts	input	from	the	digital	MEMS
microphones	on	the	audio	card	and	routes	this	to	the	(green)	LINE	OUT	and	(black)
HEADSET	sockets.	If	you	want	to	use	a	sound	card,	signal	generator,	or	MP3	player	to	supply
a	line-level	input	signal	to	the	(pink)	LINE	IN	socket,	change	program	statement.

stm32f4_wm5102_init(FS_48000_HZ,

																				WM5102_DMIC_IN,

																				IO_METHOD_INTR);

to	read

stm32f4_wm5102_init(FS_48000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

Polling-based	i/o	is	not	computationally	efficient	and	is	used	in	very	few	of	the	example
programs	in	this	book.

Example	2.3

Basic	Input	and	Output	Using	Interrupts	(tm4c123_loop_intr.c).

Viewed	in	terms	of	analog	input	and	output	signals,	program	tm4c123_loop_intr.c,	shown	in
Listing	2.6,	is	functionally	equivalent	to	program	tm4c123_loop_poll.c	but	uses	interrupt-
based	i/o.

Listing	2.3	Program	tm4c123_loop_intr.c

//	tm4c123_loop_intr.c

#include	“tm4c123_aic3104_init.h”

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		sample_data.bit32	=	((int16_t)(input_left));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(input_right));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

}

int	main(void)

{

		tm4c123_aic3104_init(FS_48000_HZ,

																							AIC3104_MIC_IN,

																							IO_METHOD_INTR,

																PGA_GAIN_6_DB);

		while(1){}

}

This	simple	program	is	important	because	many	of	the	example	programs	in	this	book	use
interrupt-based	i/o	and	are	structured	similarly.	Instead	of	simply	copying	the	sequence	of
sample	values	read	from	the	ADC	to	the	DAC,	a	digital	filtering	operation	could	be	performed
each	time	a	new	input	sample	is	received,	that	is,	a	sample-by-sample	processing	algorithm
could	be	inserted	between	the	program	statements.

input_right	=	(float32_t)(sample_dat.bit16[0]);

and

sample_dat.bit16[0]	=	(int16_t)(input_left);

For	this	reason,	it	is	worth	taking	time	to	ensure	that	you	understand	how	program
tm4c123_loop_intr.c	works.

Strictly	speaking,	it	is	not	good	practice	to	carry	out	digital	signal	processing	operations	within
a	hardware	interrupt	service	routine,	for	example,	function	SSI_interrupt_routine().
However,	in	the	program	examples	in	this	book,	there	are	no	other	tasks	being	carried	out	by
the	processor,	and,	in	most	cases,	the	algorithms	being	demonstrated	have	been	placed	within
the	interrupt	service	routine	function(s).

In	function	main(),	parameter	value	IO_METHOD_INTR	is	passed	to	initialization	function
tm4c123_aic3104_init().	This	selects	the	use,	by	the	program,	of	interrupt-based	i/o.

tm4c123_aic3104_init(FS_48000_HZ,

																					AIC3104_MIC_IN,

																					IO_METHOD_INTR,

																					PGA_GAIN_6_DB);

Following	initialization,	function	main()	enters	an	endless,	and	empty,	while	loop,	effectively
doing	nothing	but	waiting	for	interrupts.

SSI0	receive	FIFO	interrupts	(SSI_RXFF),	which	occur	at	the	sampling	rate	(48	kHz),	are
handled	by	interrupt	service	routine	function	SSI_interrupt_routine().	In	this	function,
left-	and	right-channel	16-bit	sample	values	are	read	from	the	SSI1	and	SSI0	receive	FIFOs,
respectively.	These	are	converted	into	float32_t	values	input_left	and	input_right.
Strictly	speaking,	type	conversions	are	unnecessary	in	this	simple	talk-through	program	since
the	values	of	input_left	and	input_right	are	subsequently	converted	back	to	type	int16_t
and	written	to	SSI1	and	SSI0	transmit	FIFOs,	respectively.

2.5.8	Running	the	Program
As	provided,	program	tm4c123_loop_intr.c	accepts	input	from	the	(pink)	MIC	IN	socket	on
the	audio	booster	card	and	routes	this	to	both	the	(black)	LINE	OUT	and	(green)	HP	OUT
sockets.	If	you	want	to	use	a	sound	card,	signal	generator	or	MP3	player	to	supply	a	line-level
input	signal,	change	program	statement.

tm4c123_aic3104_init(FS_48000_HZ,

																					AIC3104_MIC_IN,

																					IO_METHOD_INTR,

																					PGA_GAIN_6_DB);

to	read

tm4c123_aic3104_init(FS_48000_HZ,

																					AIC3104_LINE_IN,

																					IO_METHOD_INTR,

																					PGA_GAIN_6_DB);

GPIO	pin	PE2	is	set	high	at	the	start,	and	reset	low	near	the	end,	of	function
SSI_interrupt_routine().	This	signal	is	accessible	via	the	J3	connector	on	the	TM4C123
LaunchPad.

Example	2.4

Basic	Input	and	Output	Using	Interrupts	(stm32f4_loop_intr.c).

Program	stm32f4_loop_intr.c	is	shown	in	Listing	2.8.	In	terms	of	analog	input	and	output

signals,	it	is	functionally	equivalent	to	program	tm4c123_loop_intr.c	but	is	written	for	the
STM32F407	Discovery	and	Wolfson	audio	card.	Because	the	WM5012	and	AIC3104	codecs
differ	and	because,	unlike	the	TM4C123	processor,	the	STM32F407	features	an	I2S	interface,
there	are	subtle	differences	between	programs	stm32f4_loop_intr.c	and
tm4c123_loop_intr.c.

Listing	2.4	Program	stm32f4_loop_intr.c

//	stm32f4_loop_intr.c

#include	“stm32f4_wm5102_init.h”

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	right_out_sample;

		int16_t	left_in_sample,	right_in_sample;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				left_out_sample	=	left_in_sample;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				right_out_sample	=	right_in_sample;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

		GPIO_ToggleBits(GPIOD,	GPIO_Pin_15);

	}

int	main(void)

{

		stm32_wm5102_init(FS_48000_HZ,

																				WM5102_DMIC_IN,

																				IO_METHOD_INTR);

		while(1){}

}

Following	a	call	to	initialization	function	stm32_wm5102_init(),	function	main()	enters	an
endless,	and	empty,	while	loop,	effectively	doing	nothing	but	waiting	for	interrupts.

The	I2S	peripheral	in	the	STM32F407	processor	is	configured	for	full-duplex	slave	mode,
using	PCM	standard	audio	protocol,	with	16-bit	data	packed	into	32-bit	frames.	Receive	buffer
not	empty	(RXNE)	interrupts	are	generated	by	I2S	instance	SPI/I2S2	when	data	is	received
from	the	WM5102	codec.	These	interrupts,	which	occur	at	the	sampling	rate	(48	kHz)	for	both
left-	and	right-channel	samples,	are	handled	by	function	SPI2_IRQHandler().	This	tests	the
status	flag	CHSIDE	in	order	to	determine	whether	a	left-	or	right-channel	sample	has	been

received.	If	a	left-channel	sample	has	been	received	(CHSIDE	 	1),	then	that	value	is	read
from	SPI/I2S2	into	the	variable	input_left	by	function	SPI_I2S_ReceiveData(I2Sx).	It	is
then	copied	to	variable	output_left	and	written	to	I2S2_ext	using	function
SPI_I2S_SendData().	Finally,	GPIO	pin	PD15	is	toggled.	This	pin	is	accessible	via	J2	on	the
STM32F407	Discovery	and	may	be	monitored	using	an	oscilloscope.	On	the	STM32F407
Discovery,	GPIO	pin	PD15	drives	a	blue	LED,	and,	hence,	its	duty	cycle	is	discernible	from
the	apparent	brightness	of	the	blue	LED.	In	this	program	example,	since	interrupts	occur	twice
per	sampling	period	(once	each	for	left	and	right	channels),	GPIO	pin	PD15	should	output	a
48-kHz	square	wave	and	the	blue	LED	should	emit	light	with	medium	intensity.

Example	2.5

Basic	Input	and	Output	Using	DMA	(tm4c123_loop_dma.c).

In	terms	of	analog	input	and	output	signals,	program	tm4c123_loop_dma.c,	shown	in	Listing
2.10,	is	functionally	equivalent	to	the	preceding	program	examples	but	makes	use	of	direct
memory	access	(DMA).	DMA-based	i/o	moves	blocks	or	frames	of	data	(samples)	between
codec	and	processor	memory	without	CPU	involvement,	allowing	the	CPU	to	carry	out	other
tasks	at	the	same	time,	and	is	therefore	more	computationally	efficient	than	polling-	or
interrupt-based	i/o	methods.

Listing	2.5	Program	tm4c123_loop_dma.c

//	tm4c123_loop_dma.c

#include	“tm4c123_aic3104_init.h”

extern	int16_t	LpingIN[BUFSIZE],	LpingOUT[BUFSIZE];

extern	int16_t	LpongIN[BUFSIZE],	LpongOUT[BUFSIZE];

extern	int16_t	RpingIN[BUFSIZE],	RpingOUT[BUFSIZE];

extern	int16_t	RpongIN[BUFSIZE],	RpongOUT[BUFSIZE];

extern	int16_t	Lprocbuffer,	Rprocbuffer;

extern	volatile	int16_t	LTxcomplete,	LRxcomplete;

extern	volatile	int16_t	RTxcomplete,	RRxcomplete;

void	Lprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;

		int16_t	i;

		if	(Lprocbuffer	 	PING)

		{	inBuf	=	LpingIN;	outBuf	=	LpingOUT;	}

		if	(Lprocbuffer	 	PONG)

		{	inBuf	=	LpongIN;	outBuf	=	LpongOUT;	}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				*outBuf++	=	*inBuf++;

		}

		LTxcomplete	=	0;

		LRxcomplete	=	0;

		return;

}

void	Rprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;

		int16_t	i;

		if	(Rprocbuffer	 	PING)

		{	inBuf	=	RpingIN;	outBuf	=	RpingOUT;	}

		if	(Rprocbuffer	 	PONG)

		{	inBuf	=	RpongIN;	outBuf	=	RpongOUT;	}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				*outBuf++	=	*inBuf++;

		}

		RTxcomplete	=	0;

		RRxcomplete	=	0;

		return;

}

void	SSI_interrupt_routine(void){while(1){}}

int	main(void)

{

		tm4c123_aic3104_init(FS_48000_HZ,

																								AIC3104_LINE_IN,

																									IO_METHOD_DMA,

																								PGA_GAIN_6_DB);

		while(1)

		{

				while((!RTxcomplete)|(!RRxcomplete));

				Rprocess_buffer();

				while((!LTxcomplete)|(!LRxcomplete));

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

				Lprocess_buffer();

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

	}

}}

2.5.9	DMA	in	the	TM4C123	Processor
The	TM4C123	DMA	controller	has	32	channels,	each	of	which	may	be	assigned	to	one	of	up	to
five	different	peripherals	(each	peripheral	device	in	the	TM4C123	processor	is	associated
with	a	specific	DMA	controller	channel).	Each	channel	can	operate	in	basic,	ping-pong,	or
scatter-gather	mode.	DMA	transfers	are	made	up	of	up	to	1024	×	8-,	16-,	or	32-bit	elements.
An	I2S	interface	is	emulated	on	the	TM4C123	using	two	separate	SSI	peripherals	(SSI0	and
SSI1),	SSI1	for	the	left	channel	and	SSI0	for	the	right	channel.	The	SSI0	peripheral	is	set	up	to
trigger	on	the	positive	edge	of	the	I2S	frame	clock,	WCLK	(generated	by	the	AIC3104	codec),
and	the	SSI1	peripheral	is	set	up	to	trigger	on	the	negative	edge	of	the	I2S	frame	clock	(strictly
speaking,	the	positive	edge	of	the	inverted	I2S	frame	clock).	The	AIC3104	codec	on	the	audio
booster	pack	acts	as	I2S	master	and	supplies	frame	and	bit	clock	signals	(WCLK	and	BCLK).

DMA	channel	control	is	implemented	using	a	table	(aligned	on	a	1024-byte	boundary	in
memory)	of	control	structures.	Associated	with	each	channel	are	two	control	structures

(primary	(PRI)	and	alternative	(ALT))	and	both	of	these	are	used	in	ping-pong	mode.

Each	control	structure	includes	a	source	address	pointer	(SRC),	a	destination	address	pointer
(DST),	and	a	control	word	specifying	SRC	and	DST	data	element	sizes,	SRC	and	DST	address
increments,	the	total	number	of	elements	to	transfer,	and	the	transfer	mode	(basic,	ping-pong,	or
scatter-gather).	The	SRC	and	DST	address	pointers	in	the	control	table	must	be	initialized
before	a	DMA	transfer	starts,	and	according	to	the	SRC	and	DST	address	increments,	they	are
updated	as	the	transfer	progresses.

In	ping-pong	mode,	as	soon	as	one	DMA	transfer	(PRI	or	ALT)	has	been	completed,	another
transfer	(ALT	or	PRI)	on	the	same	channel	starts.	When	a	DMA	transfer	is	completed,	an
interrupt	may	be	generated	and	this	signals	an	opportunity,	in	ping-pong	mode,	not	only	to
process	the	block	of	input	data	most	recently	transferred,	but	also	to	reinitialize	the	currently
inactive	(PRI	or	ALT)	control	structure.

In	the	example	programs	in	this	book,	I2S	protocol	bidirectional	stereo	audio	data	transfer
makes	use	of	four	unidirectional	DMA	channels,	associated	with	SSI0TX,	SSI0RX,	SSI1TX,
and	SSI1RX.

Transfers	specified	by	the	SSI0TX	primary	(PRI)	control	structure	(from	array	RpingOUT	to
SSI0	transmit	FIFO)	alternate	with	those	specified	by	the	SSI0TX	alternative	(ALT)	control
structure	(from	array	RpongOUT	to	SSI0	transmit	FIFO).	Each	time	either	transfer	is	completed,
an	interrupt	is	generated	and	handled	by	function	SSI0IntHandler().	Following	completion
of	an	SSI0TX	PRI	DMA	transfer	(from	array	RpingOUT	to	SSI0),	the	SSI0	interrupt	service
routine	must	reinitialize	the	SSI0TX	PRI	control	structure	(principally	by	resetting	SRC	and
DST	addresses).	At	that	point	in	time,	the	SSI0TX	ALT	DMA	transfer	(from	array	RpongOUT	to
SSI0)	should	be	in	progress.

SSI0RX	DMA	transfers	(PRI	from	SSI0	receive	FIFO	to	array	RpingIN	and	ALT	from	SSI0
receive	FIFO	to	array	RLpongIN)	take	place	in	parallel	with	the	SSI0TX	transfers,	and
completion	of	either	of	these	transfers	generates	interrupts	also	handled	by
SSI0IntHandler().

Interrupt	service	routine	SSI0IntHandler()	must	therefore	determine	which	of	four	possible
different	DMA	transfers	has	completed	and	reinitialize	the	corresponding	control	structure.
This	is	summarized	in	Table	2.1.	Function	SSI0IntHandler()	is	shown	in	Listing	2.11.	Its
functions	are

1.	 Determine	which	one	of	four	possible	DMA	transfers	has	completed	(and	generated	an
SSI0IRQ	interrupt).

2.	 Reinitialize	the	corresponding	control	structure	resetting	the	SRC	or	DST	(memory)
address	pointers.

3.	 Set	the	value	of	flag	RprocBuffer	to	either	PING	or	PONG.

4.	 If	the	completed	transfer	was	from	memory	to	the	SSI0	transmit	FIFO,	set	flag
RTxcomplete.

5.	 If	the	completed	transfer	was	from	the	SSI0	receive	FIFO	to	memory,	set	flag
RRxcomplete.

Table	2.1	Summary	of	DMA	Control	Structures	Used	and	Flags	Set	in	Interrupt	Service
Routines	SSI0IntHandler()	and	SSI1IntHandler()	in	Program	tm4c123_loop_dma.c

Channel Option SRC DST Flags	Set
SSI0RX PRI SSI0RX RpingIN RRxcomplete

Rprocbuffer	=	PING

SSI0RX ALT SSI0RX RpongIN RRxcomplete

Rprocbuffer	=	PONG

SSI0TX PRI RpingOUT SSI0TX RTxcomplete

Rprocbuffer	=	PING

SSI0TX ALT RpongOUT SSI0TX RTxcomplete

Rprocbuffer	=	PONG

SSI1RX PRI SSI1RX LpingIN LRxcomplete

Lprocbuffer	=	PING

SSI1RX ALT SSI1RX LpongIN LRxcomplete

Lprocbuffer	=	PONG

SSI1TX PRI LpingOUT SSI1TX LTxcomplete

Lprocbuffer	=	PING

SSI1TX ALT LpongOUT SSI1TX LTxcomplete

Lprocbuffer	=	PONG

In	parallel	with	these	DMA	transfers,	a	corresponding	set	of	DMA	transfers	take	place
between	memory	and	the	SSI1	peripheral.	These	deal	with	left	channel	audio	data.

In	function	main(),	an	endless	while()	loop	waits	until	both	RTxcomplete	and	RRxcomplete
are	set	before	calling	function	RprocessBuffer()	This	function	uses	the	value	of
RprocBuffer	to	decide	whether	to	process	the	contents	of	array	RpingIN	or	RpongIN.	It	also
resets	flags	RTxcomplete	and	RRxcomplete.

Function	main()	then	waits	until	both	LTxcomplete	and	LRxcomplete	are	set	before	calling
function	LprocessBuffer().

Interrupts	generated	on	completion	of	transfers	are	handled	by	the	interrupt	service	routines
associated	with	the	peripheral	involved,	that	is,	either	SSI0IntHandler()	or
SSI1IntHandler(),	and	these	are	defined	in	file	tm4c123_aic3104_init.c.

Each	DMA	transfer	is	of	BUFSIZE	16-bit	sample	values,	corresponding	to	BUFSIZE	sampling
instants.	The	value	of	the	constant	BUFSIZE	is	defined	in	header	file
tm4c123_aic3104_init.h.	Function	SSI_interrupt_routine()	is	not	used	by	program
tm4c123_loop_dma.c	but	has	been	defined	here	as	a	trap	for	unexpected	SSI	peripheral

interrupts.

Listing	2.6	Function	SSI0IntHandler(),	defined	in	file
tm4c123_aic3104_init.c

void	SSI0IntHandler(void)

{

		unsigned	long	ulModeTXPRI,ulModeTXALT;

		unsigned	long	ulModeRXPRI,ulModeRXALT;

		ulModeTXPRI	=	ROM_uDMAChannelModeGet(UDMA_CHANNEL_SSI0TX	|

																																							UDMA_PRI_SELECT);

		ulModeTXALT	=	ROM_uDMAChannelModeGet(UDMA_CHANNEL_SSI0TX	|

																																							UDMA_ALT_SELECT);

		ulModeRXPRI	=	ROM_uDMAChannelModeGet(UDMA_CHANNEL_SSI0RX	|

																																							UDMA_PRI_SELECT);

		ulModeRXALT	=	ROM_uDMAChannelModeGet(UDMA_CHANNEL_SSI0RX	|

																																							UDMA_ALT_SELECT);

		if(ulModeTXPRI	 	UDMA_MODE_STOP)

		{

				Rprocbuffer	=	PING;

				ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SSI0TX	|

																															UDMA_PRI_SELECT,

																															UDMA_MODE_PINGPONG,

																															RpingOUT,

																															(void	*)(SSI0_BASE	+	0x008),

																															BUFSIZE);

				RTxcomplete	=	1;

		{

		if(ulModeTXALT	 	UDMA_MODE_STOP)

		{

				Rprocbuffer	=	PONG;

				ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SSI0TX	|

																															UDMA_ALT_SELECT,

																															UDMA_MODE_PINGPONG,

																															RpongOUT,

																															(void	*)(SSI0_BASE	+	0x008),

																															BUFSIZE);

				RTxcomplete	=	1;

		}

		if(ulModeRXPRI	 	UDMA_MODE_STOP)

		{

				Rprocbuffer	=	PING;

				ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SSI0RX	|

																															UDMA_PRI_SELECT,

																															UDMA_MODE_PINGPONG,

																															(void	*)(SSI0_BASE	+	0x008),

																															RpingIN,

																															BUFSIZE);

				RRxcomplete	=	1;

		}

		if(ulModeRXALT	 	UDMA_MODE_STOP)

		{

				Rprocbuffer	=	PONG;

				ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SSI0RX	|

																															UDMA_ALT_SELECT,

																															UDMA_MODE_PINGPONG,

																															(void	*)(SSI0_BASE	+	0x008),

																															RpongIN,

																															BUFSIZE);

				RRxcomplete	=	1;

		}

}

2.5.10	Running	the	Program
Build	and	run	program	tm4c123_loop_dma.c	and	verify	its	operation.	As	supplied,	the
program	uses	the	(blue)	LINE	IN	connection	for	input.	If	you	wish	to	use	a	microphone
connected	to	the	(pink)	MIC	IN	connection	as	an	input	device,	you	will	have	to	change	the
parameters	passed	to	function	tm4c123_aic3104_init()	to

tm4c123_aic3104_init(FS_48000_HZ,

																					AIC3104_MIC_IN,

																					IO_METHOD_DMA

																					PGA_GAIN_6_DB);

2.5.11	Monitoring	Program	Execution
GPIO	pin	PE2	is	set	just	before,	and	reset	just	after,	the	call	to	function	Lprocessbuffer.
Hence,	the	signal	on	that	pin	is	a	rectangular	pulse,	the	duration	of	which	indicates	the	time
taken	to	execute	function	Lprocessbuffer.	In	this	example,	the	duration	of	the	pulse	is	very
short	since	no	significant	processing	takes	place	in	the	function.	The	rectangular	pulse	is
repeated	with	a	period	equal	to	the	time	between	consecutive	DMA	transfers,	that	is,	BUFSIZE
sampling	periods.	An	example	of	the	pulse	output	on	GPIO	pin	PE2	by	program
tm4c123_loop_dma.c	is	shown	in	Figure	2.6.	In	this	case,	the	value	of	the	constant	BUFSIZE
is	256,	the	sampling	rate	is	48	kHz,	and	hence,	the	time	between	consecutive	pulses	is	equal	to	

	ms.

Figure	2.6	Pulse	output	on	GPIO	pin	PE2	by	program	tm4c123_loop_dma.c.

2.5.12	Measuring	the	Delay	Introduced	by	DMA-Based	I/O
The	extra	delay	between	analog	input	and	output,	of	2*BUFSIZE	sampling	periods,	introduced
by	DMA-based	i/o	using	ping-pong	buffering	as	implemented	on	the	TM4C123,	may	be
measured	using	a	signal	generator	and	oscilloscope.

Connect	the	signal	generator	output	to	both	the	left	channel	of	the	(blue)	LINE	IN	socket	on	the
audio	booster	pack	and	one	channel	of	the	oscilloscope,	and	connect	an	oscilloscope	probe
from	another	channel	on	the	oscilloscope	to	the	left	channel	scope	hook	(TP2)	on	the	audio
booster	pack.	Scope	selector	jumper	J6	should	be	fitted.	Figure	2.7	shows	a	delay	of
approximately	11.7	ms	introduced	by	the	program	to	a	rectangular	pulse	of	duration	1.0	ms.	In
contrast,	program	tm4c123_loop_intr.c	introduces	a	delay	of	approximately	1.0	ms,	as
shown	in	Figure	2.8.	The	additional	delay	introduced	by	the	use	of	DMA-based	i/o	is	equal	to
approximately	10.7	ms.	At	a	sampling	rate	of	48	kHz,	ping-pong	mode	DMA	transfers	of
BUFSIZE	=	256	samples	correspond	to	a	delay	of	2	*	256/48,000	=	10.67	ms.	The	value	of
constant	BUFSIZE	is	defined	in	file	tm4c123_aic3104_init.h.

Figure	2.7	Delay	introduced	by	use	of	DMA-based	i/o	in	program	tm4c123_loop_dma.c.
Upper	trace	shows	rectangular	pulse	of	duration	1	ms	applied	to	LINE	IN,	lower	trace	shows
output	from	LINE	OUT.	BUFSIZE	=	256,	sampling	rate	48	kHz.

Figure	2.8	Delay	introduced	by	use	of	interrupt-based	i/o	in	program	tm4c123_loop_intr.c.
Upper	trace	shows	rectangular	pulse	of	duration	1	ms	applied	to	LINE	IN,	lower	trace	shows
output	from	LINE	OUT.	Sampling	rate	48	kHz.

Example	2.6

Basic	Input	and	Output	Using	DMA	(stm32f4_loop_dma.c).

ARM	Cortex-M4	processors	from	different	manufacturers	implement	DMA	slightly	differently
(although	the	underlying	principles	are	similar).	Program	stm32f4_loop_dma.c,	shown	in
Listing	2.13,	is	functionally	equivalent	to	program	tm4c123_loop_dma.c	but	differs	slightly
because	of	the	differences	between	the	DMA	peripherals	in	the	TM4C123	and	STM32F407
processors.

Listing	2.7	Program	stm32f4_loop_dma.c

//	stm32f4_loop_dma.c

#include	“stm32f4_wm5102_init.h”

extern	uint16_t	pingIN[BUFSIZE],	pingOUT[BUFSIZE];

extern	uint16_t	pongIN[BUFSIZE],	pongOUT[BUFSIZE];

int	rx_proc_buffer,	tx_proc_buffer;

volatile	int	RX_buffer_full	=	0;

volatile	int	TX_buffer_empty	=	0;

void	DMA1_Stream3_IRQHandler()

{

		if(DMA_GetITStatus(DMA1_Stream3,DMA_IT_TCIF3))

		{

				DMA_ClearITPendingBit(DMA1_Stream3,DMA_IT_TCIF3);

				if(DMA_GetCurrentMemoryTarget(DMA1_Stream3))

						rx_proc_buffer	=	PING;

				else

						rx_proc_buffer	=	PONG;

				RX_buffer_full	=	1;

		}

}

void	DMA1_Stream4_IRQHandler()

{

		if(DMA_GetITStatus(DMA1_Stream4,DMA_IT_TCIF4))

		{

				DMA_ClearITPendingBit(DMA1_Stream4,DMA_IT_TCIF4);

				if(DMA_GetCurrentMemoryTarget(DMA1_Stream4))

						tx_proc_buffer	=	PING;

				else

						tx_proc_buffer	=	PONG;

				TX_buffer_empty	=	1;

		}

}

void	process_buffer()

{

		uint16_t	*rxbuf,	*txbuf;

		int16_t	i;

		if	(rx_proc_buffer	 	PING)

				rxbuf	=	pingIN;

		else

				rxbuf	=	pongIN;

		if	(tx_proc_buffer	 	PING)

				txbuf	=	pingOUT;

		else

				txbuf	=	pongOUT;

		for	(i=0	;	i<(BUFSIZE/2)	;	i++)

		{

				*txbuf++	=	*rxbuf++;

				*txbuf++	=	*rxbuf++;

		}

		TX_buffer_empty	=	0;

		RX_buffer_full	=	0;

}

int	main(void)

{

		stm32_wm5102_init(FS_48000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_DMA);

		while(1)

		{

				while	(!(RX_buffer_full	&&	TX_buffer_empty)){}

				GPIO_SetBits(GPIOD,	GPIO_Pin_15);

				process_buffer();

				GPIO_ResetBits(GPIOD,	GPIO_Pin_15);

		}

}

2.5.13	DMA	in	the	STM32F407	Processor
DMA	in	the	STM32F407	processor	is	organized	into	unidirectional	streams.	Two	DMA
controllers	have	eight	streams	each,	and	streams	are	subdivided	into	eight	channels.	Individual
channels	are	associated	with	specific	peripheral	devices.	Bidirectional	I2S	on	the
STM32F407	is	implemented	using	the	SPI/I2S2	and	I2Sext	peripheral	devices.	Program
stm32f4_loop_dma.c	makes	use	of	the	inbuilt	ping-pong	mode	of	buffering	possible	on	the
STM32F407.	DMA-based	i/o	is	selected	by	passing	parameter	value	IO_METHOD_DMA	to
function	stm32_wm5102_init().

In	function	stm32_wm5102_init(),	stream	3	channel	#0	is	configured	to	make	DMA	transfers
between	the	I2S	peripheral	and	input	buffers	(arrays)	in	memory	(alternately	pingIN	and
pongIN).	It	generates	an	interrupt	when	a	transfer	of	BUFSIZE	16-bit	samples	has	completed.
(Those	16-bit	samples	correspond	alternately	to	L	and	R	audio	channels	and	so	a	transfer	of
BUFSIZE	samples	corresponds	to	BUFSIZE/2	sampling	instants.)

Stream	4	channel	#2	is	configured	to	make	DMA	transfers	between	output	buffers	in	memory
(alternately	pingOUT	and	pongOUT)	and	the	I2S	peripheral.	It	too	generates	an	interrupt	when	a
transfer	of	BUFSIZE	16-bit	samples	has	completed.	(Those	16-bit	samples	correspond
alternately	to	L	and	R	audio	channels	and	so	a	transfer	of	BUFSIZE	samples	corresponds	to
BUFSIZE/2	sampling	instants.)	Two	separate	interrupt	service	routines	are	used;	one	for	each

of	the	aforementioned	DMA	processes.	The	actions	carried	out	in	these	routines	are	simply	to
assign	to	variables	rx_proc_buffer	and	tx_proc_buffer	the	values	PING	or	PONG	and	to	set
flags	RX_buffer_full	and	TX_buffer_empty.	These	variables	are	used	in	function
process_buffer().

Switching	between	buffers	pingIN,	pongIN,	pingOUT,	and	pongOUT	is	handled	automatically
by	the	STM32F4's	DMA	mechanism.	If,	for	example,	rx_proc_buffer	is	equal	to	PING,	this
indicates	that	the	most	recently	completed	stream	3	DMA	transfer	has	filled	buffer	pingIN	and
this	data	is	available	to	be	processed.	If	tx_proc_buffer	is	equal	to	PING,	this	indicates	that
the	most	recently	completed	stream	4	DMA	transfer	has	written	the	contents	of	buffer	pingOUT
to	the	I2S	peripheral	and	this	buffer	is	available	to	be	filled	with	new	data.

Function	main()	simply	waits	until	both	RX_buffer_full	and	TX_buffer_empty	flags	are
set,	that	is,	until	both	DMA	transfers	have	completed,	before	calling	function
process_buffer().

In	program	stm32f4_loop_dma.c,	function	process_buffer()	simply	copies	the	contents	of
the	most	recently	filled	input	buffer	(pingIN	or	pongIN)	to	the	most	recently	emptied	output
buffer	(pingOUT	or	pongOUT),	according	to	the	values	of	variables	rx_proc_buffer	and
tx_proc_buffer.

Frame-based	processing	may	be	carried	out	in	function	process_buffer()	using	the	contents
of	the	most	recently	filled	input	buffer	as	input	and	writing	output	sample	values	to	the	most
recently	emptied	output	buffer.	DMA	transfers	will	complete,	and	function	proc_buffer()
will	be	called,	every	BUFSIZE/2	sampling	instants	and	therefore	any	processing	must	be
completed	within	BUFSIZE/(2*fs)	seconds	(or,	more	strictly	speaking,	before	the	next	DMA
transfer	completion).

2.5.14	Running	the	Program
Run	program	stm32f4_loop_dma.c	and	verify	its	operation	using	a	signal	source	and
oscilloscope	or	headphones.	As	supplied,	the	program	reads	input	from	the	(green)	LINE	IN
socket	on	the	audio	card	and	outputs	to	the	(pink)	LINE	OUT	and	(black)	HEADSET
connections.

2.5.15	Measuring	the	Delay	Introduced	by	DMA-Based	I/O
The	extra	delay	between	analog	input	and	output,	of	BUFSIZE	sampling	periods,	introduced	by
DMA-based	i/o	as	implemented	on	the	STM32F407,	may	be	measured	using	a	signal	generator
and	oscilloscope.

Connect	the	signal	generator	output	to	both	the	left	channel	of	the	(green)	LINE	IN	socket	on	the
Wolfson	audio	card	and	one	channel	of	the	oscilloscope,	and	connect	another	channel	on	the
oscilloscope	to	the	left	channel	of	the	(pink)	LINE	OUT	socket	on	the	Wolfson	audio	card.
Figure	2.9	shows	a	delay	of	approximately	5.9	ms	introduced	by	the	program	to	a	rectangular
pulse	of	duration	1.0	ms.	In	contrast,	program	stm32f4_loop_intr.c	introduces	a	delay	of
approximately	560	µs,	as	shown	in	Figure	2.10.	The	additional	delay	introduced	by	the	use	of

DMA-based	i/o	is	equal	to	approximately	5.3	ms.	At	a	sampling	rate	of	48	kHz,	ping-pong
mode	DMA	transfers	of	BUFSIZE	=	256	samples	(128	samples	per	channel)	correspond	to	a
delay	of	256/48,000	=	5.33	ms.	The	value	of	constant	BUFSIZE	is	defined	in	file
stm32f4_aic3104_init.h.

Figure	2.9	Delay	introduced	by	use	of	DMA-based	i/o	in	program	stm32f4_loop_dma.c.
Upper	trace	shows	rectangular	pulse	of	duration	1	ms	applied	to	LINE	IN,	lower	trace	shows
output	from	LINE	OUT.	BUFSIZE	=	256,	sampling	rate	48	kHz.

Figure	2.10	Delay	introduced	by	use	of	interrupt-based	i/o	in	program
stm32f4_loop_intr.c.	Upper	trace	shows	rectangular	pulse	of	duration	1	ms	applied	to
LINE	IN,	lower	trace	shows	output	from	LINE	OUT.	Sampling	rate	48	kHz.

Example	2.7

Modifying	Program	tm4c123_loop_intr.c	to	create	a	delay
(tm4c123_delay_intr.c).

Some	simple,	yet	striking,	effects	can	be	achieved	simply	by	delaying	the	sample	values	as
they	pass	from	input	to	output.	Program	tm4c123_delay_intr.c,	shown	in	Listing	2.15,
demonstrates	this.

Listing	2.8	Program	tm4c123_delay_intr.c

//	tm4c123_delay_intr.c

#include	“tm4c123_aic3104_init.h”

#define	BUFFER_SIZE	2000

float32_t	buffer[BUFFER_SIZE];

int16_t	buf_ptr	=	0;

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right,	delayed;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		delayed	=	buffer[buf_ptr]	+	input_left;

		buffer[buf_ptr]	=	input_left;

		buf_ptr	=	(buf_ptr+1)%	BUFFER_SIZE;

		sample_data.bit32	=	((int16_t)(delayed));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(0));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

}

int	main(void)

{

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_MIC_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1){}

}

A	delay	line	is	implemented	using	the	array	buffer	to	store	samples	as	they	are	read	from	the
ADC.	Once	the	array	is	full,	the	program	overwrites	the	oldest	stored	input	sample	with	the
current,	or	newest,	input	sample.	Just	prior	to	overwriting	the	oldest	stored	input	sample	in
buffer,	that	sample	value	is	retrieved,	added	to	the	current	input	sample,	and	written	to	the
DAC.	Figure	2.11	shows	a	block	diagram	representation	of	the	operation	of	program
tm4c123_delay_intr.c	in	which	the	block	labeled	 	represents	a	delay	of	 	seconds.	The
value	of	 	is	equal	to	the	number	of	samples	stored	in	buffer	multiplied	by	the	sampling
period.	Run	program	tm4c123_delay_intr.c,	using	a	microphone	connected	to	the	(pink)
MIC	IN	socket	on	the	audio	booster	pack	as	an	input	device.

Figure	2.11	Block	diagram	representation	of	program	tm4c123_delay_intr.c.

Example	2.8

Modifying	Program	tm4c123_loop_intr.c	to	create	an	echo
(tm4c123_echo_intr.c).

By	feeding	back	a	fraction	of	the	output	of	the	delay	line	to	its	input,	a	fading	echo	effect	can	be
realized.	Program	tm4c123_echo_intr.c,	shown	in	Listing	2.17	and	represented	in	block
diagram	form	in	Figure	2.12,	does	this.

Figure	2.12	Block	diagram	representation	of	program	tm4c123_echo_intr.c.

Listing	2.9	Program	tm4c123_echo_intr.c

//	tm4c123_echo_intr.c

#include	“tm4c123_aic3104_init.h”

#define	BUFFER_SIZE	2000

#define	GAIN	0.6f

float32_t	buffer[BUFFER_SIZE];

int16_t	buf_ptr	=	0;

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right,	delayed;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		delayed	=	buffer[buf_ptr];

		buffer[buf_ptr]	=	input_left	+	delayed	*	GAIN;

		buf_ptr	=	(buf_ptr+1)	%	BUFFER_SIZE;

		sample_data.bit32	=	((int16_t)(delayed));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(0));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

}

int	main(void)

{

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_MIC_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1){}

}

The	value	of	the	constant	BUFFER_SIZE	in	program	tm4c123_echo_intr.c	determines	the
number	of	samples	stored	in	the	array	buffer	and	hence	the	duration	of	the	delay	implemented.
The	value	of	the	constant	GAIN	determines	the	fraction	of	the	output	that	is	fed	back	into	the
delay	line	and	hence	the	rate	at	which	the	echo	effect	fades	away.	Setting	the	value	of	GAIN
equal	to,	or	greater	than,	1	will	cause	instability.	Build	and	run	this	program.	Experiment	with
different	values	of	GAIN	(between	0.0	and	1.0)	and	BUFFER_SIZE	(between	100	and	8000).
Source	file	tm4c123_echo_intr.c	must	be	edited	and	the	project	rebuilt	in	order	to	make
these	changes.

Example	2.9

Modifying	Program	tm4c123_loop_intr.c	to	create	a	flanging	effect
(tm4c123_flanger_intr.c).

Flanging	is	an	audio	effect	used	in	recording	studios	(and	live	performances)	that,	depending
on	its	parameter	settings,	can	add	a	whooshing	sound	not	unlike	a	jet	aircraft	passing	overhead.
It	is	a	delay-based	effect	and	can	therefore	be	implemented	as	an	extension	of	the	previous	two
examples.	The	flanging	effect	is	shown	in	block	diagram	form	in	Figure	2.13.	The	addition	of	a
delayed	and	attenuated	version	of	the	input	signal	to	itself	creates	a	comb-like	frequency
response.	If	the	frequency	of	the	input	signal	is	such	that	an	integer	multiple	of	its	period	is
equal	to	the	delay	 ,	adding	the	delayed	input	signal	will	cancel	out	the	input	signal	and	this
corresponds	to	a	notch	in	the	frequency	response.	The	notches	in	the	magnitude	frequency
response	will	therefore	be	spaced	at	regular	intervals	in	frequency	equal	to	 	Hz	with	the
first	notch	located	at	frequency	 	Hz.	If	the	length	of	the	delay	is	varied	slowly,	then	the
positions	of	the	notches	in	the	magnitude	frequency	response	will	vary	accordingly	to	produce
the	flanging	effect.	As	implemented	in	program	tm4c123_flanger_intr.c	(Listing	2.19),	the
delay	 	varies	sinusoidally	between	200	and	1800	µs	at	a	frequency	of	0.1	Hz.	Applied	to
music	containing	significant	high-frequency	content	(e.g.,	drum	sounds),	the	characteristic	“jet
aircraft	passing	overhead”	type	sound	can	be	heard.	Increasing	the	rate	of	change	of	delay	to,
for	example,	3	Hz	gives	an	effect	closer	to	that	produced	by	a	Leslie	rotating	speaker.

Figure	2.13	Block	diagram	representation	of	program	tm4c123_flanger_intr.c.

Listing	2.10	Program	tm4c123_flanger_intr.c

//	tm4c123_flanger_intr.c

#include	“tm4c123_aic3104_init.h”

#define	TS	0.000020833333f																	//	sampling	rate	48	kHz

#define	PERIOD	10.0f												//	period	of	delay	modulation

#define	MEAN_DELAY	0.001f						//	mean	delay	in	seconds

#define	MODULATION_MAG	0.0008f	//	delay	modulation	magnitude

#define	BUFFER_SIZE	2048

#define	ALPHA	0.9f

uint16_t	in_ptr	=	0;											//	pointers	into	buffers

uint16_t	out_ptr;

float32_t	buffer[BUFFER_SIZE];

float32_t	t	=	0.0f;

float32_t	Rxn,	Lxn,	Ryn,	Lyn,	delay_in_seconds;

uint16_t	delay_in_samples;

float32_t	theta;

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		Lxn	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		Rxn	=	(float32_t)(sample_data.bit16[0]);

		buffer[in_ptr]	=	Lxn;

		in_ptr	=	(in_ptr	+	1)

		t	=	t	+	TS;

		theta	=	(float32_t)((2*PI/PERIOD)*t);

								delay_in_seconds	=	MEAN_DELAY

																			+	MODULATION_MAG	*	arm_sin_f32(theta);

		delay_in_samples	=	(uint16_t)(delay_in_seconds

																																				*	48000.0);

		out_ptr	=	(in_ptr	+	BUFFER_SIZE

																-	delay_in_samples)	%	BUFFER_SIZE;

		Lyn	=	Lxn	+	buffer[out_ptr]*ALPHA;

		sample_data.bit32	=	((int16_t)(Lyn));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(Lyn));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

}

int	main(void)

{

		tm4c123_aic3104_init(FS_48000_HZ,

																							AIC3104_MIC_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1){}

}

If	the	delayed	signal	is	subtracted	from,	rather	than	added	to,	the	input	signal,	then	the	first
notch	in	the	magnitude	frequency	response	will	be	located	at	0	Hz,	giving	rise	to	a	high-pass
(very	little	bass	response)	effect	overall.	To	subtract,	rather	than	add,	the	delayed	signal,
change	the	statement	in	program	tm4c123_flanger_intr.c	that	reads

		Lyn	=	Lxn	+	buffer[out_ptr]*ALPHA;

to	read

		Lyn	=	Lxn	-	buffer[out_ptr]*ALPHA;

Figures	2.14	and	2.15	show	experimentally	measured	examples	of	the	instantaneous	impulse
and	magnitude	frequency	responses	of	the	flanger	program	for	the	two	cases	described.	Details
of	how	these	results	were	obtained	are	given	later	in	this	chapter.

Figure	2.14	(a)	impulse	response	and	(b)	magnitude	frequency	response	of	flanger
implemented	using	program	tm4c123_flanger_intr.c	at	an	instant	when	delay	 	is	equal	to
104.2	µs.	The	notches	in	the	magnitude	frequency	response	are	at	frequencies	4800	and	14,400
Hz.

Figure	2.15	(a)	Impulse	response	and	(b)	magnitude	frequency	response	of	modified	flanger
implemented	using	program	tm4c123_flanger_intr.c	at	an	instant	when	delay	 	is	equal	to
208.3	µs.	The	notches	in	the	magnitude	frequency	response	are	at	frequencies	0,	4800,	9600,
14,400,	and	19,200	Hz.

The	time-varying	delay	implemented	by	the	flanger	may	be	illustrated	using	program

tm4c123_flanger_dimpulse_intr.c	and	an	oscilloscope.	In	this	program,	input	samples	are
generated	within	the	program	rather	than	being	read	from	the	ADC.	The	sequence	of	input
samples	used	is	one	nonzero	value	followed	by	2047	zero	values,	and	this	sequence	is
repeated	periodically.	The	effect	is	to	excite	the	flanger	with	a	sequence	of	discrete-time
impulses	separated	by	2048	sampling	periods	or	42.67	ms.	The	output	from	program
tm4c123_flanger_dimpulse_intr.c	comprises	the	input	(which	passes	straight	through)
plus	a	delayed	and	attenuated	version	of	the	input.	Figure	2.16	shows	an	example	of	the	output
from	the	program	captured	using	a	Rigol	DS1052E	oscilloscope.	The	pulse	in	the	centre	of	the
screen	corresponds	to	the	input	pulse	and	the	pulse	to	the	right	corresponds	to	the	delayed
pulse.	At	the	instant	of	capture	shown	in	Figure	2.21,	the	delay	is	equal	to	approximately	400
µs.	When	the	program	is	running,	you	should	see	the	delay	between	the	pulses	varying	slowly.
The	shape	of	the	pulses	in	Figure	2.21	is	explained	in	Example	2.31.

Figure	2.16	Output	waveform	produced	using	program	tm4c123_flanger_dimpulse_intr.c
at	an	instant	when	delay	 	is	equal	to	approximately	400	µs.

The	time-varying	magnitude	frequency	response	of	the	flanger	is	illustrated	in	Figure	2.17,
which	shows	the	output	of	program	tm4c123_flanger_intr.c,	modified	so	that	the	input
signal	is	a	pseudorandom	binary	sequence,	displayed	as	a	spectrogram	(frequency	vs.	time)
using	Goldwave.	The	dark	bands	in	the	spectrogram	correspond	to	the	notches	in	the	magnitude
frequency	responses.	An	effective	alternative	to	pseudorandom	noise	as	an	input	signal	is	to
blow	gently	on	the	microphone.

Figure	2.17	Spectrum	and	spectrogram	of	flanger	output	for	pseudorandom	noise	input.	In	the
spectrogram,	the	 -axis	represents	time	in	seconds	and	the	 -axis	represents	frequency	in	Hz.

Example	2.10

Loop	Program	with	Input	Data	Stored	in	a	Buffer	(stm32f4_loop_buf_intr.c).

Program	stm32f4_loop_buf_intr.c,	shown	in	Listing	2.21,	is	similar	to	program
stm32f4_loop_intr.c	except	that	it	implements	circular	buffers	in	arrays	lbuffer	and
rbuffer,	each	containing	the	BUFFER_SIZE	most	recent	input	sample	values	on	one	or	other
channel.	Consequently,	it	is	possible	to	examine	this	data	after	halting	the	program.

Listing	2.11	Program	stm32f4_loop_buf_intr.c

//	stm32f4_loop_buf_intr.c

#include	“stm32f4_wm5102_init.h”

#define	BUFFER_SIZE	256

float32_t	rbuffer[BUFFER_SIZE];

int16_t	rbufptr	=	0;

float32_t	lbuffer[BUFFER_SIZE];

int16_t	lbufptr	=	0;

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	right_out_sample;

		int16_t	left_in_sample,	right_in_sample;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				left_out_sample	=	left_in_sample;

				lbuffer[lbufptr]	=	(float32_t)(left_in_sample);

				lbufptr	=	(lbufptr+1)

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				right_out_sample	=	right_in_sample;

				rbuffer[rbufptr]	=	(float32_t)(right_in_sample);

				rbufptr	=	(rbufptr+1)	%	BUFFER_SIZE;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

		GPIO_ToggleBits(GPIOD,	GPIO_Pin_15);

	}

int	main(void)

{

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

2.5.16	Running	the	Program
Build	and	run	the	program.	Use	a	signal	generator	connected	to	the	(pink)	LINE	IN	socket	on
the	Wolfson	audio	card	to	input	a	sinusoidal	signal	with	a	frequency	between	100	and	3500	Hz.
Halt	the	program	after	a	short	time	and	save	the	contents	of	the	array	rbuffer	or	lbuffer	to	a
data	file	by	typing

save	<filename>	<start	address>,	<start	address	+	0x400>

at	the	Command	line	in	the	MDK-ARM	debugger,	where	start	address	is	the	address	of
array	rbuffer	or	lbuffer	(and	which	may	be	determined	using	Watch	and	Memory	functions
in	the	MDK-ARM	debugger.

The	contents	of	the	data	file	can	be	plotted	using	MATLAB®	function	stm32f4_logfft().
Figure	2.18	shows	an	example	of	the	contents	of	array	lbuffer	when	the	frequency	of	the	input
signal	was	350	Hz.	The	discontinuity	in	the	waveform	at	time	 	ms	corresponds	to	the
value	of	the	index	lbufptr	into	the	array	when	program	execution	was	halted.	Recall	that
array	lbuffer	is	used	as	a	circular	buffer	in	which	older	sample	values	are	overwritten
continually	by	newer	ones.	Program	stm32f4_loop_buf_intr.c	is	used	again	later	in	this
chapter	in	order	to	highlight	the	characteristics	of	the	codec's	antialiasing	filter.

Figure	2.18	Sample	values	stored	in	array	lbuffer	by	program	stm32f4_loop_buf_intr.c
plotted	using	MATLAB	function	stm32f4_logftt().	Input	signal	frequency	was	350	Hz.

2.6	Real-Time	Waveform	Generation

2.1

The	following	examples	are	concerned	with	the	generation	of	a	variety	of	different	analog
output	waveforms,	including	sinusoids	of	different	frequencies,	by	writing	different	sequences
of	sample	values	to	the	DACs	in	the	WM5102	and	AIC3104	codecs.	In	this	way,	the	detailed
characteristics	of	the	DACs	are	revealed	and	the	concepts	of	sampling,	reconstruction,	and
aliasing	are	illustrated.	In	addition,	the	use	of	the	Goldwave	shareware	application	is
introduced.	This	virtual	instrument	is	a	useful	alternative	to	an	oscilloscope	or	spectrum
analyzer	and	is	used	again	in	later	chapters.

Example	2.11

Sine	Wave	Generation	Using	a	Lookup	Table	(stm32f4_sine48_intr.c).

Program	stm32f4_sine48_intr.c,	shown	in	Listing	2.23,	generates	a	sinusoidal	output
signal	using	interrupt-based	i/o	and	a	table	lookup	method	(Figure	2.18).	Its	operation	is	as
follows.	A	48-point	lookup	table	is	initialized	in	the	array	sine_table	such	that	the	value	of
sine_table[i]	is	equal	to

Array	sine_table	therefore	contains	48	samples	of	exactly	one	cycle	of	a	sinusoid.	In	this
example,	a	sampling	rate	of	48	kHz	is	used,	and	therefore,	interrupts	will	occur	every	20.833
µs.	Within	interrupt	service	routine	SPI2_IRQHandler(),	the	most	important	program
statements	are	executed.	Every	20.833	µs,	a	sample	value	read	from	the	array	sine_table	is
written	to	the	DAC	and	the	index	variable	sine_ptr	is	incremented	to	point	to	the	next	value
in	the	array.	If	the	incremented	value	of	sine_ptr	is	greater	than,	or	equal	to,	the	number	of
sample	values	in	the	table	(LOOPLENGTH),	it	is	reset	to	zero.	The	1	kHz	frequency	of	the
sinusoidal	output	signal	corresponds	to	the	48	samples	per	cycle	output	at	a	rate	of	48	kHz.

Listing	2.12	Program	stm32f4_sine48_intr.c

//	stm32f4_sine48_intr.c

#include	“stm32f4_wm5102_init.h”

#define	LOOPLENGTH	48

int16_t	sine_table[LOOPLENGTH]	=	{0,	1305,	2588,	3827,

		5000,	6088,	7071,	7934,	8660,	9239,	9659,	9914,	10000,

		9914,	9659,	9239,	8660,	7934,	7071,	6088,	5000,	3827,

		2588,	1305,	0,	-1305,	-2588,	-3827,	-5000,	-6088,	-7071,

		-7934,	-8660,	-9239,	-9659,	-9914,	-10000,	-9914,	-9659,

		-9239,	-8660,	-7934,	-7071,	-6088,	-5000,	-3827,	-2588,

		-1305};

int16_t	sine_ptr	=	0;		//	pointer	into	lookup	table

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	right_out_sample;

		int16_t	left_in_sample,	right_in_sample;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				left_out_sample	=	sine_table[sine_ptr];

				sine_ptr	=	(sine_ptr+1)%LOOPLENGTH;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				right_out_sample	=	0;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

		GPIO_ToggleBits(GPIOD,	GPIO_Pin_15);

	}

int	main(void)

{

		stm32_wm5102_init(FS_48000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

The	DAC	in	the	WM5102	codec	reconstructs	a	sinusoidal	analogue	output	signal	from	the
output	sample	values.

2.6.1	Running	the	Program
Build	and	run	the	program	and	verify	a	1	kHz	output	tone	on	the	(green)	LINE	OUT	and	(black)

HEADSET	connections	on	the	Wolfson	audio	card.

Program	stm32f4_sine8_intr.c	is	similar	to	program	stm32f4_sine48_intr.c	in	that	it
generates	a	sinusoidal	analog	output	waveform	with	a	frequency	of	1	kHz	from	a	lookup	table
of	sample	values.	However,	it	uses	a	sampling	rate	of	8	kHz	and	a	lookup	table	containing	just
eight	sample	values,	that	is,

#define	LOOPLENGTH	8

int16_t	sine_table[LOOPLENGTH]	=	{

		0,	7071,	10000,	7071,	0,	-7071,	-10000,	-7071};

2.6.2	Out-of-Band	Noise	in	the	Output	of	the	AIC3104	Codec
(tm4c123_sine48_intr.c)
While	performing	essentially	similar	functions,	the	codecs	used	in	the	two	different	hardware
platforms	differ	subtly	in	their	characteristics	and	functionality.	If	you	are	using	the	TM4C123
LaunchPad	and	AIC3104	audio	booster	pack	rather	than	the	STM32F407	Discovery	and
Wolfson	audio	card,	connect	an	oscilloscope	to	the	(black)	LINE	OUT	socket	on	the	audio
booster	pack.	Run	program	tm4c123_sine48_intr.c	and	you	should	see	a	waveform	similar
to	that	shown	in	Figure	2.19.	There	is	a	significant	level	of	noise	superimposed	on	the	1-kHz
sine	wave,	and	this	reveals	something	about	the	characteristics	of	the	AIC3104	DAC.	It	is	an
oversampling	sigma-delta	DAC	that	deliberately	moves	noise	out	of	the	(audio)	frequency
band.	The	out-of-band-noise	present	in	the	DAC	output	can	be	observed	in	the	frequency
domain	using	a	spectrum	analyzer	or	an	FFT	function	on	a	digital	oscilloscope.

Figure	2.19	(a)	1-kHz	sinusoid	generated	using	program	tm4c123_sine48_intr.c	viewed
using	Rigol	DS1052E	oscilloscope	connected	to	(black)	LINE	OUT	connection	on	audio
booster	pack.	(b)	Magnitude	of	FFT	of	signal	plotted	using	MATLAB.

The	plot	shown	in	Figure	2.19	was	obtained	using	a	Rigol	DS1052E	digital	oscilloscope	to
capture	the	output	waveform	and	then	the	magnitude	of	the	FFT	of	the	data	was	plotted	using
MATLAB.	It	shows	clearly	both	the	1-kHz	tone	and	the	out-of-band-noise	above	100	kHz.	The

out-of-band-noise	is	not	a	problem	for	listening	to	audio	signals	because	headphones	or
loudspeakers	will	not	usually	have	frequency	responses	that	extend	that	high	and	neither	does
the	human	ear.	However,	in	order	to	see	clearly	the	in-band	detail	of	audio	signals	generated
by	the	AIC3104	codec	using	an	oscilloscope,	it	is	useful	to	add	a	first-order	low-pass	filter
comprising	a	capacitor	and	a	resistor	to	the	LINE	OUT	signal	path.	This	can	be	done	by	fitting
jumper	J6	or	J7	and	looking	at	the	output	signals	on	the	scope	hooks,	TP2	and	TP3,	on	the
audio	booster	pack.	Figure	2.20	shows	the	filtered	output	signal	from	the	program	in	both	time
and	frequency	domains	for	comparison	with	Figure	2.19.

Figure	2.20	(a)	1-kHz	sinusoid	generated	using	program	tm4c123_sine48_intr.c	viewed
using	Rigol	DS1052E	oscilloscope	connected	to	scope	hook	on	audio	booster	pack.	(b)
Magnitude	of	FFT	of	signal	plotted	using	MATLAB.

Figure	2.21	Rectangular	pulse	output	on	GPIO	pin	PD15	by	program	stm32f4_sine_intr.c.

In	any	examples	in	this	book,	in	which	an	oscilloscope	is	used	to	view	an	output	signal	from
the	AIC3104	codec,	it	is	recommended	that	the	oscilloscope	probe	is	connected	to	one	of	the
scope	hooks	on	the	audio	booster	pack	(TP2	or	TP3)	and	the	corresponding	jumper	J6	or	J7	is
fitted.

In	contrast,	the	analog	signals	output	by	the	WM5102	codec	via	the	LINE	OUT	connection	on
the	Wolfson	audio	card	do	not	contain	out-of-band-noise	as	described	here	and	connections
may	be	made	directly	from	the	(green)	LINE	OUT	connection	on	the	Wolfson	audio	card	to	an
oscilloscope	(using	a	3.5-mm	jack	plug	to	RCA	plug	cable	and	an	RCA	to	BNC	adapter).

Example	2.12

Sine	wave	generation	using	a	sinf()	function	call	(stm32f4_sine_intr.c).

Sine	waves	of	different	frequencies	can	be	generated	using	the	table	lookup	method	employed
by	programs	stm32f4_sine48_intr.c	and	stm32f4_sine8_intr.c.	For	example,	a	3-kHz
sine	wave	can	be	generated	using	program	stm32f4_sine8_intr.c	by	changing	the	program
statement	that	reads

int16_t	sine_table[LOOPLENGTH]	=	{

		0,	7071,	10000,	7071,	0,	-7071,	-10000,	-7071};

to	read

int16_t	sine_table[LOOPLENGTH]	=	{

		0,	7071,	-10000,	7071,	0,	-7071,	10000,	-7071};

However,	changing	the	contents	and/or	size	of	the	lookup	table	is	not	a	particularly	flexible
way	of	generating	sinusoids	of	arbitrary	frequencies	(Example	2.26	demonstrates	how	different
frequency	sinusoids	may	be	generated	from	a	fixed	lookup	table).

Program	stm32f4_sine_intr.c,	shown	in	Listing	2.25,	takes	a	different	approach.	At	each
sampling	instant,	that	is,	in	function	SPI2_IRQHandler(),	a	new	output	sample	value	is
calculated	using	a	call	to	the	math	library	function	sinf().	The	floating	point	parameter,
theta,	passed	to	that	function	is	incremented	at	each	sampling	instant	by	the	value
theta_increment	=	2*PI*frequency/SAMPLING_FREQ,	and	when	the	value	of	theta
exceeds	 ,	the	value	 	is	subtracted	from	it.

Listing	2.13	Program	stm32f4_sine_intr.c

//	stm32f4_sine_intr.c

#include	“stm32f4_wm5102_init.h”

#define	SAMPLING_FREQ	8000

float32_t	frequency	=	1000.0;

float32_t	amplitude	=	10000.0;

float32_t	theta_increment;

float32_t	theta	=	0.0;

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	right_out_sample;

		int16_t	left_in_sample,	right_in_sample;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				theta_increment	=	2*PI*frequency/SAMPLING_FREQ;

				theta	+=	theta_increment;

				if	(theta	>	2*PI)	theta	-=	2*PI;

				GPIO_SetBits(GPIOD,	GPIO_Pin_15);

				left_out_sample	=	(int16_t)(amplitude*sinf(theta));

				GPIO_ResetBits(GPIOD,	GPIO_Pin_15);

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				right_out_sample	=	0;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

	}

int	main(void)

{

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

While	program	stm32f4_sine_intr.c	has	the	advantage	of	flexibility,	it	also	has	the
disadvantage,	relative	to	program	stm32f4_sine48_intr.c,	that	it	requires	greater
computational	effort.	This	is	an	important	consideration	in	real-time	applications.

2.6.3	Running	the	Program
Build	and	run	this	program	and	experiment	by	changing	the	value	assigned	to	the	variable

frequency	in	the	range	from	100.0–3800.0	(editing	the	program	and	rebuilding	the	project
each	time).	The	sampling	frequency	used	by	this	program	is	8	kHz.	Program
stm32f4_sine_intr.c	uses	GPIO	pin	PD15	to	indicate	the	time	taken	to	execute	interrupt
service	routine	SPI2_IRQHandler().	GPIO	pin	PD15	is	set	high	by	program	statement

GPIO_SetBits(GPIOD,	GPIO_Pin_15);

at	the	start	of	the	interrupt	service	routine	SPI2_IRQHandler()	and	reset	low	by	program
statement

GPIO_ResetBits(GPIOD,	GPIO_Pin_15);

at	the	end	of	the	interrupt	service	routine	SPI2_IRQHandler().	In	other	words,	it	outputs	a
rectangular	pulse	on	PD15	every	125	µs	and	the	duration	of	that	pulse	is	indicative	of	the	time
taken	to	compute	each	new	output	sample	value.	That	time	is	determined	primarily	by	the	time
taken	to	execute	program	statement

				left_out_sample	=	(int16_t)(amplitude*sinf(theta));

Figure	2.21	shows	the	waveform	output	on	GPIO	pin	PD15.	The	duration	of	the	pulses	is
approximately	680	ns.	Function	sinf()	is	used	because	function	sin()	is	computationally	too
expensive	to	be	used	in	this	application.	A	slightly	more	efficient	alternative	is	provided	by
function	arm_sin_f32(),	defined	in	the	CMSIS	DSP	library.	Edit	the	program,	replacing	the
program	statement

				left_out_sample	=	(int16_t)(amplitude*sinf(theta));

with

				left_out_sample	=	(int16_t)(amplitude*arm_sin_f32(theta));

and	you	should	find	that	the	duration	of	the	pulse	output	on	PD15	is	reduced	to	approximately
400	ns.	In	general,	calls	to	trigonometrical	functions	defined	in	standard	math	libraries	should
be	avoided	in	real-time	DSP	applications.

Example	2.13

Swept	Sinusoid	Using	Table	with	8000	Points	(stm32f4_sweep_intr.c).

This	example	illustrates	the	use	of	a	fixed	lookup	table	of	sample	values	in	order	to	generate
sinusoidal	analog	output	waveforms	of	arbitrary	frequency	(without	changing	the	sampling
frequency).	Listing	2.27	is	of	program	stm32f4_sweep_intr.c,	which	generates	a	swept
frequency	sinusoidal	signal	using	a	lookup	table	containing	8000	sample	values.	This	is	a
method	of	waveform	generation	commonly	used	in	laboratory	signal	generators.	The	header
file	sine8000_table.h,	generated	using	the	MATLAB	command

>>	x	=	1000*sin(2*pi*[0:7999]/8000);

contains	8000	sample	values	that	represent	exactly	one	cycle	of	a	sine	wave.	Listing	2.28	is	a
partial	listing	of	the	file	sine8000_table.h.

Listing	2.14	Program	stm32f4_sweep_intr.c

//	stm32f4_sweep_intr.c

#include	“stm32f4_wm5102_init.h”

#include	“sine8000_table.h”		//one	cycle	with	8000	points

#define	SAMPLING_FREQ	8000.0

#define	N	8000

#define	START_FREQ	500.0

#define	STOP_FREQ	3800.0

#define	START_INCR	START_FREQ*N/SAMPLING_FREQ

#define	STOP_INCR	STOP_FREQ*N/SAMPLING_FREQ

#define	SWEEPTIME	4

#define	DELTA_INCR	(STOP_INCR	-	START_INCR)/(N*SWEEPTIME)

int16_t	amplitude	=	10;

float32_t	float_index	=	0.0;

float32_t	float_incr	=	START_INCR;

int16_t	i;

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	right_out_sample;

		int16_t	left_in_sample,	right_in_sample;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				GPIO_SetBits(GPIOD,	GPIO_Pin_15);

				float_incr	+=	DELTA_INCR;

				if	(float_incr	>	STOP_INCR)	float_incr	=	START_INCR;

				float_index	+=	float_incr;

				if	(float_index	>	N)	float_index	-=	N;

				i	=	(int16_t)(float_index);

				left_out_sample	=	(amplitude*sine8000[i]);

				GPIO_ResetBits(GPIOD,	GPIO_Pin_15);

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				right_out_sample	=	0;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

}

int	main(void)

{

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

Listing	2.15	Partial	listing	of	header	file
sine8000_table.h

//sine8000_table.h	Sine	table	with	8000	points

short	sine8000[8000]=

{0,	1,	2,	2,	3,	4,	5,	5,

6,	7,	8,	9,	9,	10,	11,	12,

13,	13,	14,	15,	16,	16,	17,	18,

19,	20,	20,	21,	22,	23,	24,	24,

25,	26,	27,	27,	28,	29,	30,	31,

31,	32,	33,	34,	35,	35,	36,	37,

38,	38,	39,	40,	41,	42,	42,	43,

44,	45,	46,	46,	47,	48,	49,	49,

50,	51,	52,	53,	53,	54,	55,	56,

57,	57,	58,	59,	60,	60,	61,	62,

63,	64,	64,	65,	66,	67,	67,	68,

69,	70,	71,	71,	72,	73,	74,	75,

		.

		.

		.

-19,	-18,	-17,	-16,	-16,	-15,	-14,	-13,

-13,	-12,	-11,	-10,	-9,	-9,	-8,	-7,

-6,	-5,	-5,	-4,	-3,	-2,	-2,	-1}

At	each	sampling	instant,	program	stm32f4_sweep_intr.c	reads	an	output	sample	value	from
the	array	sine8000,	using	the	float32_t	value	of	variable	float_index,	converted	to	type
int16_t,	as	an	index,	and	increments	the	value	of	float_index	by	the	value	float_incr.
With	N	points	in	the	lookup	table	representing	one	cycle	of	a	sinusoid,	the	frequency	of	the
output	waveform	is	equal	to	SAMPLING_FREQ*float_incr/N.	A	fixed	value	of	float_incr
would	result	in	a	fixed	output	frequency.	In	program	stm32f4_sweep_intr.c,	the	value	of
float_incr	itself	is	incremented	at	each	sampling	instant	by	the	value	DELTA_INCR	and	hence
the	frequency	of	the	output	waveform	increases	gradually	from	START_FREQ	to	STOP_FREQ.
The	output	waveform	generated	by	the	program	can	be	altered	by	changing	the	values	of	the
constants	START_FREQ,	STOP_FREQ,	and	SWEEPTIME,	from	which	the	value	of	DELTA_INCR	is
calculated.	Build	and	run	this	program.	Verify	the	output	to	be	a	sinusoid	taking	SWEEPTIME
seconds	to	increase	in	frequency	from	START_FREQ	to	STOP_FREQ.

Example	2.14

Generation	of	DTMF	Tones	Using	a	Lookup	Table	(tm4c123_sineDTMF_intr.c).

Program	tm4c123_sineDTMF_intr.c,	listed	in	Listing	2.30,	uses	a	lookup	table	containing
512	samples	of	a	single	cycle	of	a	sinusoid	together	with	two	independent	pointers	to	generate
a	dual-tone	multifrequency	(DTMF)	waveform.	DTMF	waveforms	comprising	the	sum	of	two
sinusoids	of	different	frequencies	are	used	in	telephone	networks	to	indicate	key	presses.	A
total	of	16	different	combinations	of	frequencies	each	comprising	one	of	four	low-frequency
components	(697,	770,	852,	or	941	Hz)	and	one	of	four	high-frequency	components	(1209,
1336,	1477,	or	1633	Hz)	are	used.	Program	tm4c123_sineDTMF_intr.c	uses	two
independent	pointers	into	a	single	lookup	table,	each	updated	at	the	same	rate	(16	kHz)	but
each	stepping	through	the	values	in	the	table	using	different	step	sizes.

Listing	2.16

Program	tm4c123_sineDTMF_intr.c.

//	tm4c123_sineDTMF_intr.c

#include	“tm4c123_aic3104_init.h”

#define	TABLESIZE	512								//	size	of	look	up	table

#define	SAMPLING_FREQ	16000

#define	STEP_770	(float32_t)(770	*	TABLESIZE)/SAMPLING_FREQ

#define	STEP_1336	(float32_t)(1336	*	TABLESIZE)/SAMPLING_FREQ

#define	STEP_697	(float32_t)(697	*	TABLESIZE)/SAMPLING_FREQ

#define	STEP_852	(float32_t)(852	*	TABLESIZE)/SAMPLING_FREQ

#define	STEP_941	(float32_t)(941	*	TABLESIZE)/SAMPLING_FREQ

#define	STEP_1209	(float32_t)(1209	*	TABLESIZE)/SAMPLING_FREQ

#define	STEP_1477	(float32_t)(1477	*	TABLESIZE)/SAMPLING_FREQ

#define	STEP_1633	(float32_t)(1633	*	TABLESIZE)/SAMPLING_FREQ

int16_t	sine_table[TABLESIZE];

float32_t	loopindexlow	=	0.0;

float32_t	loopindexhigh	=	0.0;

int16_t	output;

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

			output	=	(sine_table[(int16_t)loopindexlow]

													+	sine_table[(int16_t)loopindexhigh]);

		loopindexlow	+=	STEP_770;

		if	(loopindexlow	>	(float32_t)TABLESIZE)

				loopindexlow	-=	(float32_t)TABLESIZE;

		loopindexhigh	+=	STEP_1477;

		if	(loopindexhigh	>	(float32_t)TABLESIZE)

				loopindexhigh	-=	(float32_t)TABLESIZE;

		sample_data.bit32	=	((int16_t)(output));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(output));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

}

int	main(void)

{

	int16_t	i;

							tm4c123_aic3104_init(FS_16000_HZ,

																												AIC3104_LINE_IN,

																												IO_METHOD_INTR,

																												PGA_GAIN_6_DB);

		for	(i=0	;	i<	TABLESIZE	;	i++)

				sine_table[i]	=	(int16_t)(10000.0*sin(2*PI*i/TABLESIZE));

		while(1){}

}

A	pointer	that	stepped	through	every	single	one	of	the	TABLESIZE	samples	stored	in	the	lookup
table	at	a	sampling	rate	of	16	kHz	would	generate	a	sinusoidal	tone	with	a	frequency	equal	to
(16000/TABLESIZE).	A	pointer	that	stepped	through	the	samples	stored	in	the	lookup	table,
incremented	by	a	value	STEP,	would	generate	a	sinusoidal	tone	with	a	frequency	equal	to
(16000	*	STEP/TABLESIZE).	From	this,	it	is	possible	to	calculate	the	required	step	size	for
any	desired	frequency.	For	example,	in	order	to	generate	a	sinusoid	with	frequency	770	Hz,	the
required	step	size	is	STEP	=	TABLESIZE	*	770/16000	=	24.64.	In	other	words,	at	each
sampling	instant,	the	pointer	into	the	lookup	table	should	be	incremented	by	24.64.	The	pointer
value,	or	index,	into	the	lookup	table	must	be	an	integer	value	((int16_t)(loopindexlow))
but	a	floating-point	value	of	the	pointer,	or	index,	(loopindexlow)	is	maintained	by	the
program	and	incremented	by	24.64	at	each	sampling	instant	and	wrapping	around	to	0.0	when
its	value	exceeds	512.0	using	the	statements

loopindexlow	+=	24.64;

if(loopindexlow>(float32_t)TABLESIZE)loopindexlow-=(float32_t)TABLESIZE;

In	program	tm4c123_sineDTMF_intr.c,	the	floating	point	values	by	which	the	table	lookup
indices	are	incremented	are	predefined	using,	for	example,

#define	STEP_770	(float32_t)(770	*	TABLESIZE)	/	SAMPLING_FREQ

In	order	to	change	the	DTMF	tone	generated	and	simulate	a	different	key	press,	edit	program
tm4c123_sineDTMF_intr.c	and	change	the	program	statements.

loopindexlow	+=	STEP_697;

loopindexhi	+=	STEP_1477;

to,	for	example

loopindexlow	+=	STEP_770;

loopindexhi	+=	STEP_1209;

An	example	of	the	output	generated	by	program	tm4c123_sineDTMF_intr.c	is	shown	in
Figure	2.22.

Figure	2.22	Output	from	program	tm4c123_sineDTMF_intr.c	viewed	using	Rigol	DS1052
oscilloscope.

Example	2.15

Signal	Reconstruction,	Aliasing,	and	the	Properties	of	the	WM5102	Codec
(stm32f4_sine_intr.c).

Generating	analog	output	signals	using,	for	example,	program	stm32f4_sine_intr.c	is	a
useful	means	of	investigating	the	characteristics	of	the	WM5102	codec.	If	you	are	using	the
TM4C123	LaunchPad	and	AIC3104	audio	booster	pack,	program	tm4c123_sine_intr.c	and
others	are	useful	means	of	investigating	the	slightly	different	characteristics	of	the	AIC3104
codec.

Change	the	value	of	the	variable	frequency	in	program	stm32f4_sine_intr.c	to	an
arbitrary	value	between	100.0	and	3500.0,	and	you	should	find	that	a	sine	wave	of	that
frequency	(in	Hz)	is	generated.	Change	the	value	of	the	variable	frequency	to	7000.0,
however,	and	you	will	find	that	a	1000	Hz	sine	wave	is	generated.	The	same	is	true	if	the	value
of	frequency	is	changed	to	9000.0	or	15000.0.	A	value	of	frequency	equal	to	5000.0	will

result	in	an	output	waveform	with	a	frequency	of	3000	Hz.	These	effects	are	related	to	the
phenomenon	of	aliasing.	Since	the	reconstruction	(DAC)	process	that	creates	a	continuous-time
analog	waveform	from	discrete-time	samples	is	one	of	low-pass	filtering,	it	follows	that	the
bandwidth	of	signals	output	by	the	codec	is	limited	(to	less	than	half	the	sampling	frequency).
This	can	be	demonstrated	in	a	number	of	different	ways.

For	example,	run	program	stm32f4_sine_intr.c	with	the	value	of	the	variable	frequency
set	to	3500.0	and	verify	that	the	output	waveform	generated	has	a	frequency	of	3500	Hz.
Change	the	value	of	the	variable	frequency	to	4500.0.	The	frequency	of	the	output	waveform
should	again	be	equal	to	3500	Hz.	Try	any	value	for	the	variable	frequency.	You	should	find
that	it	is	impossible	to	generate	an	analog	output	waveform	with	a	frequency	greater	than	or
equal	to	4000	Hz	(assuming	a	sampling	frequency	of	8000	Hz).	This	is	consistent	with	viewing
the	DAC	as	a	low-pass	filter	with	a	cutoff	frequency	equal	to	slightly	less	than	half	its
sampling	frequency.

The	following	examples	demonstrate	a	number	of	alternative	approaches	to	observing	the	low-
pass	characteristic	of	the	DAC.

Example	2.16

Square	wave	generation	using	a	lookup	table	(stm32f4_square_intr.c).

Program	stm32f4_square_intr.c,	shown	in	Listing	2.33,	differs	from	program
stm32f4_sine8_intr.c	only	in	that	it	uses	a	lookup	table	containing	64	samples	of	one	cycle
of	a	square	wave	of	frequency	125	Hz	rather	than	48	samples	of	one	cycle	of	a	sine	wave	of
frequency	1	kHz.

Listing	2.17	Program	stm32f4_square_intr.c

//	stm32f4_square_intr.c

#include	“stm32f4_wm5102_init.h”

#define	LOOP_SIZE	64

int16_t	square_table[LOOP_SIZE]	=	{

		10000,	10000,	10000,	10000,

		10000,	10000,	10000,	10000,

		10000,	10000,	10000,	10000,

		10000,	10000,	10000,	10000,

		10000,	10000,	10000,	10000,

		10000,	10000,	10000,	10000,

		10000,	10000,	10000,	10000,

		10000,	10000,	10000,	10000,

		-10000,	-10000,	-10000,	-10000,

		-10000,	-10000,	-10000,	-10000,

		-10000,	-10000,	-10000,	-10000,

		-10000,	-10000,	-10000,	-10000,

		-10000,	-10000,	-10000,	-10000,

		-10000,	-10000,	-10000,	-10000,

		-10000,	-10000,	-10000,	-10000,

		-10000,	-10000,	-10000,	-10000};

static	int	square_ptr	=	0;

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	right_out_sample;

		int16_t	left_in_sample,	right_in_sample;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				left_out_sample	=	square_table[square_ptr];

				square_ptr	=	(square_ptr+1)%LOOP_SIZE;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				right_out_sample	=	0;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

	}

int	main(void)

{

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

2.6.4	Running	the	Program
Build	and	run	the	program,	and	using	an	oscilloscope	connected	to	the	(green)	LINE	OUT
socket	on	the	audio	card,	you	should	see	an	output	waveform	similar	to	that	shown	in	Figure
2.23.	This	waveform	is	equivalent	to	a	square	wave	(represented	by	the	samples	in	the	lookup
table)	passed	through	a	low-pass	filter	(the	DAC).	The	ringing	that	follows	each	transition	in
the	waveform	is	indicative	of	the	specific	characteristics	of	the	reconstruction	filter
implemented	by	the	WM5102	DAC.	The	low-pass	characteristic	of	the	reconstruction	filter
can	further	be	highlighted	by	looking	at	the	frequency	content	of	the	output	waveform.	While
the	Fourier	series	representation	of	a	square	wave	is	the	sum	of	an	infinite	series	of	harmonic
components,	only	harmonic	components	with	frequencies	below	3.8	kHz	are	present	in	the
analog	output	waveform	as	shown	in	the	lower	trace	of	Figure	2.24.

Figure	2.23	Output	from	program	stm32f4_square_intr.c	viewed	using	Rigol	DS1052
oscilloscope.

Figure	2.24	Output	from	program	stm32f4_square_intr.c	viewed	in	both	time	and
frequency	domains	using	Rigol	DS1052	oscilloscope.

Example	2.17

Square	Wave	Generation	Using	a	Look	Up	Table	(tm4c123_square_intr.c).

Program	tm4c123_square_intr.c	is	an	equivalent	(to	stm32f4_square_intr.c)	program
that	runs	on	the	TM4C123	LaunchPad.	The	output	waveform,	as	it	appears	on	the	scope	hook
connections	on	the	audio	booster	pack	and	as	shown	in	Figure	2.25,	is	subtly	different	to	that
shown	in	Figure	2.23.	In	this	case,	ringing	precedes	as	well	as	follows	transitions	in	the
waveform.	This	suggests	strongly	that	the	reconstruction	filter	in	the	AIC3104	DAC	is
implemented	as	a	digital	FIR	filter	(at	a	higher	sampling	frequency	than	that	at	which	sample
values	are	written	to	the	DAC	by	program	tm4c123_square_intr.c).	Viewed	in	the
frequency	domain	(Figure	2.26),	it	is	apparent	that	once	again	the	analog	output	waveform
contains	only	the	harmonic	components	of	a	125	Hz	square	wave	at	frequencies	lower	than	3.8
kHz.

Figure	2.25	Output	from	program	tm4c123_square_intr.c	viewed	using	Rigol	DS1052
oscilloscope.

Figure	2.26	Output	from	program	tm4c123_square_intr.c	viewed	in	both	time	and
frequency	domains	using	Rigol	DS1052	oscilloscope.

A	further	demonstration	of	the	low-pass	characteristic	of	the	reconstruction	filter	is	given	by
program	tm4c123_square_1khz_intr.c.	Here,	the	sequence	of	sample	values	written	to	the
DAC	at	a	sampling	frequency	of	8	kHz	is	given	by

#define	LOOPLENGTH	8

int16_t	square_table[LOOPLENGTH]	=	{

		10000,	10000,	10000,	10000,

		-10000,	-10000,	-10000,	-10000};

Ostensibly,	these	sample	values	represent	one	cycle	of	a	1-kHz	square	wave.	However,	the
output	waveform	generated	contains	only	the	first	two	harmonic	components	of	a	1-kHz	square
wave	(at	1	and	3	kHz),	that	is,	only	the	harmonic	components	of	a	1-kHz	square	wave	with
frequencies	lower	than	3.8	kHz,	the	cutoff	frequency	of	the	DAC.	The	analog	output	waveform
is	shown	in	Figure	2.27	and	is	clearly	not	a	square	wave.

Figure	2.27	Output	from	program	tm4c123_square_1khz_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Example	2.18

Impulse	Response	of	the	WM5102	DAC	Reconstruction	Filter
(stm32f4_dimpulse_intr.c).

Each	transition	in	the	waveform	generated	by	program	stm32f4_square_intr.c	may	be
considered	as	representative	of	the	step	response	of	the	reconstruction	filter	in	the	WM5102
DAC.	From	this,	the	impulse	response	of	the	filter	may	be	surmised.

That	impulse	response	is	of	interest	since,	in	accordance	with	linear	systems	theory,	it
characterizes	the	filter.	Specifically,	the	impulse	response	of	the	WM5102	DAC	is	equal	to	the
time	derivative	of	its	step	response,	and	by	inspection	of	Figure	2.23,	it	is	apparent	that	the
impulse	response	will	have	the	form	of	a	(relatively)	slowly	(exponentially)	decaying
oscillation.	The	impulse	response	can	be	illustrated	more	directly	by	running	program
stm32f4_dimpulse_intr.c.	This	program	replaces	the	samples	of	a	square	wave	in	the
lookup	table	used	by	program	stm32f4_square_intr.c	with	a	discrete	impulse	sequence.
Figure	2.28	shows	the	output	waveform	generated	by	stm32f4_dimpulse_intr.c	and	its
magnitude	FFT	calculated	using	a	Rigol	DS1052E	oscilloscope.	The	Fourier	transform	of	the
impulse	response	of	a	linear	time-invariant	system	is	equal	to	its	frequency	response.

Figure	2.28	Output	from	program	stm32f4_dimpulse_intr.c	viewed	in	time	and	frequency
domains	using	Rigol	DS1052	oscilloscope.

Example	2.19

Impulse	Response	of	the	AIC3104	DAC	Reconstruction	Filter
(tm4c123_dimpulse_intr.c).

This	program	illustrates	the	impulse	response	of	the	AIC3104	DAC.	As	suggested	by	the	output
waveform	generated	using	program	tm4c123_square_intr.c	in	the	previous	example,	the
corresponding	impulse	response	is	subtly	different	from	that	of	the	WM5102	DAC.	The	two
different	impulse	responses,	each	of	which	corresponds	to	a	near-ideal	low-pass	frequency
response,	are	representative	of	those	found	in	the	majority	of	audio	codecs.	That	of	the
WM5102	is	termed	a	low-latency	response.	It	is	perhaps	tempting	to	view	the	impulse
response	of	the	AIC3104	codec	as	noncausal	and	think	of	the	central	peak	of	the	pulse	shown
in	Figure	2.29	as	corresponding	to	the	same	time	as	that	of	the	impulse	causing	it.	This,	of
course,	is	impossible	in	practice.	Without	knowing	the	detailed	workings	of	the	AIC3104
DAC,	it	is	nonetheless	apparent	that	the	impulse	causing	the	response	shown	in	Figure	2.29
must	have	occurred	before	any	of	the	ripples	evident	in	that	pulse	and	hence	approximately	1
ms	before	its	peak.	In	contrast,	the	impulse	causing	the	impulse	response	of	the	WM5102	DAC
shown	in	Figure	2.28	probably	occurred	approximately	300	µs	before	the	peak.

Figure	2.29	Output	from	program	tm4c123_dimpulse_intr.c	viewed	using	Rigol	DS1052
oscilloscope.

Example	2.20

Ramp	Generation	(tm4c123_ramp_intr.c).

Listing	2.38	is	of	program	tm4c123_ramp_intr.c,	which	generates	a	ramp,	or	sawtooth,
output	waveform.	The	value	of	the	output	sample	output_left	is	incremented	by	2000	every
sampling	instant	until	it	reaches	the	value	30,000,	at	which	point	it	is	reset	to	the	value	
30,000.	Build	and	run	this	program.	Figure	2.30	shows	the	analog	output	waveform	captured
using	an	oscilloscope.	The	output	comprises	harmonic	components	at	frequencies	less	than	4
kHz.

Figure	2.30	Output	waveform	generated	by	program	tm4c123_ramp_intr.c.

Listing	2.18	Program	tm4c123_ramp_intr.c

//	tm4c123_ramp_intr.c

#include	“tm4c123_aic3104_init.h”

int16_t	output	=	0;

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		output	+=	2000;

		if	(output	>=	30000)

		output	=	-30000;

		sample_data.bit32	=	((int16_t)(output));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(output));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

}

int	main(void)

{

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1){}

}

Example	2.21

Amplitude	Modulation	(tm4c123_am_poll.c).

This	example	illustrates	the	basic	principles	of	amplitude	modulation	(AM).	Listing	2.40	is	of
program	tm4c123_am_poll.c,	which	generates	an	AM	signal.	The	array	baseband	holds	20
samples	of	one	cycle	of	a	cosine	waveform	with	a	frequency	of	fs/20	=	400	Hz	(sampling
frequency,	fs	=	8000	Hz).	The	array	carrier	holds	20	samples	of	five	cycles	of	a	sinusoidal
carrier	signal	with	a	frequency	of	5fs/20	=	2000	Hz.	Output	sample	values	are	calculated	by
multiplying	the	baseband	signal	baseband	by	the	carrier	signal	carrier.	In	this	way,	the
baseband	signal	modulates	the	carrier	signal.	The	variable	amp	is	used	to	set	the	modulation
index.

Listing	2.19	Program	tm4c123_am_poll.c

//	tm4c123_am	poll.c

#include	“tm4c123_aic3104_init.h”

short	amp	=	20;	//index	for	modulation

void	SSI_interrupt_routine(void){while(1){}}

int	main(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right;

		int16_t	baseband[20]	=	{1000,951,809,587,309,0,-309,

																										-587,-809,-951,-1000,-951,-809,

																										-587,-309,0,309,587,809,951};						//	400	Hz

		int16_t	carrier[20]	=	{1000,0,-1000,0,1000,0,-1000,

																								0,1000,0,-1000,0,1000,0,-1000,

																								0,1000,0,-1000,0};																		//	2	kHz

		int16_t	output[20];

		int16_t	k;

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_POLL,

																							PGA_GAIN_6_DB);

		while(1)

		{

				for	(k=0;	k<20;	k++)

				{

						output[k]=	carrier[k]	+	((amp*baseband[k]*carrier[k]/10)>>12);

						SSIDataGet(SSI1_BASE,&sample_data.bit32);

						input_left	=	(float32_t)(sample_data.bit16[0]);

						SSIDataGet(SSI0_BASE,&sample_data.bit32);

						input_right	=	(float32_t)(sample_data.bit16[0]);

						sample_data.bit32	=	((int16_t)(20*output[k]));

						SSIDataPut(SSI1_BASE,sample_data.bit32);

						SSIDataPut(SSI0_BASE,sample_data.bit32);

				}

		}

}

2.6.5	Running	the	Program
Build	and	run	this	program.	Verify	that	the	output	consists	of	the	2-kHz	carrier	signal	and	two
sideband	signals	as	shown	in	Figure	2.31.	The	sideband	signals	are	at	the	frequency	of	the
carrier	signal,	+/ 	the	frequency	of	the	baseband	signal,	or	at	1600	and	2400	Hz.	The
magnitude	of	the	sidebands	relative	to	the	carrier	signal	may	be	altered	by	changing	the	value
of	the	variable	amp	in	the	source	file.	The	project	will	need	to	be	rebuilt	for	such	a	change	to
take	effect.

Figure	2.31	Output	waveform	generated	by	program	tm4c123_am_intr.c.

2.7	Identifying	the	Frequency	Response	of	the	DAC
Using	Pseudorandom	Noise

Example	2.22

Frequency	Response	of	the	AIC3104	DAC	Reconstruction	Filter	Using	a
Pseudorandom	Binary	Sequence	(tm4c123_prbs_intr.c).

Program	tm4c123_prbs_intr.c,	shown	in	Listing	2.42,	generates	a	pseudorandom	binary
sequence	(PRBS)	and	writes	this	to	the	AIC3104	DAC.	Function	prbs(),	defined	in	file
tm4c123_aic3104_init.c,	and	shown	in	Listing	2.43,	uses	a	16-bit	linear	feedback	shift
register	(LFSR)	to	generate	a	maximal-length	pseudorandom	binary	sequence.	The	least
significant	bit	of	the	register	is	used	to	determine	whether	function	prbs()	returns	either	the
value	noise_level	or	the	value	-noise_level,	where	noise_level	is	a	16-bit	integer	value
passed	to	the	function.	The	value	of	the	LFSR	(lfsr)	is	initialized	to	0x0001.	Each	time
function	prbs()	is	called,	a	feedback	value	(fb)	is	formed	by	the	modulo-2	sum	of	bits	15,	14,
3,	and	1	in	lfsr.	The	contents	of	the	LFSR	are	shifted	left	by	one	bit	and	the	value	of	bit	0	is
assigned	the	feedback	value	fb.	If	the	value	of	fb	is	equal	to	zero,	then	the	function	returns	the
value	-noise_level.	Otherwise,	it	returns	the	value	noise_level.

Listing	2.20	Program	tm4c123_prbs_intr.c

//	tm4c123_prbs_intr.c

#include	“tm4c123_aic3104_init.h”

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right;

		float32_t	output_left,	output_right;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		output_left	=		(float32_t)(prbs(8000));

		output_right	=	output_left;

		sample_data.bit32	=	((int16_t)(output_left));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(output_right));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

}

int	main(void)

{

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1){}

}

Listing	2.21	Definition	of	function	prbs(),	defined	in
file	tm4c123_aic3104_init.c

typedef	union

{

		uint16_t	value;

		struct

		{

				unsigned	char	bit0	:	1;

				unsigned	char	bit1	:	1;

				unsigned	char	bit2	:	1;

				unsigned	char	bit3	:	1;

				unsigned	char	bit4	:	1;

				unsigned	char	bit5	:	1;

				unsigned	char	bit6	:	1;

				unsigned	char	bit7	:	1;

				unsigned	char	bit8	:	1;

				unsigned	char	bit9	:	1;

				unsigned	char	bit10	:	1;

				unsigned	char	bit11	:	1;

				unsigned	char	bit12	:	1;

				unsigned	char	bit13	:	1;

				unsigned	char	bit14	:	1;

				unsigned	char	bit15	:	1;

		}	bits;

}	shift_register;

shift_register	sreg	=	{0x0001};

short	prbs(int16_t	noise_level)

{

		char	fb;

		fb	=((sreg.bits.bit15)+(sreg.bits.bit14)+(sreg.bits.bit3)

						+(sreg.bits.bit1))%2

		sreg.value	=	sreg.value	<<	1;

		sreg.bits.bit0	=	fb;

		if(fb	 	0)

				return(-noise_level);

		else

				return(noise_level);

}

Figure	2.32	shows	the	analog	output	signal	generated	by	the	program	displayed	using	an
oscilloscope	and	using	Goldwave.	The	theoretical	power	spectral	density	of	a	PRBS	is
constant	across	all	frequencies.	When	a	PRBS	is	written	to	a	DAC,	the	spectral	content	of	the
signal	output	by	the	DAC	is	indicative	of	the	magnitude	frequency	response	of	the	DAC.	In	this
case,	the	magnitude	frequency	response	is	flat,	or	constant,	at	frequencies	up	to	the	cutoff
frequency	of	the	DAC's	reconstruction	filter	just	below	half	its	sampling	frequency.

Figure	2.32	Output	from	program	tm4c123_prbs_intr.c	viewed	using	Rigol	DS1052
oscilloscope	and	Goldwave.

2.7.1	Programmable	De-Emphasis	in	the	AIC3104	Codec
The	AIC3104	codec	features	a	programmable	first-order	de-emphasis	filter	that	may	optionally

be	switched	into	the	signal	path	just	before	the	DAC.	Program
tm4c123_prbs_deemph_intr.c	demonstrates	its	use	(see	Figure	2.33).	User	switch	SW1	on
the	TM4C123	LaunchPad	may	be	used	to	enable	or	disable	the	de-emphasis	function.	The	de-
emphasis	filters	are	enabled	and	disabled	by	writing	to	bits	0	(right	channel)	and	2	(left
channel)	in	page	0	control	register	12	(Audio	Codec	Digital	Filter	Control	Register)	using
function	I2CRegWrite().

Figure	2.33	Output	from	program	tm4c123_prbs_deemph_intr.c	viewed	using	Rigol
DS1052	oscilloscope	and	Goldwave.

The	coefficients	of	the	de-emphasis	filter	can	be	reprogrammed	in	order	to	implement	a
different	first-order	IIR	filter.	In	program	tm4c123_prbs_hpf_intr.c,	a	high-pass	filter	has
been	implemented	and	its	characteristics	are	apparent	in	Figure	2.34.

Figure	2.34	Output	from	program	tm4c123_prbs_hpf_intr.c	viewed	using	Rigol	DS1052
oscilloscope	and	Goldwave.

2.7.2	Programmable	Digital	Effects	Filters	in	the	AIC3104	Codec
The	AIC3104	codec	also	features	two	fourth-order	IIR	filters	that	may	optionally	be	switched
into	the	left	and	right	channel	signal	paths	just	before	the	DAC.	Program

tm4c123_prbs_biquad_intr.c	demonstrates	how	the	characteristics	of	these	filters	can	be
programmed	by	writing	filter	coefficients	to	AIC3104	page	1	control	registers	1	through	20
(left	channel)	and	27	through	46	(right	channel).	In	this	example,	a	fourth-order	elliptic	low-
pass	filter	is	implemented.	Figure	2.35	shows	the	filtered	PRBS	signal	viewed	using	an
oscilloscope	and	using	Goldwave.	The	IIR	filters	are	enabled	and	disabled	by	writing	to	bits	1
(right	channel)	and	3	(left	channel)	in	page	0	control	register	12	(Audio	Codec	Digital	Filter
Control	Register).	The	characteristics	of	these	filters	and	how	to	program	them	are	described
in	greater	detail	in	Chapter	4.

Figure	2.35	Output	from	program	tm4c123_prbs_biquad_intr.c	viewed	using	Rigol
DS1052	oscilloscope	and	Goldwave.

Example	2.23

Frequency	response	of	the	DAC	reconstruction	filter	using	pseudorandom	noise
(tm4c123_prandom_intr.c).

Program	tm4c123_prandom_intr.c	is	similar	to	program	tm4c123_prbs_intr.c	except	that
it	uses	a	Parks–Miller	algorithm	to	generate	a	pseudorandom	noise	sequence.	This	may	be	used
as	an	alternative	to	PRBS	in	some	applications.	Function	prand()	(Listing	2.45)	is	defined	in
file	tm4c123_aic3104_init.c	and	returns	pseudorandom	values	in	the	range	+/
noise_level,	where	noise_level	is	a	16-bit	integer	value	passed	to	the	function.	Figure
2.36	shows	the	waveform	output	by	program	tm4c123_prandom_intr.c	displayed	using	an
oscilloscope.	Compare	this	with	the	output	waveform	generated	by	program
tm4c123_prbs_intr.c,	shown	in	Figure	2.32.

Figure	2.36	Output	from	program	tm4c123_prandom_intr.c	viewed	using	Rigol	DS1052
oscilloscope.

Overall,	the	use	of	pseudorandom	noise	as	an	input	signal	is	a	simple	and	useful	technique	for
assessing	the	magnitude	frequency	response	of	a	system.

Listing	2.22	Definition	of	function	prand(),	defined	in
file	tm4c123_aic3104_init.c

uint32_t	prand_seed	=	1;							//	used	in	function	prand()

uint32_t	rand31_next()

{

		uint32_t	hi,	lo;

		lo	=	16807	*	(prand_seed	&	0xFFFF);

		hi	=	16807	*	(prand_seed	>>	16);

		lo	+=	(hi	&	0x7FFF)	<<	16;

		lo	+=	hi	>>	15;

		if	(lo	>	0x7FFFFFFF)	lo	-=	0x7FFFFFFF;

		return(prand_seed	=	(uint32_t)lo);

}

int16_t	prand(void)

{

return	((int16_t)(rand31_next()>>18)-4096);

}

2.8	Aliasing
The	preceding	examples	demonstrate	that	neither	the	AIC3104	codec	nor	the	WM5102	codec
can	generate	signal	components	that	have	frequencies	greater	than	half	their	sampling
frequency.	It	follows	that	it	is	inadvisable	to	allow	analog	input	signal	components	that	have
frequencies	greater	than	half	the	sampling	frequency	to	be	sampled	at	the	input	to	the	DSP
system.	This	can	be	prevented	by	passing	analog	input	signals	through	a	low-pass	antialiasing
filter	prior	to	sampling.	Antialiasing	filters	with	characteristics	similar	to	those	of	the
reconstruction	filters	in	the	DACs	of	the	AIC3104	and	WM5102	codecs	are	incorporated	into
these	devices.

Example	2.24

Step	response	of	the	WM5102	codec	antialiasing	filter	(stm32f4_loop_buf_intr.c).

In	order	to	investigate	the	step	response	of	the	antialiasing	filter	on	the	WM5102,	connect	a
signal	generator	to	the	left	channel	of	the	(pink)	LINE	IN	socket	on	the	Wolfson	audio	card.
Adjust	the	signal	generator	to	give	a	square	wave	output	of	frequency	270	Hz	and	amplitude
500	mV.	Build	and	run	program	stm32f4_loop_buf_intr.c,	halting	the	program	after	a	few
seconds.	View	the	most	recent	input	sample	values	by	saving	the	contents	of	array	lbuffer	to
a	data	file	by	typing

save	<filename>	<start	address>,	<start	address	+	0x400>

at	the	Command	line	in	the	MDK-ARM	debugger,	where	start	address	is	the	address	of
array	lbuffer,	and	plotting	the	contents	of	the	data	file	using	MATLAB	function
stm32f4_plot_real().	You	should	see	something	similar	to	that	shown	in	Figure	2.38.	Figure
2.37	shows	the	square	wave	input	signal	corresponding	to	the	sample	values	shown	in	Figure
2.38.	The	ringing	that	follows	each	transition	in	the	waveform	represented	by	the	samples	is
due	to	the	antialiasing	filter.	Figure	2.39	shows	the	corresponding	result	obtained	using
program	tm4c123_loop_buf_intr.c.	The	antialiasing	filters	in	each	of	the	codecs	have
characteristics	similar	to	those	of	their	corresponding	reconstruction	filters.	Compare	Figures
2.37	and	2.39	with	Figures	2.23	and	2.25.	The	ac	coupling	of	the	LINE	IN	connections	on	both
the	Wolfson	audio	card	and	the	audio	booster	pack	is	evident	from	the	drooping	of	the	signal
level	between	transitions	in	Figures	2.37	and	2.39.

Figure	2.38	Sample	values	read	from	the	WM5102	ADC	and	stored	in	array	lbuffer	by
program	stm32f4_loop_buf_intr.c.

Figure	2.37	Square	wave	input	signal	used	with	program	stm32f4_loop_buf_intr.c.

Figure	2.39	Sample	values	read	from	the	WM5102	ADC	and	stored	in	array	lbuffer	by
program	tm4c123_loop_buf_intr.c.

Example	2.25

Demonstration	of	the	Characteristics	of	the	AIC3104	Codec	Antialiasing	Filter
(tm4c123_sine48_loop_intr.c).

Program	tm4c123_sine48_loop_intr.c	is	similar	to	program	tm4c123_sine48_intr.c	in
that	it	generates	a	1-kHz	sine	wave	output	using	sample	values	read	from	a	lookup	table.	It
differs	in	that	it	reads	input	samples	from	the	ADC	and	stores	the	128	most	recent	in	array
buffer.	Connect	the	(black)	LINE	OUT	connection	on	the	audio	booster	card	to	the	(blue)
LINE	IN	connection	using	a	3.5-mm	jack	plug	to	3.5-mm	jack	plug	cable	and	run	the	program
for	a	short	length	of	time.	Halt	the	program	and	save	the	contents	of	array	buffer	to	a	data	file
by	typing

save	<filename>	<start	address>,	<start	address	+	0x200>

at	the	Command	line	in	the	MDK-ARM	debugger,	where	start	address	is	the	address	of
array	buffer.	Plot	the	contents	of	the	data	file	using	MATLAB	function
tm4c123_plot_real().	You	should	see	something	similar	to	the	plot	shown	in	Figure	2.40.
The	discontinuity	at	time	 	ms	corresponds	to	the	value	of	the	index	variable	bufptr
when	the	program	was	halted.	At	first	sight,	this	figure	may	appear	unremarkable.	However,
when	you	consider	that	the	analog	waveform	output	by	the	AIC3104	codec	contains	out-of-
band-noise	(readily	visible	on	an	oscilloscope	as	shown	in	Figure	2.19),	it	is	apparent	that	the
samples	stored	in	array	buffer	are	of	a	low-pass	filtered	version	of	that	signal.	That	low-pass
filtering	operation	has	been	carried	out	by	the	antialiasing	filter	in	the	codec.

Figure	2.40	Sample	values	read	from	the	AIC3104	ADC	and	stored	in	array	buffer	by
program	tm4c123_sine48_loop_intr.c.

Example	2.26

Demonstration	of	Aliasing	(tm4c123_aliasing_intr.c).

The	analog	and	digital	antialiasing	filters	in	the	AIC3104	and	WM5120	codecs	cannot	be
bypassed	or	disabled.	However,	aliasing	can	be	demonstrated	within	a	program	by
downsampling	a	digital	signal	without	taking	appropriate	antialiasing	measures.	Program
tm4c123_aliasing_intr.c,	shown	in	Listing	2.49	uses	a	sampling	rate	of	16	kHz	for	the
codec	but	then	resamples	the	sequence	of	samples	produced	by	the	ADC	at	the	lower	rate	of	8
kHz	(downsampling).	The	sequence	of	samples	generated	at	a	rate	of	16	kHz	by	the	ADC	may
contain	frequency	components	at	frequencies	greater	than	4	kHz,	and	therefore,	if	that	sample
sequence	is	downsampled	to	a	rate	of	8	kHz	simply	by	discarding	every	second	sample,
aliasing	may	occur.

To	avoid	aliasing,	the	16	kHz	sample	sequence	output	by	the	ADC	must	be	passed	through	a
digital	antialiasing	filter	before	downsampling.	Program	tm4c123_aliasing_intr.c	uses	an
FIR	filter	with	65	coefficients	defined	in	header	file	lp6545.h	for	this	task.	For	the	purposes
of	this	example,	it	is	unnecessary	to	understand	the	operation	of	the	FIR	filter.	It	is	sufficient	to
consider	simply	that	the	program	demonstrates	the	effect	of	sampling	at	a	frequency	of	8	kHz
with	and	without	using	an	antialiasing	filter.

Listing	2.23	Program	tm4c123_aliasing_intr.c

//	tm4c123_aliasing_intr.c

#include	“tm4c123_aic3104_init.h”

#include	“lp6545.h”

#define	DISCARD	0

#define	SAMPLE	1

#define	BLOCKSIZE	1

volatile	int16_t	flag	=	DISCARD;

int16_t	antialiasing	=	0;

float32_t	xin[BLOCKSIZE],	yin[BLOCKSIZE];

float32_t	xout[BLOCKSIZE],	yout[BLOCKSIZE];

float32_t	stateout[N+BLOCKSIZE-1];

float32_t	statein[N+BLOCKSIZE-1];

arm_fir_instance_f32	Sin,	Sout;

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		xin[0]	=	input_left;

		arm_fir_f32(&Sin,	xin,	yin,	BLOCKSIZE);

		if	(flag	 	DISCARD)

		{

				flag	=	SAMPLE;

				xout[0]	=	0.0f;

		}

		else

		{

				flag	=	DISCARD;

				if	(antialiasing	 	0)

						xout[0]	=	yin[0];

				else

						xout[0]	=	input_left;

		}

		arm_fir_f32(&Sout,	xout,	yout,	BLOCKSIZE);

		sample_data.bit32	=	((int16_t)(yout[0]));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(0));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

}

int	main(void)

{

		arm_fir_init_f32(&Sin,	N,	h,	statein,	BLOCKSIZE);

		arm_fir_init_f32(&Sout,	N,	h,	stateout,	BLOCKSIZE);

		tm4c123_aic3104_init(FS_16000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1)

		{

				ROM_SysCtlDelay(10000);

				if	(!GPIOPinRead(GPIO_PORTF_BASE,	GPIO_PIN_4))

				{

						ROM_SysCtlDelay(10000);

						antialiasing	=	(antialiasing+1)

						while	(!GPIOPinRead(GPIO_PORTF_BASE,	GPIO_PIN_4)){}

				}

		}

}

2.8.1	Running	the	Program
Build,	load,	and	run	program	tm4c123_aliasing_intr.c.	Connect	a	signal	generator	to	the
(blue)	LINE	IN	socket	on	the	audio	booster	pack	and	either	connect	an	oscilloscope	to	one	of
the	scope	hooks	on	the	audio	booster	pack	or	use	GoldWave	via	the	(black)	LINE	OUT	socket.
Vary	the	frequency	of	a	sinusoidal	input	signal	between	0	and	8	kHz.	Press	user	switch	SW1	on
the	TM4C123	LaunchPad	to	switch	the	antialiasing	filter	implemented	by	the	program	on	and
off.

With	the	antialiasing	filter	enabled,	signals	with	frequencies	greater	than	4	kHz	do	not	pass
from	LINE	IN	to	LINE	OUT.	But	with	the	antialiasing	filter	disabled,	and	by	varying	the
frequency	of	the	input	signal,	you	should	be	able	to	verify	that	sinusoids	with	frequencies
between	4	and	8	kHz	are	“folded	back”	into	the	frequency	range	0–4	kHz.

2.9	Identifying	The	Frequency	Response	of	the	DAC
Using	An	Adaptive	Filter

Example	2.27

Identification	of	AIC3104	codec	bandwidth	using	an	adaptive	filter
(tm4c123_sysid_CMSIS_intr.c).

Another	way	of	observing	the	limited	bandwidth	of	the	codec	is	to	measure	its	magnitude
frequency	response	using	program	tm4c123_sysid_CMSIS_intr.c.	This	program,	shown	in
Listing	2.51	uses	an	adaptive	FIR	filter	and	is	described	in	more	detail	in	Chapter	6.	However,
you	need	not	understand	exactly	how	program	tm4c123_sysid_CMSIS_intr.c	works	in	order
to	use	it.	Effectively,	it	identifies	the	characteristics	of	the	path	between	its	discrete-time	output
and	its	discrete-time	input	(points	A	and	B	in	Figure	2.41).

Figure	2.41	Connection	diagram	for	program	tm4c123_sysid_CMSIS_intr.c.

Listing	2.24	Program	tm4c123_sysid_CMSIS_intr.c

//	tm4c123_sysid_CMSIS_intr.c

#include	“tm4c123_aic3104_init.h”

#define	BETA	1E-11

#define	NUM_TAPS	128

#define	BLOCK_SIZE	1

float32_t	firStateF32[BLOCK_SIZE	+	NUM_TAPS	-1];

float32_t	firCoeffs32[NUM_TAPS]	=	{0.0};

arm_lms_instance_f32	S;

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	adapt_in,	adapt_out,	desired;

		float32_t	error,	input_left,	input_right;

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		adapt_in	=	(float32_t)(prbs(8000));

		desired	=	input_left;

		arm_lms_f32(&S,	&adapt_in,	&desired,

														&adapt_out,	&error,	1);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		sample_data.bit32	=	((int16_t)(adapt_in));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(adapt_in));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

}

int	main()

{

		arm_lms_init_f32(&S,	NUM_TAPS,	firCoeffs32,

																			firStateF32,	BETA,	BLOCK_SIZE);

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1){}

}

2.9.1	Running	the	Program
Connect	the	(black)	LINE	OUT	socket	on	the	audio	booster	pack	to	the	(blue)	LINE	IN	socket
input	using	a	3.5	mm	jack	plug	to	3.5	mm	jack	plug	cable	as	shown	in	Figure	2.41.	The	signal
path	that	will	be	identified	by	the	program	comprises	the	series	combination	of	the	DAC	and
ADC	and	the	ac-coupling	circuits	between	the	converters	and	the	jack	socket	connections	on
the	audio	booster	pack.	Run	the	program	for	a	few	seconds	and	then	halt	it	and	plot	the	values

of	the	weights	of	the	adaptive	filter	(the	identified	impulse	response	of	the	signal	path)	by
saving	the	128	adaptive	filter	coefficients,	stored	in	array	firCoeffs32,	and	using	MATLAB
function	tm4c123_logfft().

Type

save	<filename>	<start	address>,	<start	address	+	0x200>

at	the	Command	line	in	the	MDK-ARM	debugger,	where	start	address	is	the	address	of
array	firCoeffs32,	and	plot	using	MATLAB	function	tm4c123_logfft().

The	adaptive	filter	coefficients	used	by	the	CMSIS	function	arm_lms_f32()	are	stored	in
memory	in	reverse	order	relative	to	the	sense	in	which	they	represent	the	impulse	response	of
the	filter,	and	therefore,	when	using	MATLAB	function	stm32f4_logfft(),	respond	to	the
prompt

forward	(0)	or	reverse	(1)	order	of	time-domain	samples?

by	entering	the	value	1.

The	roll-off	of	the	frequency	response	at	very	low	frequencies	evident	in	Figure	2.42	is	due	to
the	ac	coupling	between	the	codec	and	the	3.5	mm	LINE	IN	and	LINE	OUT	jack	sockets.	The
roll-off	of	the	frequency	response	at	frequencies	greater	than	3200	Hz	is	due	to	the	antialiasing
and	reconstruction	filters	in	the	AIC3104	ADC	and	DAC.	A	gain	of	approximately	 6	dB	due
to	the	potential	divider	comprising	two	5k6	ohm	resistors	(shown	in	Figure	2.04)	between	the
(blue)	LINE	IN	socket	and	LINEIN_L	the	codec	is	compensated	for	by	the	gain	of	+6	dB
programmed	into	the	PGA	that	immediately	precedes	the	ADC	in	the	AIC3014	(by	passing
parameter	value	PGA_GAIN_6_DB	to	function	tm4c123_aic3104_init()).

Figure	2.42	The	impulse	response	and	magnitude	frequency	identified	using	program
tm4c123_sysid_CMSIS_intr.c	with	connections	as	shown	in	Figure	2.41,	displayed	using
MATLAB	function	tm4c123_logfft().	Sampling	frequency	8000	Hz,	128-coefficient
adaptive	filter.

Program	tm4c123_sysid_CMSIS_intr.c	may	be	used	to	identify	the	characteristics	of

another	system	(as	opposed	to	just	a	connecting	cable)	connected	between	LINE	OUT	and
LINE	IN	on	the	audio	booster	pack.	Figure	2.43	shows	the	result	when	a	first-order	low-pass
analog	filter	comprising	a	capacitor	and	resistor	was	used.

Figure	2.43	The	impulse	response	and	magnitude	frequency	identified	using	program
tm4c123_sysid_CMSIS_intr.c	with	a	first-order	low-pass	analog	filter	connected	between
LINE	IN	and	LINE	OUT	sockets,	displayed	using	MATLAB	function	tm4c123_logfft().
Sampling	frequency	8000	Hz,	128-coefficient	adaptive	filter.

Program	tm4c123_sysid_deemph_CMSIS_intr.c	is	similar	to
tm4c123_sysid_CMSIS_intr.c	but	enables	the	digital	de-emphasis	filter	located	just	before

the	DAC	in	the	AIC3104	as	in	Example	2.45.	Figure	2.44	shows	the	result	of	running	the
program.	Compare	this	with	Figure	2.33.

Figure	2.44	The	impulse	response	and	magnitude	frequency	identified	using	program
tm4c123_sysid_CMSIS_intr.c	with	connections	as	shown	in	Figure	2.41	and	de-emphasis
enabled,	displayed	using	MATLAB	function	tm4c123_logfft().	Sampling	frequency	8000
Hz,	128-coefficient	adaptive	filter.

Figure	2.45	shows	the	result	of	running	program	stm32f4_sysid_CMSIS_intr.c	on	the
STM32F407	Discovery	with	a	sampling	frequency	of	8	kHz.

Figure	2.45	The	impulse	response	and	magnitude	frequency	identified	using	program
stm32f4_sysid_CMSIS_intr.c	with	LINE	OUT	connected	directly	to	LINE	OUT,	displayed
using	MATLAB	function	stm32f4_logfft().	Sampling	frequency	8000	Hz,	128-coefficient
adaptive	filter.

The	plots	illustrating	examples	of	the	instantaneous	frequency	response	of	program

tm4c123_flanger_intr.c	in	Example	2.18	were	obtained	using	program
tm4c123_sysid_flange_intr.c,	a	slightly	modified	version	of	program
tm4c123_sysid_intr.c	that	includes	a	flanger	(Figure	2.13)	with	a	fixed	delay	in	the	signal
path	identified.

Example	2.28

Identification	of	AIC3104	Codec	Bandwidth	Using	Two	Audio	Booster	Packs
(tm4c123_sysid_CMSIS_intr.c).

Program	tm4c123_sysid_CMSIS_intr.c	can	identify	frequency	response	characteristics	in
the	range	0	to	half	its	sampling	frequency	(in	the	previous	example,	the	sampling	frequency
was	equal	to	8	kHz)	but	the	antialiasing	and	reconstruction	filters	in	the	codec	have	a
bandwidth	only	slightly	less	than	this.	Hence,	in	Figures	2.42	through	2.45,	only	the	passbands
of	those	filters	are	displayed.	The	following	example	uses	two	sets	of	TM4C123	LaunchPads
and	audio	booster	packs,	one	running	program	tm4c123_loop_intr.c	with	a	sampling
frequency	of	8	kHz	and	the	other	running	program	tm4c123_sysid_CMSIS_intr.c	using	a
sampling	frequency	of	16	kHz.	This	allows	it	to	identify	frequency	response	characteristics	in
the	range	0–8	kHz	and	to	give	a	better	idea	of	the	passband,	stopband,	and	transition	band	of
the	antialiasing	and	reconstruction	filters	on	the	system	sampling	at	8	kHz.	In	order	to	set	the
sampling	frequency	in	program	tm4c123_sysid_CMSIS_intr.c	to	16	kHz,	change	the
program	statement	that	reads

tm4c123_aic3104_init(FS_8000_HZ,

																					AIC3104_LINE_IN,

																					IO_METHOD_INTR

																					PGA_GAIN_6_DB);

to	read

tm4c123_aic3104_init(FS_16000_HZ,

																					AIC3104_LINE_IN,

																					IO_METHOD_INTR

																					PGA_GAIN_6_DB);

Additionally,	change	the	number	of	adaptive	filter	coefficients	used	from	256	to	192	by
changing	the	program	statement	that	reads

#define	NUM_TAPS	128

to	read

#define	NUM_TAPS	192

This	is	necessary	due	to	the	increased	delay	through	two	systems.	Connect	the	two	audio
booster	packs	together	as	shown	in	Figure	2.46.	Make	sure	that	program

tm4c123_loop_intr.c	is	running	on	one	launchpad	before	running	program
tm4c123_sysid_CMSIS_intr.c	for	a	short	time	on	the	other.	Also,	make	sure	that	program
tm4c123_loop_intr.c	is	using	LINE	IN	(as	opposed	to	MIC	IN)	as	its	input.	After	running
and	halting	the	program,	save	the	192	adaptive	filter	coefficients	firCoeffs32	used	by
program	tm4c123_sysid_CMSIS_intr.c	to	a	data	file	by	typing

save	filename	<start	address>,	<start	address	+	0x300>

at	the	Command	line	in	the	MDK-ARM	debugger,	where	start	address	is	the	address	of
array	firCoeffs32,	and	plot	using	MATLAB	function	tm4c123_logfft().	You	should	see
something	similar	to	the	plots	shown	in	Figure	2.47.

Figure	2.46	Connection	diagram	for	program	tm4c123_sysid_CMSIS_intr.c.

Figure	2.47	The	impulse	response	and	magnitude	frequency	identified	using	program
tm4c123_sysid_CMSIS_intr.c	with	connections	as	shown	in	Figure	2.46,	displayed	using
MATLAB	function	tm4c123_logfft().	Sampling	frequency	16,000	Hz,	192-coefficient
adaptive	filter.

The	delay	in	the	signal	path	identified	(9	ms)	is	greater	than	that	in	Figure	2.42	(6	ms).	This	is

consistent	with	the	delay	observed	using	program	tm4c123_loop_intr.c	in	Example	2.6.
Using	192	filter	coefficients,	the	adaptive	filter	is	able	to	identify	an	impulse	response	up	to
192/16,000	=	12	ms	long.	Implementing	a	192-coefficient	adaptive	filter	at	a	sampling
frequency	of	16	kHz	is	just	possible	using	a	TM4C123	processor	with	a	clock	frequency	of	84
MHz.	This	is	evident	from	the	oscilloscope	trace	shown	in	Figure	2.48,	which	shows	the
rectangular	pulse	output	on	GPIO	pin	PE2	by	program	tm4c123_sysid_CMSIS_intr.c.	GPIO
pin	PE2	is	held	high	during	interrupt	service	routine	function	SSI_interrupt_routine().

Figure	2.48	Pulse	output	on	GPIO	pin	PE2	by	program	tm4c123_sysid_CMSIS_intr.c
running	at	a	sampling	rate	of	16	kHz	and	using	192	adaptive	filter	coefficients.

2.10	Analog	Output	Using	the	STM32F407'S	12-BIT	DAC

Example	2.29

Analog	Waveform	Generation	Using	a	12-Bit	Instrumentation	DAC
(stm32f4_sine8_DAC12_intr.c).

The	STM32F407	processor	features	two	12-bit	DACs	that	allow	a	comparison	to	be	made
with	the	DACs	in	the	AIC3104	and	WM5102	audio	codecs.	The	analog	output	from	one	of	the
12-bit	DACs	is	routed	to	GPIO	pin	PA5	on	the	STM32F407	Discovery.

Programs	stm32f4_sine8_DAC12_intr.c,	stm32f4_dimpulse_DAC12_intr.c,
stm32f4_prbs_DAC12_intr.c,	and	stm32f4_square_DAC12_intr.c	are	functionally
equivalent	to	programs	stm32f4_sine8_intr.c,	stm32f4_dimpulse_intr.c,
stm32f4_prbs_intr.c,	and	stm32f4_square_intr.c	except	in	that	they	use	the

STM32F407's	12-bit	DAC	in	place	of	that	in	the	WM5102	codec.	The	resultant	output
waveforms	are	shown	in	Figures	2.49	through	2.50.	Figure	2.49	shows	the	analog	output	signal
generated	by	program	stm32f4_sine8_DAC12_intr.c	(Listing	2.54)	writing	eight	sample	values
representing	one	cycle	of	a	sinusoid	to	the	12-bit	DAC.	The	frequency	domain	clearly	shows
frequency	components	at	1	kHz,	7	kHz,	9	kHz,	15	kHz,	23	kHz,	and	25	kHz.	The	magnitudes	of
these	components	are	modulated	by	a	sinc	function	with	nulls	at	integer	multiples	of	8	kHz,
corresponding	to	the	125	µs	duration,	rectangular	impulse	response	of	the	DAC.	Note	that	the
frequency-domain	representation	of	a	1	kHz	sinusoid	sampled	at	a	rate	of	8	kHz	is	an	infinite
sequence	of	components	of	equal	magnitudes	at	frequencies	()	kHz,	where	 	is	an	integer

.

Figure	2.49	Output	from	program	stm32f4_sine8_dac12_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Figure	2.50	Output	from	program	stm32f4_dimpulse_dac12_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

The	sinc	function	modulating	the	magnitudes	of	the	discrete	frequency	components	in	Figure
2.49	is	illustrated	clearly	in	Figures	2.51	and	2.52.	Compare	the	impulse	response	shown	in
Figure	2.50	with	that	in	Figure	2.28	and	the	pseudorandom	signal	shown	in	Figure	2.51	with
that	in	Figure	2.32.	Both	the	DAC	in	the	WM5102	codec	and	the	DAC	in	the	AIC3104	codec
are	close	to	ideal	low-pass	filters	with	cutoff	frequencies	of	fs/2	(4	kHz).	The	low-pass
characteristic	of	the	12-bit	DAC	in	the	STM32F407	is	significantly	less	pronounced.	Finally,
compare	the	output	waveform	shown	in	Figure	2.52	with	that	in	Figure	2.24.	For	comparison,
the	sample	values	written	to	the	12-bit	DAC	are	written	also	to	the	WM5102	codec.	Its	analog
output	may	be	observed	by	connecting	an	oscilloscope	to	the	(green)	LINE	OUT	socket	on	the
audio	card.

Figure	2.51	Output	from	program	stm32f4_prbs_dac12_intr.c	viewed	using	Rigol	DS1052
oscilloscope.

Figure	2.52	Output	from	program	stm32f4_square_dac12_intr.c	viewed	using	Rigol
DS1052	oscilloscope.

Listing	2.25	Program	stm32f4_sine8_DAC12bit_intr.c

//	stm32f4_sine8_DAC12bit_intr.c

#include	“stm32f4_wm5102_init.h”

#define	LOOP_SIZE	8

int16_t	sine_table[LOOP_SIZE]	=	{0,	7071,	10000,	7071,

																																	0,	-7071,	-10000,	-7071};

static	int	sine_ptr	=	0;

void	init_DAC12bit(void)

{

		//	enable	clock	for	DAC	module	and	GPIO	port	A

		RCC->AHB1ENR|=RCC_AHB1ENR_GPIOAEN;

		RCC->APB1ENR|=RCC_APB1ENR_DACEN;

		//	configure	GPIO	pin	PA5	as	DAC	output

		GPIOA->MODER|=GPIO_MODER_MODER5;

		GPIOA->PUPDR&= (GPIO_PUPDR_PUPDR5);

		//	enable	DAC

		DAC->CR|=DAC_CR_EN2;

		//	zero	DAC	output

		DAC->DHR12R2=0;

}

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	left_in_sample;

		int16_t	right_out_sample,	right_in_sample;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				left_out_sample	=	sine_table[sine_ptr];

				sine_ptr	=	(sine_ptr+1)

				DAC->DHR12R2=(left_out_sample+10000)/7;

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				right_out_sample	=	0;

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

}

int	main(void)

{

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		init_DAC12bit();

		while(1){}

}

References
1	.Texas	Instruments,	Inc.,	“TLV320AIC3104	Low-Power	Stereo	Audio	Codec	for	Portable

Audio	and	Telephony”,	Literature	no.	SLAS510D,	2014.

2	.Wolfson	Microelectronics	plc.,	“Audio	Hub	Codec	with	Voice	Processor	DSP”,	2013.

3	.Texas	Instruments,	Inc.,	“Dual-SPI	Emulating	I2S	on	TivaTM	TM4C123x	MCUs”,	Literature
no.	SPMA042B,	2013.

Chapter	3
Finite	Impulse	Response	Filters

3.1	Introduction	to	Digital	Filters
Filtering	is	fundamental	to	digital	signal	processing.	Commonly,	it	refers	to	processing	a
sequence	of	samples	representing	a	time-domain	signal	so	as	to	alter	its	frequency-domain
characteristics,	and	often	this	consists	of	attenuating	or	filtering	out	selected	frequency
components.	Digital	filters	are	classified	according	to	their	structure	as	either	nonrecursive,
finite	impulse	response	(FIR)	filters,	or	as	recursive,	infinite	impulse	response	(IIR)	filters.
This	chapter	is	concerned	with	FIR	filters.	IIR	filters	are	described	in	Chapter	4.

3.1.1	The	FIR	Filter
A	generic	FIR	filter	is	shown	in	block	diagram	form	in	Figure	3.1.	The	component	parts	of	the
filter	are	follows:

1.	 A	delay	line,	or	buffer,	in	which	a	number	of	previous	input	samples	 	are	stored.	At
each	sampling	instant,	the	contents	of	the	delay	line	are	updated	such	that	samples	are
shifted	one	position	(to	the	right	in	the	diagram)	and	a	new	input	sample	 	is	introduced
at	the	start	of	the	delay	line.

2.	 A	number	of	blocks	(multipliers)	that	multiply	the	samples	stored	in	the	delay	line	by	a	set
of	filter	coefficients,	 .

3.	 A	summing	junction	that	sums	the	multiplier	outputs	to	form	the	current	filter	output	sample	
.

3.1

Figure	3.1	Block	diagram	representation	of	a	generic	FIR	filter.

In	Figure	3.1,	the	delay	line	is	represented	by	a	series	of	blocks,	each	acting	as	a	delay	of	one
sampling	period,	that	is,	the	output	of	each	block	in	the	delay	line	is	its	input,	delayed	by	one
sampling	period.	The	z-transfer	function	of	a	delay	of	one	sample	is	 .	The	multipliers	and
filter	coefficients	are	represented	by	blocks,	the	outputs	of	which	are	their	inputs	multiplied	by
the	filter	coefficient	with	which	they	are	labeled.	At	the	 th	sampling	instant,	the	samples
stored	in	the	delay	line	are	 ,	 	,	 ,	…,	 	and	the	output	of	the	filter,	

	is	described	by	the	difference	equation

This	equation	is	an	example	of	a	convolution	sum	representing	the	input-output	relationship	of
a	discrete-time,	linear	time-invariant	(LTI)	system	having	an	FIR	 	of	length	 	samples.
The	output	of	any	LTI	system	(continuous-	or	discrete-time)	is	formed	by	convolving	its	input
signal	with	its	impulse	response.	For	continuous-time	LTI	systems,	there	exists	a	corresponding
convolution	integral.

3.1.1.1	Equivalence	of	FIR	Filter	Coefficients	and	Impulse	Response
The	impulse	response	of	an	FIR	filter	is	equal	to	its	coefficients.	This	is	straightforward	to
visualize	using	the	block	diagram	representation	of	the	filter.	Consider	a	unit	impulse	input
sequence,	that	is,	a	sequence	containing	just	one	nonzero	(unit)	sample.	That	sample	enters	the
delay	line	on	the	left-hand	side	of	the	block	diagram	shown	in	Figure	3.1	and	is	shifted	right	at
each	sampling	instant.	At	any	particular	sampling	instant,	the	output	of	the	filter	will	comprise
the	unit	sample	multiplied	by	just	one	of	the	filter	coefficients.	All	other	filter	coefficients	will

be	multiplied	by	zero	sample	values	from	the	delay	line	and	will	contribute	nothing	to	the
output	at	that	sampling	instant.	Hence,	the	output	sequence	 	(the	unit	impulse	response	of
the	filter)	will	comprise	the	filter	coefficients	 .

3.1.1.2	Advantages	and	Disadvantages	of	FIR	Filters
Although	it	is	possible	for	FIR	filters	to	approximate	the	characteristics	of	continuous-time
analog	filters,	one	of	their	advantages	is	that	they	may	be	used	to	implement	arbitrary	filter
characteristics	that	are	impossible	to	implement	using	analog	circuits.	For	this	reason,	and
unlike	the	IIR	filters	described	in	Chapter	4,	their	design	is	not	based	on	the	theory	of	analog
filters.	A	disadvantage	of	FIR	filtersis	that	their	implementation	may	be	computationally
expensive.	Obtaining	an	arbitrary	filter	characteristic	to	the	required	accuracy	may	require	a
large	number	of	filter	coefficients.

3.1.1.3	FIR	Filter	Implementation
The	structure	and	operation	of	an	FIR	filter	are	simple	(and	are	a	fundamental	part	of	many
DSP	applications).	Typically,	the	internal	architecture	of	a	digital	signal	processor	is
optimized	(single	instruction	cycle	multiply-accumulate	units)	for	efficient	computation	of	a
sum	of	products	or	a	convolution	sum.	For	the	convolution	sum	of	Equation	(3.1)	to	be
computed	directly,	a	DSP	must	have	sufficient	memory	to	store	 	previous	input	samples	and	
	filter	coefficients	and	have	sufficient	computational	power	to	execute	the	required	number

of	multiplications	and	additions	within	one	sampling	period.	For	large	 ,	the	use	of	FFT-
based	fast	convolution	(described	in	Chapter	5)	is	computationally	more	efficient.

3.1.2	Introduction	to	the	 -Transform
The	 -transform	is	an	important	tool	in	the	design	and	analysis	of	digital	filters.	It	is	the
discrete-time	counterpart	of	the	Laplace	transform.	In	the	sense	that	the	Laplace	transform	is	a
generalization	of	the	continuous-time	Fourier	transform,	the	 -transform	is	a	generalization	of
the	discrete-time	Fourier	transform	(DTFT).

The	Laplace	transform	is	used	to	solve	continuous-time,	linear	differential	equations,
representing	them	as	algebraic	expressions	in	the	complex	Laplace	variable	 ,	and	to	represent
continuous-time	LTI	systems	as	 -transfer	functions.	The	Laplace	variable,	 ,	may	also	be
viewed	as	an	operator,	representing	differentiation	with	respect	to	time.

The	 -transform	is	used	to	solve	discrete-time	difference	equations,	representing	them	as
algebraic	expressions	in	the	complex	variable	 ,	and	to	represent	discrete-time	LTI	systems	as	
-transfer	functions.	The	variable	 	may	also	be	viewed	as	an	operator,	representing	a	shift	of

one	sample	position	in	a	sequence.

3.1.3	Definition	of	the	 -Transform
The	 -transform	 	of	a	(discrete-time)	sequence	 	is	defined	as

3.2

3.3

3.4

where	 	is	a	complex	variable.	This	form	of	the	 -transform,	applicable	to	a	two-sided
(noncausal)	sequence,	and	hence	also	to	left-sided	(anticausal)	and	right-sided	(causal)
sequences,	is	referred	to	as	the	two-sided	or	bilateral	 -transform.

	is	a	power	series	in	 	containing	as	many	terms	as	there	are	sample	values	in	the	sequence
.	For	each	term	in	 ,	the	coefficient	corresponding	to	 	is	equal	to	the	nth	sample	value

in	the	sequence	 .	In	a	discrete-time	system,	 	corresponds	to	the	time	 ,	where	 	is
the	sampling	period.	 	exists	only	for	values	of	 	for	which	the	power	series	converges,	that
is,	values	of	 	for	which	 .

3.1.3.1	Relationship	to	the	Discrete-Time	Fourier	Transform
The	DTFT	is	the	form	of	Fourier	analysis	applicable	to	a	discrete-time	sequence	 	that	is
aperiodic	and	for	which	 .	The	continuous,	periodic	representation	of	that	signal	in
the	frequency	domain	is	given	by

Sometimes,	 	is	represented	as	 ,	emphasizing	that	it	is	evaluated	for	different	values
of	the	complex	quantity	 ,	where	 .

Representing	the	complex	variable	 	in	polar	form	 ,	where	 	and	 ,	and
substituting	for	 	in	Equation	(3.2)

it	is	apparent	that	 	is	the	DTFT	of	 .	If	 	(corresponding
to	a	unit	circle	in	the	 -plane),	then	the	 -transform	of	 	is	equivalent	to	the	DTFT	of	 .

It	is	also	apparent	that	the	existence,	or	convergence,	of	 	is	dependent	upon	the	value	of	
,	that	is,	the	magnitude	of	 .	If	 	converges	for	a	particular	value	of	 ,	it	also

converges	for	all	other	values	of	 	that	lie	on	a	circle	of	radius	 	in	the	complex	 -plane.

Example	3.1

-Transform	of	Finite	Sequence	 .

From	the	definition	of	the	 -transform,	the	 -transform	of	the	right-sided	(causal)	sequence	

3.5

3.7

3.6

	is

	exists	(converges)	for	all	values	of	 	except	 .

Example	3.2

-Transform	of	Finite	Sequence	 .

From	the	definition	of	the	 -transform,	the	 -transform	of	the	two-sided	(noncausal)	sequence	
	is

	exists	(converges)	for	all	values	of	 	except	 	and	 .

Example	3.3

-Transform	of	a	Discrete	Impulse	Sequence	 .

The	 -transform	of	the	right-sided	(causal)	Kronecker	delta	sequence	 	is

	exists	(converges)	for	all	values	of	 .

Example	3.4

-Transform	of	a	Time-Shifted	Discrete	Impulse	Sequence	 ,	 .

A	time-shifted	Kronecker	delta	sequence	is	described	by

3.8

3.9

3.10

3.11

3.12

This	is	a	left-sided	(anticausal)	sequence.	From	the	definition	of	the	 -transform

	exists	(converges)	for	all	values	of	 	except	 .

Example	3.5

-Transform	of	Exponential	Function	 .

The	 -transform	of	the	right-sided	(causal)	sequence	 ,	where	 	is	the	unit	step
sequence,	is

Comparing	this	to	the	power	series	summation

Equation	(3.10)	may	be	written	as

The	inequality	 	describes	the	range	of	values	of	 	for	which	 	exists,	that	is,	its
region	of	convergence	(ROC).	In	this	particular	case,	 	describes	the	part	of	the	 -plane
that	lies	outside	a	circle	of	radius	 .	 	exists	(converges)	for	 .

Example	3.6

-Transform	of	Exponential	Function	 .

This	is	a	left-sided	(anticausal)	sequence	that	may	appear	to	be	of	academic	interest	only	but	is
included	in	order	to	make	an	important	point.	In	this	case,

3.13

3.14

3.15

Letting	

The	inequality	 	describes	the	range	of	values	of	 	for	which	 	exists,	that	is,	its
ROC.	In	this	particular	case,	 	describes	the	part	of	the	 -plane	that	lies	inside	a	circle
of	radius	 .	 	exists	(converges)	for	 .

Comparing	(3.14)	with	(3.12),	it	is	apparent	that	a	similar	algebraic	expression	for	
corresponds	to	two	different	sequences	 .	Corresponding	to	each	of	these	different
sequences	is	a	different	ROC.	The	ROC	is	therefore	an	integral	part	of	the	representation	of	a
signal	in	the	 -domain.	In	order	to	uniquely	specify	 	from	 ,	we	must	know	its	ROC.

Example	3.7

-Transform	of	the	Unit	Step	Function	 .

The	unit	step	function	may	be	viewed	as	an	instance	of	Example	3.5,	where	 ,	and	hence,	
	exists	(converges)	for	 .

The	inequality	 	describes	the	range	of	values	of	 	for	which	 	exists,	that	is,	its	ROC.
In	this	particular	case,	 	describes	the	part	of	the	 -plane	that	lies	outside	a	circle	of
radius	 .

Example	3.8

-Transform	of	a	Sinusoidal	Function	 .

3.16

3.17

3.18

3.19

This	function	is	right-sided	or	causal.	A	sinusoidal	function	may	be	represented	by	complex
exponentials	according	to	Euler's	formula	 ,	that	is,

and	hence,	the	 -transform	of	the	sequence	 	is	given	by

Using	the	result	for	 	with	 ,

	exists	(converges)	for	 .

In	the	 -plane,	this	function	has	a	zero	at	the	origin	and	two	complex	conjugate	poles	on	the
unit	circle	at	angles	 	 .	Its	ROC	is	the	entire	 -plane	outside	of,	but	not	including,	the
unit	circle.

Similarly,	using	Euler's	formula	to	express	 	as	the	sum	of	two	complex	exponentials,	it
can	be	shown	that	the	 -transform	of	the	sequence	 	is	given	by

3.1.3.2	Regions	of	Convergence
The	preceding	examples	illustrate	some	important	properties	of	the	 -transform.	Examples	3.5
and	3.6,	for	example,	demonstrate	that	for	a	given	 -transform	 ,	more	than	one	ROC	may
be	possible,	corresponding	to	more	than	one	different	time-domain	sequence	 .	In	order	to
transform	from	the	 -domain	back	to	the	time	domain,	it	is	necessary	to	consider	the	ROC.

It	is	instructive	to	represent	the	poles	and	zeros	of	 	and	the	ROCs	in	Examples	3.5	and	3.6
graphically,	as	shown	in	Figures	3.2	and	3.3.	In	each	case,	 	has	a	zero	at	the	origin	and	a
pole	at	 .

Figure	3.2	Poles	and	zeros	and	region	of	convergence	for	causal	sequence	 ,	
,	plotted	in	the	 -plane.

Figure	3.3	Poles	and	zeros	and	region	of	convergence	for	anticausal	sequence	
,	 ,	plotted	in	the	 -plane.

The	two	different	ROCs	for	the	 -transform	 	shown	in	the	figures	are	consistent
with	the	following	ROC	properties.

An	ROC	is	a	single,	connected	region	of	the	 -plane.

Since	convergence	of	 	is	dependent	on	the	magnitude	of	 ,	the	boundaries	of	an	ROC
are	circles	centered	on	the	origin	of	the	 -plane.

Since	regions	of	convergence	correspond	to	 ,	the	poles	of	 	do	not	lie	within
its	ROC.

Right-sided	(causal)	sequences	 	correspond	to	ROCs	that	extend	outward	from	a	circle
drawn	through	the	outermost	pole	of	 ,	that	is,	the	pole	with	the	greatest	magnitude.

Left-sided	(anticausal)	sequences	 	correspond	to	ROCs	that	extend	inward	from	a
circle	drawn	through	the	innermost	pole	of	 ,	that	is,	the	pole	with	the	smallest

magnitude.

Two-sided	(noncausal)	sequences	 	correspond	to	annular	ROCs.

Examples	3.1	through	3.4	illustrate	the	property	that	if	 	is	finite	in	duration,	then	its	ROC	is
the	entire	 -plane	except	possibly	 	or	 .

In	Examples	3.5	and	3.6,	 	has	only	one	pole	(at)	and,	hence,	the	two	possible	ROCs
(corresponding	to	causal	and	anticausal)	extend	outward	and	inward	from	a	circle	of
radius	 .

Figures	3.4	through	3.6	illustrate	the	case	of	a	 -transform	 	that	has	more	than	one	pole	and
for	which	more	than	two	different	ROCs,	consistent	with	the	properties	listed	earlier,	are
possible.

Figure	3.4	Possible	region	of	convergence,	plotted	in	the	 -plane,	corresponding	to	a	right-
sided	causal	sequence	 	for	a	system	with	two	real-valued	poles.

Figure	3.5	Possible	region	of	convergence,	plotted	in	the	 -plane,	corresponding	to	a	left-
sided	anticausal	sequence	 	for	a	system	with	two	real-valued	poles.

3.20

3.21

Figure	3.6	Possible	region	of	convergence,	plotted	in	the	 -plane,	corresponding	to	a	two-
sided	noncausal	sequence	 	for	a	system	with	two	real-valued	poles.

3.1.3.3	Regions	of	Convergence	and	Stability
An	LTI	system	characterized	by	an	impulse	response	 	is	BIBO	stable	if	 	is	absolutely
summable,	that	is,	if

Given	that	the	 -transform	of	 	exists	if

if	 	exists	for	 ,	then	the	DTFT	of	 	exists	and	the	system	is	BIBO	stable.	In	other
words,	if	its	ROC	includes	the	unit	circle,	then	the	system	represented	by	 	and	 	is
BIBO	stable.

Consider	again	the	example	of	the	right-sided	(causal)	sequence	 	for	which	the	 -
transform	 	converges	if	 .	Figures	3.7	through	3.9	show	possible	regions
of	convergence	and	corresponding	sequences	 	for	 ,	 ,	and	 .

Figure	3.7	Poles	and	zeros	and	region	of	convergence	for	 	plotted	in	the	 -
plane,	for	 .	Corresponding	sequence	 	is	causal	and	stable.

Figure	3.8	Poles	and	zeros	and	region	of	convergence	for	 	plotted	in	the	 -
plane,	for	 .	Corresponding	sequence	 	is	causal	and	unstable.

Figure	3.9	Poles	and	zeros	and	region	of	convergence	for	 	plotted	in	the	 -
plane,	for	 .	Corresponding	sequence	 	is	causal	and	unstable.

For	the	left-sided	(anticausal)	sequence	 ,	the	 -transform	

converges	if	 .	Figures	3.10	through	3.12	show	possible	regions	of	convergence	and
corresponding	sequences	 	for	 ,	 ,	and	 .

Figure	3.10	Poles	and	zeros	and	region	of	convergence	for	 	plotted	in	the	 -
plane,	for	 .	Corresponding	sequence	 	is	anticausal	and	stable.

Figure	3.11	Poles	and	zeros	and	region	of	convergence	for	 	plotted	in	the	 -
plane,	for	 .	Corresponding	sequence	 	is	anticausal	and	unstable.

Figure	3.12	Poles	and	zeros	and	region	of	convergence	for	 	plotted	in	the	 -
plane,	for	 .	Corresponding	sequence	 	is	anticausal	and	unstable.

3.23

3.24

3.22

3.25

3.1.3.4	Poles	and	Zeros
In	the	case	of	LTI	causal	systems,	 	may	be	expressed	as	a	ratio	of	polynomials	in	 	and	as
such	has	poles	and	zeros	(values	of	 	for	which	 	is	equal	to	zero	or).	The	poles	and
zeros	of	 	are	related	to	the	region(s)	of	convergence	of	 .	In	fact,	we	can	deduce
possible	ROCs	from	the	poles	and	zeros	of	 	according	to	the	rules	listed	earlier.	In	most
engineering	applications,	we	are	concerned	with,	and	will	encounter,	causal	sequences.

3.1.4	Properties	of	the	 -Transform

3.1.4.1	Linearity
The	 -transform	obeys	the	laws	of	superposition.

If	 	and	 	then	 ,	where	 	and	 	are
arbitrary	sequences	and	 	and	 	are	arbitrary	constants.

3.1.4.2	Shifting
For	a	time-shifted	sequence	 	where	 	is	any	integer

From	the	definition	of	the	z-transform,

Substituting	 ,

which	is	recognizable	as

3.1.4.3	Time	Delay
Quantity	 	in	the	 -domain	corresponds	to	a	shift	of	 	sampling	instants	in	the	time	domain.
This	is	also	known	as	the	unit	delay	property	of	the	 -transform.

3.1.4.4	Convolution

3.26

3.27

3.28

3.29

3.30

The	forced	output	 	of	an	LTI	system	having	impulse	response	 	and	input	 	is	(as
implemented	explicitly	by	an	FIR	filter)

This	is	the	convolution	sum.	Taking	its	 -transform

Changing	the	order	of	summation

Letting	 ,

Hence,

that	is,	the	 -transform	of	the	linear	convolution	of	sequences	 	and	 	is	equivalent	to	the
product	of	the	 -transforms,	 	and	 ,	of	 	and	 	(as	shown	in	Figure	3.13).

3.31

Figure	3.13	Time-domain	and	 -domain	block	diagram	representations	of	a	discrete-time	LTI
system.

3.1.5	 -Transfer	Functions
The	convolution	property	of	the	z-transform	is	closely	related	to	the	concept	of	the	 -transfer
function.	The	 -transfer	function	 	of	a	discrete-time	LTI	system	is	defined	as	the	ratio	of
the	 -transform	of	its	output	sequence,	 ,	to	the	 -transform	of	its	input	sequence,	 .	The	
-transform	of	a	system	output	sequence	is	therefore	the	 -transform	of	its	input	sequence

multiplied	by	its	 -transfer	function,	that	is,	 .	Since	the	 -transform	of	a	unit
impulse	sequence	is	equal	to	unity,	the	 -transfer	function	of	a	system	is	equal	to	the	 -
transform	of	its	impulse	response.

3.1.6	Mapping	from	the	 -Plane	to	the	 -Plane
Consider	the	Laplace	transform	that	is	generally	applied	to	causal	systems.	The	Laplace
transform	can	be	used	to	determine	the	stability	of	a	causal	continuous-time,	LTI	system.	If	the
poles	of	a	system	are	to	the	left	of	the	imaginary	axis	in	the	 -plane,	they	correspond	to
exponentially	decaying	components	of	that	system's	response	in	the	time	domain	and	hence
correspond	to	stability.	Poles	located	in	the	right-hand	half	of	the	 -plane	correspond	to
components	of	that	system's	response	in	the	time	domain	that	increase	exponentially	and	hence
correspond	to	instability.	Purely	imaginary	poles	correspond	to	oscillatory	(sinusoidal)	system
response	components.	The	relationship	between	the	 -plane	and	the	 -plane	is	represented	by
the	equation	 .	Substituting	for	 	according	to	 ,

The	magnitude	of	 	is	given	by	 	and	its	phase	by	 	.	Consider	the	three	regions	of	the	 -
plane	that	determine	system	stability.

3.1.6.1	
The	left-hand	half	of	the	 -plane	represents	values	of	 	that	have	negative	real	parts,	and	this
corresponds	to	values	of	 	that	have	magnitudes	less	than	unity	().	In	other	words,	the

left-hand	half	of	the	 -plane	maps	to	a	region	of	the	complex	 -plane	inside	the	unit	circle	as
shown	in	Figure	3.3.	If	the	poles	of	a	 -transfer	function	lie	inside	that	unit	circle,	then	a	causal
system	represented	by	that	 -transfer	function	will	be	stable.

3.1.6.2	
The	right-hand	half	of	the	 -plane	represents	values	of	 	that	have	positive	real	parts,	and	this
corresponds	to	values	of	 	that	have	magnitudes	greater	than	unity	().	In	other	words,
the	right-hand	half	of	the	 -plane	maps	to	a	region	of	the	complex	 -plane	outside	the	unit
circle	as	shown	in	Figure	3.14.	If	the	poles	of	a	 -transfer	function	lie	outside	that	unit	circle,
then	a	causal	system	represented	by	that	 -transfer	function	will	be	unstable.

Figure	3.14	Mapping	from	the	 -plane	to	the	 -plane.

3.1.6.3	
The	imaginary	axis	in	the	 -plane	maps	to	the	unit	circle	in	the	 -plane.	If	the	poles	of	a	 -
transfer	function	lie	on	the	unit	circle	in	the	 -plane,	then	a	causal	system	represented	by	that	
-transfer	function	will	have	an	oscillatory	response	and	is	not	considered	stable.

This	view	of	the	relationship	between	the	location	of	system	poles	in	the	 -plane	and	system
stability	is,	of	course,	consistent	with	consideration	of	whether	or	not	the	ROC	includes	the
unit	circle	as	described	earlier.	For	causal	systems,	the	ROC	extends	outward	from	the
outermost	pole,	and	for	stability,	the	ROC	must	include	the	unit	circle.

3.1.7	Difference	Equations
A	digital	filter	is	represented	by	a	difference	equation	in	a	way	similar	to	that	in	which	an
analog	filter	is	represented	by	a	differential	equation.	A	differential	equation	may	be	solved
using	Laplace	transforms,	whereas	a	difference	equation	may	be	solved	using	 -transforms.	In
order	to	do	this,	the	 -transforms	of	a	term	 ,	which	corresponds	to	the	 th	derivative
with	respect	to	time	 	of	analog	signal	 ,	must	be	found.	From	its	definition,	the	 -
transform	of	a	right-sided,	causal	sequence	is

3.32

3.33

3.34

3.35

3.36

The	 -transform	of	 ,	which	corresponds	to	a	first-order	derivative	 ,	is

where	 	represents	the	initial	condition	associated	with	a	first-order	difference	equation.
Similarly,	the	 -transform	of	 ,	which	corresponds	to	a	second-order	derivative	
,	is

where	 	and	 	represent	the	two	initial	conditions	associated	with	a	second-order
difference	equation.	In	general,

If	the	initial	conditions	are	all	zero,	then	 	for	 	and	Equation	(3.35)
reduces	to

3.1.8	Frequency	Response	and	the	 -Transform
The	frequency	response	of	a	discrete-time	system	can	be	found	by	evaluating	its	 -transfer
function	for	 ,	where	 	represents	frequency	in	radians	per	second	and	 	represents
sampling	period	in	seconds.	In	other	words,	the	frequency	response	of	a	system	is	found	by
evaluating	of	its	 -transfer	function	for	values	of	 	that	lie	on	the	unit	circle	in	the	 -plane	and
the	result	will	be	periodic	in	 .	It	is	common	to	express	the	frequency	response	of	a	discrete-
time	system	as	a	function	of	normalized	frequency	 	over	a	range	of	 	radians.
Evaluating	a	 -transform	for	 ,	that	is,	around	the	unit	circle	in	the	 -plane	corresponds
to	evaluating	a	Laplace	transform	for	 ,	that	is,	along	the	imaginary	axis	in	the	 -plane.
This	was	considered	earlier	where	it	was	stated	that	the	frequency	response	of	a	discrete-time

3.37

system	may	be	found	by	evaluating	the	DTFT	of	its	impulse	response.	If	 	represents	the	 -
transfer	function	of	a	discrete-time	LTI	system	having	an	FIR	of	length	 ,	then	evaluation	of
that	expression	using	 	yields	the	system's	frequency	response.

3.1.9	The	Inverse	 -Transform
In	practice,	the	inverse	 -transform	is	best	evaluated	using	tables	of	transform	pairs,	where
first	decomposed	a	complicated	 	by	partial	fraction	expansion	(PFE).

3.2	Ideal	Filter	Response	Classifications:	LP,	HP,	BP,	BS
Shown	in	Figure	3.15	are	the	magnitude	frequency	responses	of	ideal	low-pass,	high-pass,
band-pass,	and	band-stop	filters.	These	are	some	of	the	most	common	filter	characteristics
used	in	a	range	of	applications.

Figure	3.15	Ideal	filter	magnitude	frequency	responses.	(a)	Low-pass	(LP).	(b)	High-pass
(HP).	(c)	Band-pass	(BP).	(d)	Band-stop	(BS).

3.2.1	Window	Method	of	FIR	Filter	Design
The	window,	or	Fourier	series,	approach	to	FIR	filter	design	comprises	three	basic	steps.

1.	 Specify	a	desired	frequency	response.

2.	 Use	inverse	Fourier	transformation	to	obtain	a	corresponding	(discrete)	impulse	response.

3.	 Multiply	that	impulse	response	by	a	finite,	tapered	window	function	to	obtain	the	FIR	filter
coefficients.

If	the	desired	frequency	response	of	the	filter	is	specified	as	a	continuous	(periodic)	function
of	frequency,	the	form	of	inverse	Fourier	analysis	that	will	yield	the	discrete-time	impulse
response	of	the	filter	is	the	inverse	discrete-time	Fourier	transform	(IDTFT).	In	general,	the
inverse	DTFT	applied	to	a	continuous	frequency	response	will	yield	an	infinite	sequence	in	the
time	domain.	Multiplication	by	a	finite	window	function	will	truncate	that	sequence.	A
symmetrical	tapered	window	function	will	reduce	ripple	(gain	variation)	in	the	resulting
frequency	response.	Since	the	impulse	response	of	an	FIR	filter	is	discrete,	its	frequency
response	will	be	periodic	and	therefore	its	desired	frequency	response	needs	to	be	specified
over	just	one	period	(radians	of	normalized	frequency).

Application	of	the	inverse	DTFT	is	relatively	straightforward	for	some	analytic	frequency
responses	(expressed	as	algebraic	functions	of)	including	the	ideal	filter	characteristics
shown	in	Figure	3.15,	but	for	arbitrary	frequency	responses,	applying	the	inverse	DTFT	may
be	problematic.	In	such	cases,	it	is	more	practical	to	specify	the	desired	frequency	response	of
a	filter	as	a	discrete	function	of	frequency	and	to	compute	a	finite	set	of	FIR	filter	coefficients
using	the	inverse	DFT.

3.2.2	Window	Functions
A	number	of	different	tapered	window	functions	are	used	in	FIR	filter	design.	All	have	the
effect	of	reducing	the	magnitude	of	gain	variations	in	the	filter	frequency	response	at	the
expense	of	a	less	sharp	transition	between	pass	and	stop	bands.	These	effects	are	related	to	the
difference	in	magnitude	between	the	peak	and	the	first	sidelobe,	and	the	width	of	the	central
lobe,	of	the	DTFT	of	the	(discrete)	window	function	itself.

3.2.2.1	Indexing	of	Filter	Coefficients
In	a	computer	program,	it	is	likely	that	FIR	filter	coefficients	 	and	window	functions	
will	be	indexed	 .	Alternatively,	index	 	may	be	considered	over	the	range	
.	The	following	examples	involve	type	1	FIR	filters,	that	is,	FIR	filters	having	 	coefficients
where	 	is	odd,	 ,	 ,	and	 .	The	order	of	such	a	filter	is	
.

3.2.2.2	Common	Window	Functions

3.38

3.39

3.40

3.41

The	window	functions	described	in	what	follows	are	among	the	most	commonly	used.	A
rectangular	window	simply	truncates	an	IIR	to	yield	a	finite	set	of	FIR	filter	coefficients.

Rectangular	Window
The	rectangular	window	function	is

Compared	with	other	window	functions,	a	rectangular	window	has	a	narrow	central	lobe
(corresponding	to	a	sharp	transition	between	pass	and	stop	bands),	but	its	first	sidelobe	is	only
13	dB	less	than	the	peak	of	its	central	main	lobe.

Hamming	Window
The	Hamming	window	function	is

The	magnitude	of	the	first	sidelobe	is	approximately	43	dB	less	than	that	of	the	main	lobe.

Hanning	Window
The	Hanning	window	function	is

The	magnitude	of	the	first	sidelobe	is	approximately	31	dB	less	than	that	of	the	main	lobe.

Blackman	Window
The	Blackman	window	function	is

The	magnitude	of	the	first	sidelobe	is	approximately	58	dB	less	than	that	of	the	main	lobe.
Although	the	Blackman	window	produces	a	greater	reduction	in	sidelobe	magnitude	than	does
the	Hamming	or	the	Hanning	window,	it	has	a	significantly	wider	main	lobe.	Used	in	the	design
of	a	filter,	the	Blackman	window	will	reduce	the	ripple	in	the	magnitude	frequency	response
significantly	but	will	result	in	a	relatively	gradual	transition	from	pass	band	to	stop	band.

Kaiser	Window

3.42

3.43

3.44

3.45

The	Kaiser	window	is	very	popular	for	use	in	FIR	filter	design.	It	has	a	variable	parameter	to
control	the	size	of	the	sidelobe	relative	to	the	main	lobe.	The	Kaiser	window	function	is

where	 	is	an	empirically	determined	variable	and	 .	 	is	a	modified
Bessel	function	of	the	first	kind	defined	by

which	converges	rapidly.	A	trade-off	between	the	magnitude	of	the	sidelobe	and	the	width	of
the	main	lobe	can	be	achieved	by	changing	the	length	of	the	window,	 ,	and	the	value	of	the
parameter	 .

The	use	of	windows	to	reduce	spectral	leakage	is	discussed	in	Chapter	5.

Example	3.9

Design	of	an	Ideal	Low-Pass	FIR	Filter	Using	the	Window	Method.

The	ideal	low-pass	filter	characteristic	shown	in	Figure	3.16	is	described	by

and	the	inverse	DTFT	of	Equation	(3.44)	is

for	 .

Figure	3.16	Ideal	low-pass	frequency	response	defined	over	normalized	frequency	range	
.

This	result	is	illustrated	in	Figure	3.17,	for	 ,	over	the	range	 .	In	order	to
implement	an	FIR	filter,	impulse	response	 	must	be	truncated	by	multiplication	with	a
window	function	of	finite	extent.	Figure	3.18	shows	the	result	of	truncation	using	a	rectangular
window	of	length	 	().	This	has	the	effect	of	introducing	gain	variations
(ripple)	into	the	corresponding	frequency	response	as	shown	in	Figure	3.19.	This	continuous
(periodic)	frequency	response	is	found	by	taking	the	(forward)	DTFT	of	the	truncated	impulse
response	shown	in	Figure	3.18.

Figure	3.17	Sixty-one	of	the	infinite	number	of	values	in	the	discrete-time	impulse	response
obtained	by	taking	the	inverse	DTFT	of	the	ideal	low-pass	frequency	response	of	Figure	3.16.

Figure	3.18	The	discrete-time	impulse	response	of	Figure	3.17	truncated	to	 	values.

Figure	3.19	The	continuous,	periodic	magnitude	frequency	response	obtained	by	taking	the
DTFT	of	the	truncated	impulse	response	shown	in	Figure	3.18	(plotted	against	normalized
frequency).

Multiplying	the	impulse	response	of	Figure	3.17	by	a	tapered	window	function	has	the	effect	of
reducing	the	ripple	in	the	magnitude	frequency	response	at	the	expense	of	making	the	transition
from	pass	band	to	stop	band	less	sharp.	Figures	3.20–3.21	show	a	33-point	Hanning	window
function,	the	result	of	multiplying	the	impulse	response	(filter	coefficients)	of	Figure	3.19	by
that	window	function,	and	the	magnitude	frequency	response	corresponding	to	the	filter
coefficients	shown	in	Figure	3.22,	respectively.

Figure	3.20	A	33-point	Hanning	window.

Figure	3.21	The	magnitude	frequency	response	corresponding	to	the	filter	coefficients	of
Figure	3.22	(plotted	against	normalized	frequency).

Figure	3.22	The	filter	coefficients	of	Figure	3.17	multiplied	by	the	Hanning	window	of	Figure
3.20.

Figure	3.23	shows	the	magnitude	frequency	responses	of	Figures	3.19	and	3.21	plotted	together
on	a	logarithmic	scale.	This	emphasizes	the	wider	main	lobe	and	suppressed	sidelobes
associated	with	the	Hanning	window.

Figure	3.23	The	magnitude	frequency	responses	of	Figures	3.19	and	3.21	plotted	on	a
logarithmic	scale,	against	normalized	frequency	 .

3.46

3.47

3.48

Finally,	it	is	necessary	to	shift	the	time-domain	filter	coefficients.	The	preceding	figures	show
magnitude	frequency	responses	that	are	even	functions	of	frequency	and	for	which	zero	phase
shift	is	specified.	These	correspond	to	real-valued	filter	coefficients	that	are	even	functions	of
time	but	are	noncausal.	This	can	be	changed	by	introducing	a	delay	and	indexing	the
coefficients	from	0	to	32	rather	than	from	 16	to	16.	This	has	no	effect	on	the	magnitude	but
introduces	a	linear	phase	shift	to	the	frequency	response	of	the	filter.

3.2.3	Design	of	Ideal	High-Pass,	Band-Pass,	and	Band-Stop	FIR
Filters	Using	the	Window	Method

3.2.3.1	Ideal	High-Pass	Filter
The	ideal	high-pass	filter	characteristic	shown	in	Figure	3.24	is	described	by

in	the	range	 .

Figure	3.24	Ideal	high-pass	filter	magnitude	frequency	response.

and	the	inverse	DTFT	of	Equation	(3.46)	is

for	 .

3.2.3.2	Ideal	Band-Pass	Filter
The	ideal	band-pass	filter	characteristic	shown	in	Figure	3.25	is	described	by

3.49

3.50

3.51

in	the	range	 .

Figure	3.25	Ideal	band-pass	filter	magnitude	frequency	response.

and	the	inverse	DTFT	of	equation	(3.48)	is

for	 .

3.2.3.3	Ideal	band-stop	filter
The	ideal	band-stop	filter	characteristic	shown	in	Figure	3.26	is	described	by

in	the	range	 .

Figure	3.26	Ideal	band-stop	filter	magnitude	frequency	response.

and	the	inverse	DTFT	of	Equation	(3.50)	is

3.52

3.53

for	 .

High-pass,	band-pass,	and	band-stop	filters	may	be	designed	using	the	window	method
described	for	the	low-pass	filter,	but	substituting	Equations	(3.47),	(3.49),	or	(3.51)	for
Equation	(3.45).

3.3	Programming	Examples
The	following	examples	illustrate	the	real-time	implementation	of	FIR	filters	using	C	and
functions	from	the	CMSIS	DSP	library	for	the	ARM	Cortex-M4	processor.	Several	different
methods	of	assessing	the	magnitude	frequency	response	of	a	filter	are	presented.

Example	3.10

Moving	Average	Filter	(stm32f4_average_intr.c).

The	moving	average	filter	is	widely	used	in	DSP	and	arguably	is	the	easiest	of	all	digital
filters	to	understand.	It	is	particularly	effective	at	removing	(high-frequency)	random	noise
from	a	signal	or	at	smoothing	a	signal.

The	moving	average	filter	operates	by	taking	the	arithmetic	mean	of	a	number	of	past	input
samples	in	order	to	produce	each	output	sample.	This	may	be	represented	by	the	equation

where	 	represents	the	 th	sample	of	an	input	signal	and	 	the	 th	sample	of	the	filter
output.	The	moving	average	filter	is	an	example	of	convolution	using	a	very	simple	filter
kernel,	or	impulse	response,	comprising	 	coefficients	each	of	which	is	equal	to	 .
Equation	(3.52)	may	be	thought	of	as	a	particularly	simple	case	of	the	more	general
convolution	sum	implemented	by	an	FIR	filter	and	introduced	in	Section	3.1,	that	is,

where	the	FIR	filter	coefficients	 	are	samples	of	the	filter	impulse	response,	and	in	the	case
of	the	moving	average	filter,	each	is	equal	to	 .	As	far	as	implementation	is	concerned,	at
the	 th	samplinginstant,	we	could	either

1.	 multiply	 	past	input	samples	individually	by	 	and	sum	the	 	products,

2.	 sum	 	past	input	samples	and	multiply	the	sum	by	 ,	or

3.	 maintain	a	moving	average	by	adding	a	new	input	sample	(multiplied	by)	to	and
subtracting	the	 th	input	sample	(multiplied	by)	from	a	running	total.

3.54

3.55

The	third	method	of	implementation	is	recursive,	that	is,	calculation	of	the	output	 	makes
use	of	a	previous	output	value	 .	The	recursive	expression

is	an	instance	of	the	general	expression	for	a	recursive	or	IIR	filter

Program	stm32f4_average_intr.c,	shown	in	Listing	3.11,	uses	the	first	of	these	options,
even	though	it	may	not	be	the	most	computationally	efficient.	The	value	of	 	defined	near	the
start	of	the	source	file	determines	the	number	of	previous	input	samples	to	be	averaged.

Listing	3.1	Program	stm32f4_average_intr.c.

//	stm32f4_average_intr.c

#include	“stm32f4_wm5102_init.h”

#define	N	5

float32_t	h[N];

float32_t	x[N];

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	right_out_sample;

		int16_t	left_in_sample,	right_in_sample;

		int16_t	i;

		float32_t	yn	=	0.0;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				x[0]	=	(float32_t)(left_in_sample);

				for	(i=0	;	i<N	;	i++)	yn	+=	h[i]*x[i];

				for	(i=(N-1)	;	i>0	;	i--)	x[i]	=	x[i-1];

				left_out_sample	=	(int16_t)(yn);

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				right_out_sample	=	0;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

}

int	main(void)

{

		int	i;

		for	(i=0	;	i<N	;	i++)	h[i]	=	1.0/N;

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1);

}

Several	different	methods	exist	by	which	the	characteristics	of	the	five-point	moving	average
filter	may	be	demonstrated.	A	test	file	mefsin.wav	contains	a	recording	of	speech	corrupted
by	the	addition	of	a	sinusoidal	tone.	Listen	to	this	file	using	Goldwave,	Windows	Media
Player,	or	similar.	Then	connect	the	PC	soundcard	line	output	to	the	(green)	LINE	IN	socket	on
the	Wolfson	audio	card	and	listen	to	the	filtered	test	signal.	With	program
stm32f4_average_intr.c	running,	you	should	find	that	the	sinusoidal	tone	has	been	blocked

3.56

3.57

3.58

and	that	the	speech	sounds	muffled.	Both	observations	are	consistent	with	the	filter	having	a
low-pass	frequency	response.

A	more	rigorous	method	of	assessing	the	magnitude	frequency	response	of	the	filter	is	to	use	a
signal	generator	and	an	oscilloscope	or	spectrum	analyzer	to	measure	its	gain	at	different
individual	frequencies.	Using	this	method,	it	is	straightforward	to	identify	two	distinct	notches
in	the	magnitude	frequency	response	at	1600	Hz	(corresponding	to	the	tone	in	test	file
mefsin.wav)	and	at	3200	Hz.

The	theoretical	frequency	response	of	the	filter	can	be	found	by	taking	the	discrete-time
Fourier	transform	(DTFT)	of	its	coefficients.

Evaluated	over	the	frequency	range	 ,	where	 ,	 	is	frequency	in	radians	per
second,	and	 	is	the	sampling	period	in	seconds.	In	this	case,

and	hence

The	theoretical	magnitude	frequency	response	of	the	filter	is	illustrated	in	Figure	3.27.	This	is
the	magnitude	of	a	Dirichlet,	or	periodic	sinc,	function.

Figure	3.27	Theoretical	magnitude	frequency	response	of	the	five-point	moving	average	filter
(sampling	rate	8	kHz).

Example	3.11

Moving	Average	Filter	with	Internally	Generated	Pseudorandom	Noise	as	Input
(stm32f4_average_prbs_intr.c).

An	alternative	method	of	assessing	the	magnitude	frequency	response	of	a	filter	is	to	use
wideband	noise	as	an	input	signal.

Program	stm32f4_average_prbs_intr.c	demonstrates	this	technique.	A	pseudorandom
binary	sequence	(PRBS)	is	generated	within	the	program	(see	program
tm4c123_prbs_intr.c	in	Chapter	2)	and	used	as	an	input	to	the	filter	in	lieu	of	samples	read
from	the	ADC.	The	filtered	noise	can	be	viewed	on	a	spectrum	analyzer,	and	whereas	the
frequency	content	of	the	PRBS	input	is	uniform	across	all	frequencies,	the	frequency	content	of
the	filtered	noise	corresponds	to	the	magnitude	frequency	response	of	the	filter.	Figure	3.28
shows	the	output	of	program	stm32f4_average_prbs_intr.c	displayed	using	the	FFT
function	of	a	Rigol	DS1052E	oscilloscope	and	using	Goldwave.	Compare	these	plots	with	the
theoretical	magnitude	frequency	response	shown	in	Figure	3.27.

Figure	3.28	Magnitude	frequency	response	of	the	five-point	moving	average	filter
demonstrated	using	program	stm32f4_average_prbs_intr.c	and	displayed	using	(a)	Rigol
DS1052E	oscilloscope	(lower	trace)	and	(b)	Goldwave.

Example	3.12

Identification	of	Moving	Average	Filter	Frequency	Response	Using	an	Adaptive
Filter	(tm4c123_sysid_CMSIS_intr.c)).

In	Chapter	2,	program	tm4c123_sysid_CMSIS_intr.c	was	used	to	identify	the	characteristics
of	the	antialiasing	and	reconstruction	filters	of	a	codec.	Here,	the	same	program	is	used	to
identify	the	characteristics	of	a	moving	average	filter.	For	this	example,	two	sets	of	hardware
connected	as	shown	in	Figure	3.29	are	required.	On	one	of	the	launchpads,	run	program
tm4c123_average_intr.c,	and	on	the	other,	run	program	tm4c123_sysid_CMSIS_intr.c.
After	program	tm4c123_sysid_CMSIS_intr.c	has	run	for	a	few	seconds,	halt	the	program
and	save	the	values	of	the	256	adaptive	filter	coefficients	firCoeffs32	to	a	file	by	typing

save	<filename.dat>	<start	address>,	<start	address	+	0x400>

at	the	Command	line	in	the	MDK-ARM	debugger,	where	start	address	is	the	address	of
array	firCoeffs32,	and	plot	them	using	MATLAB®	function	tm4c123_logfft().

Figure	3.29	Connection	diagram	for	use	of	program	tm4c123_sysid_CMSIS_intr.c	to
identify	the	characteristics	of	a	moving	average	filter	implemented	using	two	sets	of	hardware.

The	number	of	adaptive	filter	coefficients	used	by	the	program	is	set	by	the	preprocessor
command

#define	NUM_TAPS	256

You	should	see	something	similar	to	what	is	shown	in	Figures	3.30	and	3.31,	that	is,	the
impulse	response	and	magnitude	frequency	response	identified	by	the	adaptive	filter.

Figure	3.30	Impulse	response	of	the	five-point	moving	average	filter	identified	using	two
launchpads	and	booster	packs	and	programs	tm4c123_sysid_CMSIS_intr.c	and
tm4c123_average_intr.c.

Figure	3.31	Magnitude	frequency	response	of	the	five-point	moving	average	filter	identified
using	two	sets	of	hardware	and	programs	tm4c123_sysid_CMSIS_intr.c	and
tm4c123_average_intr.c.

The	impulse	response	shown	in	Figure	3.30	differs	from	the	theoretical	(rectangular)	impulse
response	of	the	moving	average	filter	because	it	combines	that	with	the	responses	of	the
reconstruction	and	antialiasing	filters	in	two	AIC3104	codecs	and	the	ac	coupling	of	the	LINE
IN	and	LINE	OUT	connections	on	the	audio	booster	packs.	The	oscillations	before	and	after
transitions	in	the	waveform	are	similar	to	those	identified	in	Example	2.52	and	shown	in
Figure	2.47.

In	the	magnitude	frequency	response	shown	in	Figure	3.31,	the	discrepancies	between
theoretical	and	measured	responses	at	frequencies	greater	than	3.5	kHz	and	at	very	low
frequencies	correspond	to	the	characteristics	of	the	antialiasing	and	reconstruction	filters	in	the
two	AIC3104	codecs	and	to	the	ac	coupling	of	the	LINE	IN	and	LINE	OUT	connections	on	the
audio	booster	packs,	respectively.

Example	3.14

Identification	of	Moving	Average	Filter	Frequency	Response	Using	a	Single	Audio
Booster	Pack	(tm4c123_sysid_average_CMSIS_intr.c).

Program	tm4c123_sysid_average_CMSIS_intr.c,	shown	in	Listing	3.15,	collapses	the
signal	path	considered	in	the	previous	example	onto	just	one	set	of	hardware,	as	shown	in
Figure	3.32.	Build	and	run	the	program,	save	the	256	adaptive	filter	coefficients	firCoeffs32
to	a	file,	and	plot	them	using	MATLAB	function	tm4c123_logfft().	The	results	should	differ
only	subtly	from	those	shown	in	Figures	3.30	and	3.31,	because	the	identified	signal	path
contains	just	one	antialiasing	filter	and	one	reconstruction	filter	(as	opposed	to	two	of	each).
However,	the	delay	before	the	peak	in	the	impulse	response	identified	should	be	shorter	than
the	12	ms	apparent	in	Figure	3.30.

Figure	3.32	Connection	diagram	for	program	tm4c123_sysid_average_CMSIS_intr.c.

Listing	3.2	Program
tm4c123_sysid_average_CMSIS_intr.c.,

//	tm4c123_sysid_average_CMSIS_intr.c

#include	"tm4c123_aic3104_init.h"

#define	BETA	1E-11

#define	NUM_TAPS	256

#define	BLOCK_SIZE	1

#define	N	5

float32_t	x[N];

float32_t	h[N];

float32_t	firStateF32[BLOCK_SIZE	+	NUM_TAPS	-1];

float32_t	firCoeffs32[NUM_TAPS]	=	{0.0};

arm_lms_instance_f32	S;

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	adapt_in,	adapt_out,	desired;

		float32_t	error,	input_left,	input_right;

		float32_t	yn	=	0.0f;

		int16_t	i;

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		adapt_in	=	(float32_t)(prbs(8000));

		arm_lms_f32(&S,	&adapt_in,	&input_left,	&adapt_out,

													&error,	BLOCK_SIZE);

		x[0]	=	adapt_in;

		for	(i=0	;	i<N	;	i++)	yn	+=	h[i]*x[i];

		for	(i=(N-1)	;	i>0	;	i--)	x[i]	=	x[i-1];

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		sample_data.bit32	=	((int16_t)(yn));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

}

int	main()

{

		int16_t	i;

		for(i=0	;	i<N	;	i++)	h[i]	=	1.0/N;

		arm_lms_init_f32(&S,	NUM_TAPS,	firCoeffs32,

																			firStateF32,	BETA,	BLOCK_SIZE);

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1);

}

3.3.1	Altering	the	Coefficients	of	the	Moving	Average	Filter
The	frequency	response	of	the	moving	average	filter	can	be	changed	by	altering	the	number	of
previous	input	samples	that	are	averaged.	Modify	program	tm4c123_average_prbs_intr.c
so	that	it	implements	an	eleven-point	moving	average	filter,	by	changing	the	preprocessor
command	that	reads

#define	N	5

to	read

#define	N	11

Build	and	run	the	program	and	verify	that	the	frequency	response	of	the	filter	has	changed	to
that	shown	in	Figure	3.33.	Alternatively,	you	can	make	a	similar	change	to	the	number	of	points
in	the	moving	average	filter	in	program	tm4c123_sysid_average_CMSIS_intr.c.

Figure	3.33	Magnitude	frequency	response	of	an	eleven-point	moving	average	filter
implemented	using	program	tm4c123_average_prbs_intr.c	and	displayed	using	Goldwave.

The	frequency	response	of	the	eleven-point	moving	average	filter	has	the	same	form	as	that	of
the	five-point	moving	average	filter	but	the	notches	in	the	frequency	response	occur	at	integer
multiples	of	(8000/11)	Hz,	that	is	at	727,	1455,	2182,	and	2909	Hz.

The	frequency	response	of	the	filter	can	also	be	changed	by	altering	the	relative	values	of	the
coefficients.	Modify	program	tm4c123_sysid_average_CMSIS_intr.c	again,	changing	the

preprocessor	command	and	program	statements	that	read

#define	N	11

float	h[N];

to	read

#define	N	5

float	h[N]	=	{0.0833,	0.2500,	0.3333.	0.2500,	0.0833};

and	comment	out	the	following	program	statement

for	(i=0	;	i<N	;	i++)	h[i]	=	1.0/N;

Build	and	run	the	program	and	observe	the	frequency	response	of	the	filter	using	Goldwave	(in
the	case	of	program	tm4c123_average_prbs_intr.c)	or	by	saving	and	plotting	filter
coefficients	firCoeffs32	(in	the	case	of	program
tm4c123_sysid_average_CMSIS_intr.c).	You	should	find	that	the	high-frequency
components	of	the	input	signal	(pseudorandom	noise)	have	been	attenuated	more	than	before
and	also	that	the	notches	at	1600	and	3200	Hz	have	disappeared	as	shown	in	Figure	3.34.	You
have	effectively	applied	a	Hanning	window	to	the	coefficients	of	the	five-point	moving
average	filter.

3.59

3.60

Figure	3.34	Magnitude	frequency	response	of	a	five-point	moving	average	filter	with	Hanning
window	implemented	using	program	stm32f4_average_prbs_intr.c	and	displayed	using
Goldwave.

The	 -point	Hanning	window	is	described	by	the	equation

and	hence,	for	 	and	 ,	 .	Since	there	is	no	point	in	including	two	zero-value
coefficients	in	the	FIR	filtering	operation,	in	this	example,	the	five	nonzero	values	of	a	seven-
point	Hanning	window	function,	rather	than	the	five	values,	including	two	zero	values,	of	a
five-point	Hanning	window	function,	have	been	used.

The	important,	if	rather	obvious,	point	illustrated	by	this	example,	however,	is	that	a	five-
coefficient	FIR	filter	may	exhibit	different	frequency	response	characteristics,	depending	on
the	values	of	its	coefficients.	The	theoretical	magnitude	frequency	response	of	the	filter	may	be
found	by	taking	the	DTFT	of	its	coefficients.

3.61

Hence,

The	measured	frequency	responses	of	the	five-point	moving	average	filter	and	of	its	windowed
version	may	be	interpreted	as	demonstrating	the	frequency-domain	characteristics	of
rectangular	and	Hanning	windows	as	discussed	in	Section	3.2.2.	Specifically,	the	Hanning
window	has	a	wider	main	lobe	and	relatively	smaller	sidelobes	than	a	rectangular	window.

Example	3.14

FIR	Filter	with	Filter	Coefficients	Specified	in	Separate	Header	Files
(stm32f4_fir_intr.c	and	tm4c123_fir_intr.c).

The	algorithm	used	by	programs	stm32f4_fir_intr.c	and	tm4c123_fir_intr.c	to
calculate	each	output	sample	are	identical	to	those	employed	by	programs
stm32f4_average_intr.c	and	tm4c123_average_intr.c.	The	interrupt	service	routine
functions	SPI2_IRQHandler()	and	SSI_interrupt_routine()	have	exactly	the	same
definitions	in	each	program.	However,	programs	stm32f4_average_intr.c	and
tm4c123_average_intr.c	calculated	the	values	of	their	filter	coefficients	in	function
main(),	whereas	programs	stm32f4_fir_intr.c	(shown	in	Listing	3.17)	and
tm4c123_fir_intr.c	read	the	values	of	their	filter	coefficients	from	separate	header	files.

Listing	3.3	Program	stm32f4_fir_intr.c

//	stm32f4_fir_intr.c

#include	“stm32f4_wm5102_init.h”

#include	“maf5.h”

float32_t	x[N];

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	right_out_sample;

		int16_t	left_in_sample,	right_in_sample;

		int16_t	i;

		float32_t	yn	=	0.0;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				x[0]	=	(float32_t)(prbs(8000));

				for	(i=0	;	i<N	;	i++)	yn	+=	h[i]*x[i];

				for	(i=(N-1)	;	i>0	;	i--)	x[i]	=	x[i-1];

				left_out_sample	=	(int16_t)(yn);

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				right_out_sample	=	0;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

}

int	main(void)

{

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

3.3.1.1	Five-Point	Moving	Average	(maf5.h)
Coefficient	file	maf5.h	is	shown	in	Listing	3.18.	Using	that	header	file,	programs
stm32f4_fir_intr.c	and	tm4c123_fir_intr.c	implement	the	same	five-point	moving
average	filter	implemented	by	program	stm32f4_average_intr.c	in	Example	3.10.	The
number	of	filter	coefficients	is	specified	by	the	value	of	the	constant	N,	defined	in	the	header
file,	and	the	coefficients	are	specified	as	the	initial	values	in	an	N	element	array,	h,	of	type
float32_t.	Build	and	run	program	stm32f4_fir_intr.c	and	verify	that	it	implements	a	five-
point	moving	average	filter.

Listing	3.4	Coefficient	header	file	maf5.h

//	maf5.h

//	this	file	was	generated	using	function	stm32f4_fir_coeffs.m

#define	N	5

float32_t	h[N]	=	{

2.0000E-001,2.0000E-001,2.0000E-001,2.0000E-001,2.0000E-001

};

3.3.1.2	Low-Pass	Filter,	Cutoff	at	2000	Hz	(lp55.h)
Edit	source	file	stm32f4_fir_intr.c	or	tm4c123_fir_intr.c,	changing	the	preprocessor
command	that	reads

#include	ave5.h

to	read

#include	lp55.h

Build	and	run	the	program.	Use	a	signal	generator	connected	to	the	(pink)	LINE	IN	socket	on
the	Wolfson	audio	card	to	input	a	sinusoidal	signal	and	verify	that	this	is	attenuated
significantly	at	the	(green)	LINE	OUT	socket	if	its	frequency	is	greater	than	2	kHz.

3.3.1.3	Band-Stop	Filter,	Centered	at	2700	Hz	(bs2700.h)
Edit	source	file	stm32f4_fir_intr.c,	changing	the	line	that	reads

#include	ave5.h

to	read

#include	bs2700.h

Build	and	run	program	stm32f4_fir_intr.c	or	tm4c123_fir_intr.c.	Input	a	sinusoidal
signal	and	vary	the	input	frequency	slightly	below	and	above	2700	Hz.	Verify	that	the
magnitude	of	the	output	is	a	minimum	at	2700	Hz.	The	values	of	the	coefficients	for	this	filter
were	calculated	using	the	MATLAB	filter	design	and	analysis	tool,	fdatool,	as	shown	in
Figure	3.35.

Figure	3.35	MATLAB	fdatool	window	corresponding	to	design	the	of	an	FIR	band-stop
filter	centered	at	2700	Hz.

3.3.1.4	Band-Pass	Filter,	Centered	at	1750	Hz	(bp1750.h)
Edit	source	file	stm32f4_fir_intr.c	or	tm4c123_fir_intr.c	again	to	include	the
coefficient	file	bp1750.h	in	place	of	bs2700.h.	File	bp1750.h	represents	an	FIR	band-pass
filter	(81	coefficients)	centered	at	1750	Hz,	as	shown	in	Figure	3.36.	Again,	this	filter	was
designed	using	fdatool.	Build	and	run	the	program	again	and	verify	that	it	implements	a	band-
pass	filter	centered	at	1750	Hz.

Figure	3.36	MATLAB	fdatool	window	corresponding	to	design	of	FIR	band-pass	filter
centered	at	1750	Hz.

3.3.2	Generating	FIR	Filter	Coefficient	Header	Files	Using	MATLAB
If	the	number	of	filter	coefficients	is	small,	the	coefficient	header	file	may	be	edited	by	hand.
To	be	compatible	with	programs	stm32f4_fir_intr.c	and	tm4c123_fir_intr.c,	a
coefficient	file	must	define	constant	N	and	declare	and	initialize	the	contents	of	an	array	h,
containing	N	floating	point	values.	For	larger	numbers	of	coefficients,	the	MATLAB	function
stm32f4_fir_coeffs(),	supplied	as	file	stm32f4_fir_coeffs.m,	or	the	MATLAB	function
tm4c123_fir_coeffs(),	supplied	as	file	tm4c123_fir_coeffs.m,	can	be	used.	Function
stm32f4_fir_coeffs(),	shown	in	Listing	3.19,	should	be	passed	a	MATLAB	vector	of
coefficient	values	and	will	prompt	the	user	for	an	output	filename.	For	example,	the	coefficient
file	maf5.h,	shown	in	Listing	3.18,	was	created	by	typing	the	following	at	the	MATLAB
command	prompt:

>>	x	=	[0.2,	0.2,	0.2,	0.2,	0.2];

>>	stm32f4_fir_coeffs(x)

enter	filename	for	coefficients	maf5.h

Note	that	the	coefficient	filename	must	be	entered	in	full,	including	the	suffix	.h.	Alternatively,
the	MATLAB	filter	design	and	analysis	tool	fdatool	can	be	used	to	calculate	FIR	filter
coefficients	and	to	export	them	to	the	MATLAB	workspace.	Then	function
stm32f4_fir_coeffs()	or	tm4c123_fir_coeffs()	can	be	used	to	create	a	coefficient

header	file	compatible	with	programs	stm32f4_fir_intr.c	and	tm4c123_fir_intr.c.

Listing	3.5	MATLAB	m-file	stm32f4_fir_coeffs.m

%	STM32F4_FIR_COEFFS.M

%	MATLAB	function	to	write	FIR	filter	coefficients

%	in	format	suitable	for	use	in	STM32F407	Discovery	programs

%	stm32f4_fir_intr.c	and	stm32f4_fir_prbs_intr.c

%	written	by	Donald	Reay

%

function	stm32f4_fir_coeffs(coeff)

coefflen=length(coeff);

fname	=	input('enter	filename	for	coefficients	','s');

fid	=	fopen(fname,'wt');

fprintf(fid,'//	%s\n',fname);

fprintf(fid,'//	this	file	was	generated	using	');

fprintf(fid,'function	stm32f4_fir_coeffs.m\n');

fprintf(fid,'\n#define	N	%d\n',coefflen);

%	j	is	used	to	count	coefficients	written	to	current	line

%	in	output	file

fprintf(fid,'\nfloat32_t	h[N]	=	{	\n');

j=0;

%	i	is	used	to	count	through	coefficients

for	i=1:coefflen

%	if	six	coeffs	have	been	written	to	current	line

%	then	start	new	line

		if	j>5

				j=0;

				fprintf(fid,'\n');

		end

%	if	this	is	the	last	coefficient	then	simply	write

%	its	value	to	the	current	line

%	else	write	coefficient	value,	followed	by	comma

		if	i coefflen

			fprintf(fid,'%2.4E',coeff(i));

		else

				fprintf(fid,'%2.4E,',coeff(i))

				j=j+1;

		end

end

fprintf(fid,'\n};\n');

fclose(fid);

}

Example	3.15

FIR	Implementation	with	Pseudorandom	Noise	as	Input
(tm4c123_fir_prbs_intr.c).

Program	tm4c123_fir_prbs_intr.c,	shown	in	Listing	3.21,	implements	an	FIR	filter	and
uses	an	internally	generated	pseudorandom	noise	sequence	as	input.	In	all	other	respects,	it	is
similar	to	program	tm4c123_fir_intr.c.	The	coefficient	file	bs2700.h	is	used	initially.

Listing	3.6	Program	tm4c123_fir_prbs_intr.c

//	tm4c123_fir_prbs_intr.c

#include	"tm4c123_aic3104_init.h"

#include	"bs2700.h"

float32_t	x[N];

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right;

		int16_t	i;

		float32_t	yn	=	0.0f;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		x[0]	=	(float32_t)(prbs(8000));

		for	(i=0	;	i<N	;	i++)	yn	+=	h[i]*x[i];

		for	(i=N-1	;	i>0	;	i--)	x[i]	=	x[i-1];

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		sample_data.bit32	=	((int16_t)(yn));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

}

int	main(void)

{

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1){}

}

3.3.2.1	Running	the	Program
Build	and	run	the	program	and	verify	that	the	output	signal	is	pseudorandom	noise	filtered	by
an	FIR	band-stop	filter	centered	at	2700	Hz.	This	output	signal	is	shown	using	GoldWave	and
using	the	FFT	function	of	a	Rigol	DS1052E	oscilloscope	in	Figure	3.37.

Figure	3.37	Output	generated	using	program	tm4c123_fir_prbs_intr.c	and	coefficient	file
bs2700.h	displayed	using	(a)	Rigol	DS1052E	oscilloscope	and	(b)	GoldWave.

Testing	Different	FIR	Filters
Edit	the	C	source	file	tm4c123_fir_prbs_intr.c	to	include	and	test	different	coefficient
files	representing	different	FIR	filters.	Each	of	the	following	coefficient	files,	except
comb14.h,	contains	55	coefficients.

1.	 bp55.h:	band-pass	with	center	frequency	

2.	 bs55.h:	band-stop	with	center	frequency	

3.	 lp55.h:	low-pass	with	cutoff	frequency	

4.	 hp55.h:	high-pass	with	cutoff	frequency	

5.	 pass2b.h:	band-pass	with	two	pass	bands

6.	 pass3b.h:	band-pass	with	three	pass	bands

7.	 pass4b.h:	band-pass	with	four	pass	bands

8.	 comb14.h:	multiple	notches	(comb	filter)

Figure	3.38(a)	shows	the	filtered	noise	output	by	an	FIR	filter	with	two	pass	bands,	using	the
coefficient	file	pass2b.h.	Figure	3.38(b)	shows	the	filtered	noise	output	by	a	high-pass	FIR
filter	using	the	coefficient	file	hp55.h.	In	the	cases	of	high-pass	and	band-stop	filters	in
particular,	the	low-pass	characteristic	of	the	reconstruction	filter	in	the	AIC3104	codec	is
apparent.

Figure	3.38	Output	generated	using	program	tm4c123_fir_prbs_intr.c	using	coefficient
files	(a)	pass2b.h	and	(b)	hp55.h.

Example	3.16

FIR	Filter	with	Internally	Generated	Pseudorandom	Noise	as	Input	and	Output
Stored	in	Memory	(stm32f4_fir_prbs_buf_intr.c).

This	example	extends	the	previous	one	by	storing	the	256	most	recent	output	samples	in
memory.	Program	stm32f4_fir_prbs_buf_intr.c	is	shown	in	Listing	3.23.	The	coefficient
file	bp1750.h	represents	an	81-coefficient	FIR	band-pass	filter	centered	at	1750	Hz.

Listing	3.7	Program	stm32f4_fir_prbs_buf_intr.c

//	stm32f4_fir_prbs_buf_intr.c

#include	"stm32f4_wm5102_init.h"

#include	"bp1750.h"

#define	YNBUFLENGTH	256

float32_t	ynbuffer[YNBUFLENGTH];

int16_t	ynbufptr	=	0;

float32_t	x[N];

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	right_out_sample;

		int16_t	left_in_sample,	right_in_sample;

		int16_t	i;

		float32_t	yn	=	0.0;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				x[0]	=	(float32_t)(prbs(8000));

				for	(i=0	;	i<N	;	i++)	yn	+=	h[i]*x[i];

				for	(i=(N-1)	;	i>0	;	i--)	x[i]	=	x[i-1];

				left_out_sample	=	(int16_t)(yn);

				ynbuffer[ynbufptr]	=	yn;

				ynbufptr	=	(ynbufptr+1)	%	YNBUFLENGTH;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				right_out_sample	=	0;

				while(SPI_I2S_GetFlagStatus(I2Sxext,

										SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

}

int	main(void)

{

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

3.3.2.2	Running	the	Program
Build	and	run	the	program.	Verify	that	the	output	signal	is	bandlimited	noise.	Then	halt	the
program	and	save	the	contents	of	array	ynbuffer	to	a	data	file	by	typing

save	<filename.dat>	<start	address>,	<start	address	+	0x400>

where	start	address	is	the	address	of	array	ynbuffer.	Use	MATLAB	function
stm32f4_logfft()	in	order	to	display	the	frequency	content	of	the	256	stored	output	samples,
as	shown	in	Figure	3.39	(Figure	3.40).

Figure	3.39	Magnitude	of	the	FFT	of	the	output	from	program
stm32f4_fir_prbs_buf_intr.c	using	coefficient	header	file	bp1750.h.

Figure	3.40	Filter	coefficients	used	in	program	stm32f4_fir_prbs_buf_intr.c
(bp1750.h).

Figure	3.41	shows	the	magnitude	of	the	FFT	of	the	bp1750.h	filter	coefficients	for
comparison.

Figure	3.41	Magnitude	of	the	FFT	of	the	filter	coefficients	used	in	program
stm32f4_fir_prbs_buf_intr.c.

Program	stm32f4_fir_prbs_buf_intr.c	allows	the	user	to	switch	the	signal	written	to	the
WM5102	DAC	between	filtered	and	unfiltered	noise	so	as	to	emphasize	the	action	of	the	filter.
The	filter	is	toggled	on	and	off	by	pressing	the	(blue)	user	pushbutton	on	the	Discovery	board.

Example	3.17

Effects	on	Voice	or	Music	Using	Three	FIR	Low-Pass	Filters
(tm4c123_fir3lp_intr.c).

Listing	3.25	show	program	stm32f4_fir3lp_intr.c,	which	implements	three	different	FIR
low-pass	filters	with	cutoff	frequencies	at	600,	1500,	and	3000	Hz.	Filter	coefficients
designed	using	MATLAB	are	read	from	file	fir3lp_coeffs.h	and,	during	initialization,
copied	into	a	single,	two-dimensional	array	h.	While	the	program	is	running,	variable
FIR_number	selects	the	desired	low-pass	filter	to	be	implemented.	For	example,	if
FIR_number	is	set	to	0,	h[0][i]	is	set	equal	to	hlp600[i],	that	is,	the	set	of	coefficients
representing	a	low-pass	filter	with	a	cutoff	frequency	of	600	Hz.	The	value	of	FIR_number	can
be	cycled	through	the	values	0	through	2	to	implement	the	600,	1500,	or	3000	Hz	low	pass
filter,	using	switch	SW1	on	the	launchpad	while	the	program	is	running.

Listing	3.8	Program	tm4c123_fir3lp_intr.c

//	tm4c123_fir3lp_intr.c

#include	"tm4c123_aic3104_init.h"

#include	"L138_fir3lp_coeffs.h"

float32_t	x[N];

float32_t	h[3][N];

int16_t	FIR_number	=	0;

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	input_left,	input_right;

		int16_t	i;

		float32_t	yn	=	0.0f;

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		x[0]	=	input_left;

		for	(i=0	;	i<N	;	i++)	yn	+=	h[FIR_number][i]*x[i];

		for	(i=(N-1)	;	i>0	;	i--)	x[i]	=	x[i-1];

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		sample_data.bit32	=	((int16_t)(yn));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

}

int	main(void)

{

		int16_t	i;

		for	(i=0;	i<N;	i++)

		{

				x[i]	=	0.0;

				h[0][i]	=	hlp600[i];

				h[1][i]	=	hlp1500[i];

				h[2][i]	=	hlp3000[i];

		}

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1)

		}

				ROM_SysCtlDelay(10000);

				if	(!GPIOPinRead(GPIO_PORTF_BASE,	GPIO_PIN_4))

				{

						ROM_SysCtlDelay(10000);

						FIR_number	=	(FIR_number+1)	%	3;

						while	(!GPIOPinRead(GPIO_PORTF_BASE,	GPIO_PIN_4)){}

				}

		}

}

As	supplied,	the	program	configures	the	AIC3104	codec	to	accept	input	from	the	(blue)	LINE
IN	socket	on	the	audio	booster	pack.	In	order	to	test	the	effect	of	the	filters	using	a	microphone
as	an	input	device,	change	the	program	statement	that	reads

tm4c123_aic3104_init(FS_8000_HZ,

																					AIC3104_LINE_IN,

																					IO_METHOD_INTR,

																					PGA_GAIN_6_DB);

to	read

tm4c123_aic3104_init(FS_8000_HZ,

																					AIC3104_MIC_IN,

																					IO_METHOD_INTR,

																					PGA_GAIN_6_DB);

The	effect	of	the	filters	is	particularly	striking	if	applied	to	musical	input.	Alternatively,	the
effects	of	the	filters	can	be	illustrated	using	an	oscilloscope	and	a	signal	generator.	Figure	3.42
shows	a	200	Hz	square	wave	that	has	been	passed	through	the	three	different	low-pass	filters.
The	slope	on	the	sections	of	the	waveforms	between	transitions	is	due	to	the	ac	coupling	of	the
LINE	OUT	and	LINE	IN	connections	on	the	audio	booster	pack.

Figure	3.42	A	200	Hz	square	wave	passed	through	three	different	low-pass	filters
implemented	using	program	tm4c123_fir3lp_intr.c.

The	magnitude	frequency	response	of	the	three	different	filters	may	be	observed	using
Goldwave	and	by	changing	the	program	statement	that	reads

		x[0]	=	input_left;

to	read

		x[0]	=	(float32_t)(prbs(8000));

or,	alternatively,	by	blowing	gently	on	the	microphone.

Example	3.18

Implementation	of	Four	Different	Filters:	Low-Pass,	High-Pass,	Band-Pass,	and
Band-Stop	(tm4c123_fir4types_intr.c).

This	example	is	very	similar	to	the	previous	one	but	illustrates	the	effects	of	low-pass,	high-
pass,	band-pass,	and	band-stop	FIR	filters.	The	filter	type	may	be	changed	while	program
tm4c123_fir4types_intr.c	is	running	using	switch	SW1	on	the	launchpad.	All	four	81-
coefficient	filters	were	designed	using	MATLAB.	They	are

1.	 Low-pass	filter,	with	bandwidth	of	1500	Hz.

2.	 High-pass	filter,	with	bandwidth	of	2200	Hz.

3.	 Band-pass	filter,	with	center	frequency	at	1750	Hz.

4.	 Band-stop	filter,	with	center	frequency	at	790	Hz.

As	in	the	previous	example,	the	effects	of	the	four	different	filters	on	musical	input	are
particularly	striking.	Figure	3.43	shows	the	magnitude	frequency	response	of	the	FIR	band	stop
filter	centered	at	790	Hz,	tested	using	the	file	stereonoise.wav	played	through	a	PC	sound
card	as	input.

Figure	3.43	Output	generated	using	program	tm4c123_fir_4types_intr.c.

Example	3.19

Two	Notch	Filters	to	Recover	a	Corrupted	Speech	Recording
(tm4c123_notch2_intr.c).

This	example	illustrates	the	use	of	two	notch	(band-stop)	FIR	filters	in	series	to	recover	a
speech	recording	corrupted	by	the	addition	of	two	sinusoidal	signals	at	frequencies	of	900	and
2700	Hz.	Program	tm4c123_notch2_intr.c	is	shown	in	Listing	3.28.	Header	file
notch2_coeffs.h	contains	the	coefficients	for	two	FIR	notch	(band-stop)	filters	in	arrays
h900	and	h2700.	The	output	of	the	first	notch	filter,	centered	at	900	Hz,	is	used	as	the	input	to
the	second	notch	filter,	centered	at	2700	Hz.	Build	and	run	the	program.	The	file	corrupt.wav
contains	a	recording	of	speech	corrupted	by	the	addition	of	900	and	2700	Hz	sinusoidal	tones.
Listen	to	this	file	using	GoldWave,	Windows	Media	Player,	or	similar.	Then	connect	the	PC
sound	card	output	to	the	(blue)	LINE	IN	socket	on	the	audio	booster	pack	and	listen	to	the
filtered	test	signal	on	(black)	LINE	OUT	or	(green)	HP	OUT	connections.	Switch	SW1	on	the
launchpad	can	be	used	to	select	the	output	of	either	the	first	or	the	second	of	the	notch	filters.
Compare	the	results	of	this	example	with	those	obtained	in	Example	3.10	in	which	a	notch	in
the	magnitude	frequency	response	of	a	moving	average	filter	was	exploited	in	order	to	filter

out	an	unwanted	sinusoidal	tone.	In	this	case,	the	filtered	speech	may	sound	brighter	because
the	notch	filters	used	here	do	not	have	an	overall	low-pass	characteristic.	Figure	3.44	shows
the	output	of	the	filter	using	pseudorandom	noise	as	an	input	signal.

Figure	3.44	Pseudorandom	noise	filtered	using	program	tm4c123_notch2_intr.c.

Listing	3.9	Program	tm4c123_notch2_intr.c

//	tm4c123_notch2_intr.c

#include	“tm4c123_aic3104_init.h”

#include	“notch2_coeffs.h”

float32_t	x[N][2];						//	filter	delay	lines

int16_t	out_type	=	0;

AIC3104_data_type	sample_data;

void	SSI_interrupt_routine(void)

{

		float32_t	input_left,	input_right;

		int16_t	i;

		float32_t	yn[2];

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		x[0][0]	=	input_left;

		yn[0]	=	0.0;														//	compute	filter	1	output

		for	(i	=	0;	i<	N;	i++)	yn[0]	+=	h900[i]*x[i][0];

		x[0][1]	=	(yn[0]);

		yn[1]	=	0.0;														//	compute	filter	2	output

		for	(i	=	0;	i<	N;	i++)	yn[1]	+=	h2700[i]*x[i][1];

		for	(i	=	N-1;	i	>	0;	i--)	//	shift	delay	lines

		{

				x[i][0]	=	x[i-1][0];

				x[i][1]	=	x[i-1][1];

		}

		sample_data.bit32	=	((int16_t)(yn[out_type]));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

}

int	main(void)

{

		tm4c123_aic3104_init(FS_8000_HZ,

																						AIC3104_LINE_IN,

																						IO_METHOD_INTR,

																						PGA_GAIN_6_DB);

		while(1)

		{

				ROM_SysCtlDelay(10000);

				if	(!GPIOPinRead(GPIO_PORTF_BASE,	GPIO_PIN_4))

				{

						ROM_SysCtlDelay(10000);

						out_type	=	(out_type+1)	%2;

						while	(!GPIOPinRead(GPIO_PORTF_BASE,	GPIO_PIN_4)){}

				}

		}

}

Example	3.20

Voice	Scrambling	Using	Filtering	and	Modulation	(tm4c123_scrambler_intr.c).

This	example	illustrates	a	voice	scrambling	and	descrambling	scheme.	The	approach	makes
use	of	basic	algorithms	for	filtering	and	modulation.	Modulation	was	introduced	in	the	AM
example	in	Chapter	2.	With	voice	as	input,	the	resulting	output	is	scrambled	voice.	The
original	descrambled	voice	is	recovered	when	the	scrambled	voice	is	used	as	the	input	to	a
second	system	running	the	same	program.	The	scrambling	method	used	is	commonly	referred	to
as	frequency	inversion.	It	takes	an	audio	range,	in	this	case	300	Hz	to	3	kHz,	and	“folds”	it
about	a	3.3	kHz	carrier	signal.	The	frequency	inversion	is	achieved	by	multiplying
(modulating)	the	audio	input	by	a	carrier	signal,	causing	a	shift	in	the	frequency	spectrum	with
upper	and	lower	sidebands.	In	the	lower	sideband,	which	represents	the	audible	speech	range,
the	low	tones	are	high	tones,	and	vice	versa.

Figure	3.45	shows	a	block	diagram	of	the	scrambling	scheme.	At	point	A,	the	input	signal	has
been	bandlimited	(low	pass	filtered)	to	3	kHz.	At	point	B,	a	double-sideband	signal	with
suppressed	carrier	has	been	formed.	At	point	C,	the	upper	sideband	and	the	section	of	the
lower	sideband	between	3	and	3.3	kHz	are	filtered	out.	The	scheme	is	attractive	because	of	its
simplicity.	Only	simple	DSP	algorithms,	namely	filtering,	sine	wave	generation	and	amplitude
modulation	are	required	for	its	implementation.	Listing	3.30	is	of	program
tm4c123_scrambler_intr.c,	which	operates	at	a	sampling	rate	of	16	kHz.	The	input	signal
is	first	low-pass	filtered	using	an	FIR	filter	with	65	coefficients,	stored	in	array	h,	and	defined
in	the	file	lp3k64.h.	The	filtering	algorithm	used	is	identical	to	that	used	in,	for	example,
programs	tm4c123_fir_intr.c	and	stm32f4_fir_intr.c.	The	filter	delay	line	is
implemented	using	array	x1	and	the	output	is	assigned	to	variable	yn1.	The	filter	output	(at
point	A	in	Figure	3.45)	is	multiplied	(modulated)	by	a	3.3	kHz	sinusoid	stored	as	160	samples
(exactly	33	cycles)	in	array	sine160	(read	from	file	sine160.h)	.	Finally,	the	modulated
signal	(at	point	B)	is	low-pass	filtered	again,	using	the	same	set	of	filter	coefficients	h
(lp3k64.h)	but	a	different	filter	delay	line	implemented	using	array	x2	and	the	output	variable
yn2.	The	output	is	a	scrambled	signal	(at	point	C).	Using	this	scrambled	signal	as	the	input	to	a
second	system	running	the	same	algorithm,	the	original	descrambled	input	may	be	recovered.

Figure	3.45	Block	diagram	representation	of	scrambler	implemented	using	program
tm4c123_scrambler_intr.c.

3.3.2.3	Running	the	Program
Build	and	run	the	program.	First,	test	the	program	using	a	2	kHz	sine	wave	as	input.	The
resulting	output	is	a	lower	sideband	signal	at	1.3	kHz.	The	upper	sideband	signal	at	5.3	kHz	is
filtered	out	by	the	second	low-pass	filter.	By	varying	the	frequency	of	the	sinusoidal	input,	you
should	be	able	to	verify	that	input	frequencies	in	the	range	300–3000	Hz	appear	as	output
frequencies	in	the	inverted	range	3000–300	Hz.

Listing	3.10	Program	tm4c123_scrambler_intr.c

//	tm4c123_scrambler_intr.c

#include	“tm4c123_aic3104_init.h”

#include	“sine160.h”			//	3300	Hz	sinusoid

#include	“lp3k64.cof”		//	low-pass	filter	coefficients

float	xa[N],xb[N];					//	filter	delay	lines

int	sine_ptr	=	0;						//	pointer	to	sinusoid	samples

AIC3104_data_type	sample_data;

void	SSI_interrupt_routine(void)

{

		float32_t	input_left,	input_right;

		float32_t	yn;

		int16_t	i;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input_left	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input_right	=	(float32_t)(sample_data.bit16[0]);

		xa[0]	=	(input_left);															//	filter	a

		yn	=	0.0;

		for	(i=0	;	i<N	;	i++)	yn	+=	h[i]*xa[i];

		for	(i=(N-1)	;	i>0	;	i--)	xa[i]	=	xa[i-1];

		yn	*=	sine160[sine_ptr];												//	mix	with	3300	Hz

		sine_ptr	=	(sine_ptr+1)		%	NSINE;

		xb[0]	=	yn;																									//	filter	b

		yn	=	0.0;

		for	(i=0	;	i<N	;	i++)	yn	+=	h[i]*xb[i];

		for	(i=(N-1)	;	i>0	;	i--)	xb[i]	=	xb[i-1];

		sample_data.bit32	=	((int16_t)(yn));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

}

int	main(void)

{

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1){}

}

A	second	hardware	system	running	the	same	program	can	be	used	to	recover	the	original	signal
(simulating	the	receiving	end).	Use	the	output	of	the	first	audio	card	as	the	input	to	the	second.
In	order	to	test	the	scrambler	and	descrambler	using	speech	from	a	microphone	as	the	input,
change	the	program	statement	that	reads

tm4c123_aic3104_init(FS_8000_HZ,

																					AIC3104_LINE_IN,

																					IO_METHOD_INTR,

																					PGA_GAIN_6_DB);

to	read

tm4c123_aic3104_init(FS_8000_HZ,

																					AIC3104_MIC_IN,

																					IO_METHOD_INTR,

																					PGA_GAIN_6_DB);

at	the	transmitting	end.

Connect	LINE	OUT	(black)	on	the	transmitting	end	system	(scrambler)	to	LINE	IN	(blue)	on
the	receiving	end	system	(descrambler).	Interception	and	descrambling	of	the	scrambled
speech	signal	could	be	made	more	difficult	by	changing	the	modulation	frequency	dynamically
and	by	including	(or	omitting)	the	carrier	frequency	according	to	a	predefined	sequence.

Example	3.21

FIR	filter	implemented	using	DMA-based	i/o	(tm4c123_fir_dma.c	and
stm32f4_fir_dma.c).

Programs	tm4c123_fir_dma.c,	stm32f4_fir_dma.c,	tm4c123_fir_prbs_dma.c	and
stm32f4_fir_prbs_dma.c	have	similar	functionality	to	programs	tm4c123_fir_intr.c,
stm32f4_fir_intr.c,	tm4c123_fir_prbs_intr.c	and	stm32f4_fir_prbs_intr.c	but	use
DMA-based	as	opposed	to	interrupt-based	i/o	(as	illustrated	previously	in	Examples	2.5	and
2.6).	As	supplied,	they	implement	band-pass	filters	centered	on	1750	Hz.	The	filter
characteristics	implemented	by	the	programs	can	be	changed	by	including	different	coefficient
header	files.

Example	3.22

FIR	Filter	Implemented	Using	a	CMSIS	DSP	Library	Function
(tm4c123_fir_prbs_CMSIS_dma.c	and	stm32f4_fir_prbs_CMSIS_dma.c).

Function	arm_fir_f32()	supplied	as	part	of	the	CMSIS	DSP	library	is	an	optimized	floating-
point	implementation	of	an	FIR	filter.	The	function	is	passed	a	block	of	input	samples	and
computes	a	corresponding	block	of	output	samples,	and	hence,	it	is	suited	to	DMA-based	i/o
(although	it	is	possible	to	set	the	size	of	the	block	of	samples	to	one	and	to	call	the	function	in	a
program	using	interrupt-based	i/o).	Apart	from	using	the	CMSIS	DSP	library	function,
programs	tm4c123_fir_prbs_CMSIS_dma.c	and	stm32f4_fir_prbs_CMSIS_dma.c	(shown
in	Listing	3.33)	are	similar	to	programs	tm4c123_fir_prbs_dma.c	and
stm32f4_fir_prbs_dma.c.

3.3.2.4	Number	of	Sample	Values	in	Each	DMA	Transfer
The	number	of	sample	values	in	each	DMA	transfer	is	set	in	header	files
stm32f4_wm5102_init.h	and	tm4c123_aic3104_init.h	by	the	value	of	the	constant
BUFSIZE.	However,	in	the	example	programs	in	this	book	and	as	described	in	Chapter	2,
whereas	the	TM4C123	is	configured	so	that	four	DMA	transfers	take	place	concurrently	(one
in	each	direction	for	each	of	the	two	audio	channels	L	and	R),	whereas	STM32F4	is	configured
so	that	two	DMA	transfers	take	place	concurrently	(one	in	each	direction,	but	each	one
transferring	both	L	and	R	channel	sample	values).	In	each	case,	the	value	of	the	constant
BUFSIZE	determines	the	number	of	16-bit	values	per	DMA	transfer.

In	the	case	of	TM4C123,	each	DMA	transfer	block	processed	by	function
Lprocess_buffer()	contains	BUFSIZE	16-bit	L	channel	samples	and	one	call	to	function
arm_fir_f32()	processes	these	BUFSIZE	sample	values.

In	the	case	of	STM32F4,	each	DMA	transfer	block	processed	by	function	process_buffer()
contains	BUFSIZE/2	16-bit	L	channel	samples	interleaved	with	BUFSIZE/2	16-bit	R	channel
samples	and	one	call	to	function	arm_fir_f32()	is	used	to	process	BUFSIZE/2	L	channel
sample	values.

Listing	3.11	Program	stm32f4_fir_prbs_CMSIS_dma.c

//	stm32f4_fir_prbs_CMSIS_dma.c

#include	“stm32f4_wm5102_init.h”

#include	“bp1750.h”

extern	uint16_t	pingIN[BUFSIZE],	pingOUT[BUFSIZE];

extern	uint16_t	pongIN[BUFSIZE],	pongOUT[BUFSIZE];

int	rx_proc_buffer,	tx_proc_buffer;

volatile	int	RX_buffer_full	=	0;

volatile	int	TX_buffer_empty	=	0;

float32_t	x[BUFSIZE/2],	y[BUFSIZE/2],	state[N+(BUFSIZE/2)-1];

arm_fir_instance_f32	S;

void	DMA1_Stream3_IRQHandler()

{

		if(DMA_GetITStatus(DMA1_Stream3,DMA_IT_TCIF3))

		{

				DMA_ClearITPendingBit(DMA1_Stream3,DMA_IT_TCIF3);

				if(DMA_GetCurrentMemoryTarget(DMA1_Stream3))

						rx_proc_buffer	=	PING;

				else

						rx_proc_buffer	=	PONG;

				RX_buffer_full	=	1;

		}

}

void	DMA1_Stream4_IRQHandler()

{

		if(DMA_GetITStatus(DMA1_Stream4,DMA_IT_TCIF4))

		{

				DMA_ClearITPendingBit(DMA1_Stream4,DMA_IT_TCIF4);

				if(DMA_GetCurrentMemoryTarget(DMA1_Stream4))

						tx_proc_buffer	=	PING;

				else

						tx_proc_buffer	=	PONG;

				TX_buffer_empty	=	1;

		}

}

void	process_buffer()

{

		int	i;

		uint16_t	*rxbuf,	*txbuf;

		if	(rx_proc_buffer	 	PING)

				rxbuf	=	pingIN;

		else

				rxbuf	=	pongIN;

		if	(tx_proc_buffer	 	PING)

				txbuf	=	pingOUT;

		else

				txbuf	=	pongOUT;

//	place	BUFSIZE/2	prbs	values	in	x[]

		for	(i=0	;	i<(BUFSIZE/2)	;	i++)

		{

				x[i]	=	(float32_t)(prbs(8000));

		}

//	compute	BUFSIZE/2	filter	output	values	in	y[]

		arm_fir_f32(&S,x,y,BUFSIZE/2);

//	write	BUFSIZE/2	samples	to	output	channels

		for	(i=0	;	i<(BUFSIZE/2)	;	i++)

		{

				*txbuf++	=	(int16_t)(y[i]);

				*txbuf++	=	(int16_t)(y[i]);

		}

		TX_buffer_empty	=	0;

		RX_buffer_full	=	0;

}

int	main(void)

{

		arm_fir_init_f32(&S,	N,	h,	state,	BUFSIZE/2);

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_DMA);

		while(1)

		{

				while	(!(RX_buffer_full	&&	TX_buffer_empty)){}

				GPIO_SetBits(GPIOD,	GPIO_Pin_15);

				process_buffer();

				GPIO_ResetBits(GPIOD,	GPIO_Pin_15);

		}

}

Example	3.23

Comparison	of	Execution	Times	for	Three	Different	FIR	Filter	Implementations
(tm4c123_fir3ways_intr.c).

A	straightforward	method	of	measuring	the	time	taken	to	compute	each	FIR	filter	output	sample
is	to	toggle	a	GPIO	output	pin	setting	it	high	in	a	program	statement	immediately	preceding
computation	and	resetting	it	low	in	a	program	statement	immediately	following	computation.
Most	of	the	example	programs	in	this	chapter	do	this.	On	the	TM4C123	Launchpad,	GPIO	pin
PE2	is	used,	and	on	the	STM32F407	Discovery,	GPIO	pin	PD15	is	used.

Figure	3.46	shows	the	signal	output	by	program	tm4c123_fir_prbs_intr.c	on	GPIO	pin
PE2.	This	program	uses	interrupt-based	i/o	and	the	rectangular	pulse	is	repeated	every	 ,
reflecting	the	8-kHz	sampling	frequency.	The	duration	of	the	pulse,	that	is	 ,	indicates	that
the	program	takes	that	time	in	order	to	compute	the	value	of	each	output	sample	value.	The
higher	the	order	of	the	FIR	implemented	by	this	program	(as	determined	by	the	coefficient
header	file	used),	the	longer	it	will	take	to	compute	each	output	sample	value.	In	order	for	the
program	to	work,	that	computation	time	must	be	less	than	the	sampling	period.

Figure	3.46	Pulses	output	on	GPIO	pin	PE2	by	programs	tm4c123_fir_prbs_intr.c	and
tm4c123_fir_prbs_dma.c.

The	duration	of	the	pulses	output	on	GPIO	pin	PE2	by	program	tm4c123_fir_prbs_dma.c,
which	uses	DMA-based	i/o,	indicates	the	time	taken	to	compute	a	block	of	BUFSIZE	output
sample	values.	These	pulses	are	repeated	every	BUFSIZE*125	µs.	The	higher	the	order	of	the
FIR	implemented	by	this	program	(as	determined	by	the	coefficient	header	file	used),	the
longer	it	will	take	to	compute	BUFSIZE	output	sample	values.	In	order	for	the	program	to	work,
that	computation	time	must	be	less	than	BUFSIZE	times	the	sampling	period.	The	duration	of	the
pulse	shown	in	Figure	3.46	is	3.52	ms,	which,	given	that	the	value	of	BUFSIZE	in	this	example
was	equal	to	256,	represents	a	time	of	 	to	compute	the	value	of	each	output	sample.

The	program	statements	used	to	implement	the	FIR	filtering	operation	affect	its	execution	time.
Program	tm4c123_fir3ways_intr.c,	shown	in	Listing	3.35,	gives	the	user	the	option	of
switching	between	different	FIR	filter	implementations	while	the	program	is	running.	Using
user	switch	SW1	on	the	TM4C123	LaunchPad,	the	user	can	cycle	through	three	alternatives.

Listing	3.12	Program	tm4c123_fir3ways_intr.c

//	tm4c123_fir3ways_intr.c

#include	"tm4c123_aic3104_init.h"

#include	"bp1750.h"

#define	NUM_METHODS	3

float32_t	x[2*N];

int16_t	k	=	0;

int16_t	METHOD_number	=	0;

AIC3104_data_type	sample_data;

float32_t	inputl,	inputr;

void	SSI_interrupt_routine(void)

{

		int16_t	i;

		float32_t	yn	=	0.0;

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		inputl	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		inputr	=	(float32_t)(sample_data.bit16[0]);

		switch(METHOD_number)

		{

				case	0:

						GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

						x[0]	=	(float32_t)(prbs(8000));

						for	(i=0	;	i<N	;	i++)	yn	+=	h[i]*x[i];

						for	(i=N-1	;	i>0	;	i--)	x[i]	=	x[i-1];

						GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

						break;

				case	1:

						GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

						x[k++]	=	(float32_t)(prbs(8000));

						if	(k>=	N)	k	=	0;

						for	(i=0	;	i<N	;	i++)

						{

								yn	+=	h[i]*x[k++];

								if	(k>=	N)	k	=	0;

						}

						GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

						break;

				case	2:

						GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

						x[k]	=	(float32_t)(prbs(8000));

						x[k+N]	=	x[k];

						k	=	(k+1)	%	N;

						for	(i=0	;	i<N	;	i++)	yn	+=	h[i]*x[k+i];

						GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

						break;

		}

		sample_data.bit32	=	((int16_t)(yn));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

}

int	main(void)

}

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1)

		{

				ROM_SysCtlDelay(10000);

				if	(!GPIOPinRead(GPIO_PORTF_BASE,	GPIO_PIN_4))

				{

						ROM_SysCtlDelay(10000);

						METHOD_number	=	(METHOD_number+1)	%	NUM_METHODS;

						while	(!GPIOPinRead(GPIO_PORTF_BASE,	GPIO_PIN_4)){}

				}

		}

}

The	first	implementation	method	is	straightforward	and	uses	two	separate	loops.	The	first	loop

				for	(i=0	;	i<	N	;	i++)	yn	+=	h[i]*x[i];

is	used	in	order	to	compute	the	convolution	sum	of	the	N	previous	input	samples	stored	in	the
filter	delay	line	x	and	its	N	filter	coefficients	h,	placing	the	result	in	yn.	The	second	loop

		for	(i=N-1	;	i>0	;	i--)	x[i]	=	x[i-1];

is	used	to	shift	the	contents	of	the	filter	delay	line	x	by	one.	Intuitively,	it	is	wasteful	of
computational	effort	to	repeatedly	move	each	input	sample	from	one	memory	location	to
another.	On	the	other	hand,	the	computational	effort	involved	in	that	straightforward	operation
is	unlikely	to	be	great.

The	second	implementation	method

		for	(i=0	;	i<N	;	i++)

		{

				yn	+=	h[i]*x[k++];

				if	(k>=	N)	k	=	0;

		}

involves	treating	array	x	as	a	circular	buffer	in	which	to	store	input	sample	values.	Once	a
sample	has	been	stored	in	array	x,	it	is	not	moved.	Variable	k	is	used	to	keep	track	of	where	in
array	x	the	most	recent	input	sample	is	stored.	The	value	of	k	is	incremented	once	per	sampling
instant.	Each	time	the	value	of	k	is	incremented,	its	value	is	tested,	and	if	greater	than	or	equal
to	N,	it	is	reset	to	zero.	The	value	of	k	is	also	incremented	N	times	during	computation	of	the

convolution	sum	returning	to	the	same	value	it	started	at	(before	computation	of	the	convolution
sum).	This	implementation	method	uses	just	one	loop	but	requires	that	the	value	of	k	is	tested
(N+1)	times	in	total.

The	third	implementation	method

		for	(i=0	;	i<N	;	i++)	yn	+=	h[i]*x[k+i];

eliminates	the	need	to	test	the	value	of	k	(N	times)	during	computation	of	the	convolution	sum,
at	the	expense	of	requiring	twice	as	much	memory	to	store	input	sample	values.	Each	input
sample	value	is	stored	in	two	different	locations,	x[k]	and	x[k+N],	in	an	array	x	of	length	2.
Effectively,	this	is	an	alternative	method	of	implementing	circular	buffering.

3.3.2.5	Running	the	Program
Build	and	run	the	program	and	observe	the	pulses	output	on	GPIO	pin	PE2	using	an
oscilloscope.	Press	user	switch	SW1	on	the	launchpad	to	cycle	through	the	three	different
implementation	methods.	In	the	case	of	an	81-coefficient	FIR	filter,	defined	in	header	file
bp1750.h,	the	three	different	implementation	methods	take	13.7,	16.0,	and	 	to	compute
each	output	sample	value.

Example	3.24

Comparison	of	Execution	Times	for	FIR	Filters	Implemented	in	C	and	Using	CMSIS
DSP	library	function	arm_fir_f32().

CMSIS	DSP	library	function	arm_fir_f32()	is	an	efficient	method	of	implementing	an	FIR
filter	and	was	demonstrated	in	Example	3.32.	The	duration	of	the	pulse	output	on	GPIO	pin
PE2	by	program	tm4c123_fir_prbs_CMSIS_dma.c	is	936	µs	(BUFSIZE	=	256),	indicating
that	it	takes	approximately	3.6	µs	to	compute	the	value	of	each	output	sample.	It	is	most
computationally	efficient	to	implement	an	FIR	filter	using	DMA-based	i/o	to	provide	blocks	of
input	data	to	the	CMSIS	library	function	arm_fir_f32().	However,	this	approach	incurs	a
greater	real-time	delay	(latency)	than	a	sample-by-sample	interrupt-based	approach.

4.1

4.2

4.3

4.4

4.5

Chapter	4
Infinite	Impulse	Response	Filters
The	FIR	filter	discussed	in	Chapter	3	has	no	analog	counterpart.	In	this	chapter,	we	discuss	the
infinite	impulse	response	(IIR)	filter	that,	typically,	makes	use	of	the	vast	knowledge	that	exists
concerning	analog	filters.	The	design	procedure	described	in	this	chapter	involves	the
conversion	of	an	analog	filter	into	an	equivalent	discrete	filter.	Either	the	impulse	invariance
or	bilinear	transformation	(BLT)	technique	may	be	used	to	effect	that	conversion.	Both
procedures	convert	the	transfer	function	of	an	analog	filter	in	the	 -domain	into	an	equivalent
discrete-time	transfer	function	in	the	 -domain.

4.1	Introduction
Consider	a	general	input–output	equation	of	the	form

or,	equivalently,

This	recursive	difference	equation	represents	an	IIR	filter.	The	output	 ,	at	instant	 ,
depends	not	only	on	the	current	input	 ,	at	instant	 ,	and	on	past	inputs	 ,	 ,	…,	

,	but	also	on	past	outputs	 ,	 ,…,	 .	If	we	assume	all	initial
conditions	to	be	zero	in	Equation	(4.2),	its	 -transform	is

Letting	 	in	(4.3),	the	transfer	function	 	of	the	IIR	filter	is

where	 	and	 	represent	the	numerator	and	denominator	polynomials,	respectively.
Multiplying	and	dividing	by	 ,	 	becomes

where	 	is	a	constant	is	a	transfer	function	with	 	zeros	and	 	poles.	If	all	of	the	coefficients
	in	Equation	(4.5)	are	equal	to	zero,	this	transfer	function	reduces	to	a	transfer	function	with	
	poles	at	the	origin	in	the	 -plane	representing	the	FIR	filter	discussed	in	Chapter	3.	For	a

causal	discrete-time	system	to	be	stable,	all	the	poles	of	its	 -transfer	function	must	lie	inside
the	unit	circle,	as	discussed	in	Chapter	3.	Hence,	for	an	IIR	filter	to	be	stable,	the	magnitude	of
each	of	its	poles	must	be	less	than	1,	or

1.	 If	 ,	then	 ,	as	 ,	yielding	a	stable	system.

2.	 If	 ,	then	 ,	as	 ,	yielding	an	unstable	system.

3.	 If	 ,	the	system	is	marginally	stable,	yielding	an	oscillatory	response.

4.2	IIR	Filter	Structures
Several	different	structures	may	be	used	to	represent	an	IIR	filter.

4.2.1	Direct	Form	I	Structure
Using	the	direct	form	I	structure	shown	in	Figure	4.1,	the	filter	in	Equation	(4.2)	can	be
realized.	For	an	 th-order	filter,	this	structure	contains	 	delay	elements,	each	represented
by	a	block	labeled	 .	For	example,	a	second-order	filter	with	 	will	contain	four	delay
elements.

Figure	4.1	Direct	form	I	IIR	filter	structure.

4.11

4.6

4.7

4.8

4.9

4.10

4.2.2	Direct	Form	II	Structure
The	direct	form	II	structure	shown	in	Figure	4.2	is	one	of	the	structures	most	commonly	used	to
represent	an	IIR	filter.	It	requires	half	as	many	delay	elements	as	direct	form	I.	For	example,	a
second-order	filter	requires	two	delay	elements,	as	opposed	to	four	with	the	direct	form	I
structure.	From	the	block	diagram	of	Figure	4.2,	it	can	be	seen	that

and	that

Taking	 -transforms	of	Equations	(4.6)	and	(4.7)

and	hence,

and

Thus

which	is	similar	to	Equation	(4.5).

Figure	4.2	Direct	form	II	IIR	filter	structure.

The	direct	form	II	structure	can	be	represented	by	difference	Equations	(4.6)	and	(4.7)	taking
the	place	of	Equation	(4.2).	Equations	(4.6)	and	(4.7)	may	be	used	to	implement	an	IIR	filter	in
a	computer	program.	Initially,	 	are	set	to	zero.	At	instant	 ,	a	new
sample	 	is	acquired.	Equation	(4.6)	is	used	to	solve	for	 	and	then	the	output	 	is
calculated	using	Equation	(4.7).

4.2.3	Direct	Form	II	Transpose
The	direct	form	II	transpose	structure	shown	in	Figure	4.3	is	a	modified	version	of	the	direct
form	II	structure	and	requires	the	same	number	of	delay	elements.

4.12

4.13

4.14

4.15

4.16

Figure	4.3	Direct	form	II	transpose	IIR	filter	structure.

From	inspection	of	the	block	diagram,	it	is	apparent	that	the	filter	output	can	be	computed	using

Subsequently,	the	contents	of	the	delay	line	can	be	updated	using

and

and	so	on	until	finally

Using	Equation	(4.13)	to	find	 ,

Equation	(4.12)	becomes

4.17

4.18

4.19

4.21

4.20

Similarly,	using	Equation	(4.14)	to	find	 ,

Equation	(4.12)	becomes

Continuing	this	procedure	until	Equation	(4.15)	has	been	used,	it	can	be	shown	that	Equation
(4.12)	is	equivalent	to	Equation	(4.2)	and	hence	that	the	block	diagram	of	Figure	4.3	is
equivalent	to	those	of	Figures	4.1	and	4.2.	The	transposed	structure	implements	the	zeros	of	the
filter	first	and	then	the	poles,	whereas	the	direct	form	II	structure	implements	the	poles	first.

4.2.4	Cascade	Structure
The	transfer	function	in	Equation	(4.5)	can	be	factorized	as

in	terms	of	first-	or	second-order	transfer	functions,	 .	This	cascade	(or	series)	structure	is
shown	in	Figure	4.4.	An	overall	transfer	function	can	be	represented	with	cascaded	transfer
functions.	For	each	section,	either	the	direct	form	II	structure	or	its	transpose	version	can	be
used.	Figure	4.5	shows	a	fourth-order	IIR	structure	in	terms	of	two	direct	form	II	second-order
sections	in	cascade.	The	transfer	function	 ,	in	terms	of	cascaded	second-order	transfer
functions,	can	in	this	case	be	written	as

Figure	4.4	Cascade	form	IIR	filter	structure.

Figure	4.5	Fourth-order	IIR	filter	with	two	direct	form	II	sections	in	cascade.

4.22

4.23

where	the	constant	 	in	Equation	(4.20)	is	incorporated	into	the	coefficients.	For	example,	if	
	for	a	fourth-order	transfer	function,	then	Equation	(4.18)	becomes

as	can	be	verified	in	Figure	4.5.	From	a	mathematical	standpoint,	proper	ordering	of	the
numerator	and	denominator	factors	does	not	affect	the	output	result.	However,	from	a	practical
standpoint,	proper	ordering	of	each	second-order	section	can	minimize	quantization	noise.
Note	that	the	output	of	the	first	section,	 ,	becomes	the	input	to	the	second	section.	With	an
intermediate	output	result	stored	in	one	of	the	registers,	a	premature	truncation	of	the
intermediate	output	becomes	negligible.	A	programming	example	later	in	this	chapter	will
illustrate	the	implementation	of	an	IIR	filter	using	cascaded	second-order	direct	form	II
sections.

4.2.5	Parallel	Form	Structure
The	transfer	function	in	Equation	(4.11)	can	be	represented	as

which	can	be	obtained	using	a	partial	fraction	expansion	(PFE)	of	Equation	(4.11).	This
parallel	form	structure	is	shown	in	Figure	4.6.	Each	of	the	transfer	functions	can	be	either	first-
or	second-order	function.

Figure	4.6	Parallel	form	IIR	filter	structure.

As	with	the	cascade	structure,	the	parallel	form	can	efficiently	be	represented	in	terms	of
second-order	direct	form	II	structure	sections.	 	can	be	expressed	as

4.24

4.25

4.26

For	example,	for	a	fourth-order	transfer	function,	 	in	Equation	(4.24)	becomes

This	fourth-order	parallel	structure	is	represented	in	terms	of	two	direct	form	II	sections	as
shown	in	Figure	4.7.	From	that	figure,	the	output	 	can	be	expressed	in	terms	of	the	output	of
each	section,	or

Typically,	 th-order	IIR	filters	are	implemented	as	cascaded	second-order	sections.

Figure	4.7	Fourth-order	IIR	filter	with	two	direct	form	II	sections	in	parallel.

4.3	Impulse	Invariance
This	method	of	IIR	filter	design	is	based	on	the	concept	of	mapping	each	 -plane	pole	of	a
continuous-time	filter	to	a	corresponding	 -plane	pole	using	the	substitution	 	for	

	in	 .	This	can	be	achieved	by	several	different	means.	PFE	of	 	and	substitution	
	for	 	can	involve	a	lot	of	algebraic	manipulation.	An	equivalent	method	of

making	the	transformation	is	to	use	tables	of	Laplace	and	 -transforms.	Generally,	tables	of
Laplace	transforms	list	 -domain	transfer	functions	and	their	corresponding	impulse
responses.	Tables	of	 -transforms	may	be	used	to	find	the	 -transfer	function	corresponding	to
an	impulse	response.	The	method	is	referred	to	as	impulse	invariance	because	of	the
equivalence	of	the	impulse	responses	of	the	digital	filter	(described	by	 -transfer	function)	and
of	the	analog	prototype	(described	by	 -transfer	function).	The	specific	relationship	between
the	two	impulse	responses	is	that	one	comprises	samples	of	a	scaled	version	of	the	other.	The

4.27

4.28

4.29

performance	of	the	two	filters	may	differ,	however,	depending	on	how	well	the	detail	of	the
continuous	impulse	response	of	the	analog	prototype	is	represented	by	its	sampled	form.	As
will	be	illustrated	in	Section	4.5,	if	the	sampling	rate	of	the	digital	filter	is	not	sufficiently	high
to	capture	the	detail	of	continuous-time	impulse	response,	then	the	high-frequency
characteristics	of	the	prototype	filter	may	not	be	reproduced	in	the	digital	implementation.

4.4	BILINEAR	TRANSFORMATION
The	BLT	is	the	most	commonly	used	technique	for	transforming	an	analog	filter	into	a	digital
filter.	It	provides	one-to-one	mapping	from	the	analog	 -plane	to	the	digital	 -plane,	using	the
substitution

The	constant	 	in	Equation	(4.27)	is	commonly	chosen	as	 ,	where	 	represents	the
sampling	period	in	seconds,	of	the	digital	filter.	Other	values	for	 	can	be	selected,	as
described	in	Section	4.4.1.	The	BLT	allows	the	following:

1.	 The	left	region	in	the	 -plane,	corresponding	to	 ,	maps	inside	the	unit	circle	in	the	 -
plane.

2.	 The	right	region	in	the	 -plane,	corresponding	to	 ,	maps	outside	the	unit	circle	in	the	
-plane.

3.	 The	imaginary	 	axis	in	the	 -plane	maps	on	the	unit	circle	in	the	 -plane.

Let	 	and	 	represent	analog	and	digital	frequencies,	respectively.	With	 	and	
,	Equation	(4.27)	becomes

Using	Euler's	formulae	for	sine	and	cosine	in	terms	of	complex	exponential	functions,	 	in
Equation	(4.28)	becomes

which	relates	the	analog	frequency	 	to	the	digital	frequency	 .	This	relationship	is	plotted
in	Figure	4.8	for	positive	values	of	 .	The	nonlinear	compression	of	the	entire	analog
frequency	range	into	the	digital	frequency	range	from	zero	to	 	is	referred	to	as	frequency
warping	().

4.30

4.31

Figure	4.8	Relationship	between	analog	and	digital	frequencies,	 	and	 ,	due	to	frequency
warping	in	the	bilinear	transform.

4.4.1	Bilinear	Transform	Design	Procedure
The	BLT	design	procedure	for	transforming	an	analog	filter	design	expressed	as	a	transfer
function	 	into	a	 -transfer	function	 	representing	a	discrete-time	IIR	filter	is	described
by

	can	be	chosen	according	to	well-documented	analog	filter	design	theory,	for	example,
Butterworth,	Chebyshev,	Bessel,	or	elliptic.	It	is	common	to	choose	 .	Alternatively,	it
is	possible	to	prewarp	the	analog	filter	frequency	response	in	such	a	way	that	the	bilinear
transform	maps	an	analog	frequency	 ,	in	the	range	0– ,	to	exactly	the	same	digital
frequency	 .	This	is	achieved	by	choosing

4.5	Programming	Examples
The	examples	in	this	section	introduce	and	illustrate	the	implementation	of	IIR	filtering.	Many
different	approaches	to	the	design	of	IIR	filters	are	possible,	and	most	often,	IIR	filters	are
designed	with	the	aid	of	software	tools.	Before	using	such	a	design	package,	and	in	order	to

4.32

appreciate	better	what	such	design	packages	do,	a	simple	example	will	be	used	to	illustrate
some	of	the	basic	principles	of	IIR	filter	design.

4.5.1	Design	of	a	Simple	IIR	Low-Pass	Filter
Traditionally,	IIR	filter	design	is	based	on	the	concept	of	transforming	a	continuous-time,	or
analog,	design	into	the	discrete-time	domain.	Butterworth,	Chebyshev,	Bessel,	and	elliptic
classes	of	analog	filters	are	widely	used.	In	this	example,	a	second-order,	type	1	Chebyshev,
low-pass	filter	with	2	dB	of	pass-band	ripple	and	a	cutoff	frequency	of	1500	Hz	(9425	rad/s)
is	used.

The	continuous-time	transfer	function	of	this	filter	is

and	its	frequency	response	is	shown	in	Figure	4.9.

Figure	4.9	(a)	Magnitude	frequency	response	of	filter	 .	(b)	Phase	response	of	filter	 .

Using	MATLAB®,	the	coefficients	of	this	 -transfer	function	may	be	generated	by	typing

>>	[b,a]	=	cheby1(2,2,2*pi*1500,'s');

at	the	command	line.	Our	task	is	to	transform	this	design	into	the	discrete-time	domain.	One
method	of	achieving	this	is	the	impulse	invariance	method.

4.5.1.1	Impulse	Invariance	Method
Starting	with	the	filter	transfer	function	of	Equation	(4.32),	we	can	make	use	of	the	Laplace

4.33

4.35

4.36

4.34

4.37

transform	pair

(the	 -transfer	function	of	the	filter	is	equal	to	the	Laplace	transform	of	its	impulse	response)
and	use	the	values

Hence,	the	impulse	response	of	the	filter	in	this	example	is	given	by

The	 -transform	pair

yields	the	following	discrete-time	transfer	function	when	we	substitute	for	 ,	 ,	 	and	set	
	in	Equation	(4.35).

From	 ,	the	following	difference	equation	may	be	derived.

With	reference	to	Equation	(4.2),	we	can	see	that	 ,	 ,	 ,
and	 .

In	order	to	apply	the	impulse	invariant	method	using	MATLAB,	type

>>	[b,a]	=	cheby1(2,2,2*pi*1500,'s');

>>	[bz,az]	=	impinvar(b,a,8000);

This	discrete-time	filter	has	the	property	that	its	discrete-time	impulse	response	 	is	equal
to	samples	of	the	continuous-time	impulse	response	 ,	(scaled	by	the	sampling	period,),	as
shown	in	Figure	4.10.	Although	it	is	evident	from	Figure	4.10	that	the	discrete-time	impulse
response	 	decays	almost	to	zero,	this	sequence	is	not	finite.	It	is	perhaps	worth	noting	that,
counterintuitively,	the	definition	of	an	IIR	filter	is	not	that	its	impulse	response	is	infinite	in
duration	but	rather	that	it	makes	use	of	previous	output	sample	values	in	order	to	calculate	its
current	output.	In	theory,	it	is	possible	for	an	IIR	filter	to	have	a	finite	impulse	response.
Whereas	the	impulse	response	of	an	FIR	filter	is	given	explicitly	by	its	finite	set	of

4.38

coefficients,	the	coefficients	of	an	IIR	filter	are	used	in	a	recursive	equation	(4.1)	to	determine
its	impulse	response	 .

Figure	4.10	Impulse	responses	 	(scaled	by	sampling	period)	and	 	of	continuous-time
filter	 	and	its	impulse-invariant	digital	implementation.

Example	4.1

Implementation	of	an	IIR	Filter	Using	Cascaded	Second-Order	Direct	Form	II
Sections	(stm32f4_iirsos_intr.c).

Program	stm32f4_iirsos_intr.c,	shown	in	Listing	4.1,	implements	a	generic	IIR	filter	using
cascaded	direct	form	II	second-order	sections,	and	coefficient	values	stored	in	a	separate
header	file.	Each	section	of	the	filter	is	implemented	using	the	following	two	program
statements.

wn	=	input	-	a[section][1]*w[section][0]

											-		a[section][2]*w[section][1];

yn	=	b[section][0]*wn	+	b[section][1]*w[section][0]

											+	b[section][2]*w[section][1];

which	correspond	to	the	equations

and

4.39
With	reference	to	Figure	4.5	and	to	(4.18),	the	coefficients	are	stored	by	the	program	as	a[i]
[0],	a[i][1],	a[i][2],	b[i][0],	b[i][1],	and	b[i][2],	respectively.	w[i][0]	and	w[i]
[1]	correspond	to	 	and	 	in	Equations	(4.38)	and	(4.39).

Listing	4.1	IIR	filter	program	using	second-order
sections	in	cascade	(stm32f4_iirsos_intr.c)

//	stm32f4_iirsos_intr.c

#include	"stm32f4_wm5102_init.h"

#include	"elliptic.h"

float	w[NUM_SECTIONS][2]	=	{0};

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	left_in_sample;

		int16_t	right_out_sample,	right_in_sample;

		int16_t	section;				//	second	order	section	number

		float32_t	input;				//	input	to	each	section

		float32_t	wn,	yn;			//	intermediate	and	output	values

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				input	=(float32_t)(left_in_sample);

				for	(section=0	;	section<	NUM_SECTIONS	;	section++)

				{

						wn	=	input	-	a[section][1]*w[section][0]

											-	a[section][2]*w[section][1];

						yn	=	b[section][0]*wn	+	b[section][1]*w[section][0]

											+	b[section][2]*w[section][1];

						w[section][1]	=	w[section][0];

						w[section][0]	=	wn;

						input	=	yn;

				}

				left_out_sample	=	(int16_t)(yn);

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				right_out_sample	=	0;

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

}

int	main(void)

{

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

The	impulse	invariant	filter	may	be	implemented	using	program	stm32f4_iirsos_intr.c	by
including	the	coefficient	header	file	impinv.h,	shown	in	Listing	4.2.	The	number	of	cascaded
second-order	sections	is	defined	as	NUM_SECTIONS	in	that	file.

Listing	4.2	Coefficient	header	file	impinv.h

//	impinv.h

//	second-order	type	1	Chebyshev	LPF	with	2	dB	pass-band	ripple

//	and	cutoff	frequency	1500	Hz

#define	NUM_SECTIONS	1

float	b[NUM_SECTIONS][3]={	{0.0,	0.48255,	0.0}	};

float	a[NUM_SECTIONS][3]={	{1.0,	-0.71624,	0.387913}	};

Build	and	run	the	program.	Using	a	signal	generator	and	oscilloscope	to	measure	the	magnitude
frequency	response	of	the	filter,	you	should	find	that	the	attenuation	of	frequencies	above	2500
Hz	is	not	very	pronounced.	This	is	due	to	both	the	low	order	of	the	filter	and	the	inherent
shortcomings	of	the	impulse-invariant	design	method.	A	number	of	alternative	methods	of
assessing	the	magnitude	frequency	response	of	the	filter	will	be	described	in	the	next	few
examples.	In	common	with	most	of	the	example	programs	described	in	this	chapter,	program
stm32f4_iirsos_intr.c	uses	interrupt-based	i/o.	A	DMA-based	i/o	version	of	the	program,
stm32f4_iirsos_dma.c,	is	also	provided.	It	can	be	used	by	removing	program
stm32f4_iirsos_intr.c	from	the	project	and	adding	program	stm32f4_iirsos_dma.c
before	rebuilding	the	project.

Example	4.2

Implementation	of	IIR	Filter	Using	Cascaded	Second-Order	Transposed	Direct	Form
II	Sections	(stm32f4_iirsostr_intr.c).

A	transposed	direct	form	II	structure	can	be	implemented	using	program
stm32f4_iirsos_intr.c	simply	by	replacing	the	program	statements

wn	=	input	-	a[section][1]*w[section][0]

					-	a[section][2]*w[section][1];

yn	=	b[section][0]*wn	+	b[section][1]*w[section][0]

					+	b[section][2]*w[section][1];

w[section][1]	=	w[section][0];

w[section][0]	=	wn;

with	the	following	program	statements

yn	=	b[section][0]*input	+	w[section][0];

w[section][0]	=	b[section][1]*input	+	w[section][1]

																-	a[section][1]*yn;

w[section][1]	=	b[section][2]*input	-	a[section][2]*yn;

(variable	wn	is	not	required	in	the	latter	case).

This	substitution	has	been	made	already	in	program	stm32f4_iirsostr_intr.c.	You	should
not	notice	any	difference	in	the	characteristics	of	the	filters	implemented	using	programs
stm32f4_iirsos_intr.c	and	stm32f4_iirsostr_intr.c.

Example	4.3

Estimating	the	Frequency	Response	of	an	IIR	Filter	Using	Pseudorandom	Noise	as
Input	(tm4c123_iirsos_prbs_intr.c).

Program	tm4c123_iirsos_prbs_intr.c	is	closely	related	to	program
tm4c123_fir_prbs_intr.c,	described	in	Chapter	3.	In	real	time,	it	generates	a
pseudorandom	binary	sequence	and	uses	this	wideband	noise	signal	as	the	input	to	an	IIR	filter.
The	output	of	the	filter	is	written	to	the	DAC	in	the	AIC3104	codec	and	the	resulting	analog
signal	(filtered	noise)	may	be	analyzed	using	an	oscilloscope,	spectrum	analyzer,	or	Goldwave.
The	frequency	content	of	the	filter	output	gives	a	good	indication	of	the	filter's	magnitude
frequency	response.	Figures	4.11	and	4.12	show	the	output	of	the	example	filter	(using
coefficient	file	impinv.h)	displayed	using	the	FFT	function	of	a	Rigol	DS1052E	oscilloscope
and	using	Goldwave.

Figure	4.11	Output	from	program	tm4c123_iirsos_prbs_intr.c	using	coefficient	file
impinv.h,	viewed	using	the	FFT	function	of	a	Rigol	DS1052E	oscilloscope.

Figure	4.12	Output	from	program	tm4c123_iirsos_prbs_intr.c	using	coefficient	file
impinv.h,	viewed	using	Goldwave.

In	Figure	4.11,	the	vertical	scale	is	5	dB	per	division	and	the	horizontal	scale	is	625	Hz	per
division.	The	low-pass	characteristic	of	the	example	filter	is	evident	in	the	left-hand	half	of	the
figures	between	0	and	2500	Hz.	Between	2500	and	4000	Hz,	the	low-pass	characteristic	is
less	pronounced	and	the	steeper	roll-off	beyond	4000	Hz	is	due	not	to	the	IIR	filter	but	to	the
reconstruction	filter	in	the	AIC3104	codec.

Example	4.4

Estimating	the	Frequency	Response	of	an	IIR	Filter	Using	a	Sequence	of	Impulses	as
Input	(tm4c123_iirsos_delta_intr.c).

Instead	of	a	pseudorandom	binary	sequence,	program	tm4c123_iirsos_delta_intr.c,
shown	in	Listing	4.3,	uses	a	sequence	of	discrete-time	impulses	as	the	input	to	an	IIR	filter.	The
resultant	output	is	an	approximation	to	a	repetitive	sequence	of	filter	impulse	responses.	This
relies	on	the	filter	impulse	response	decaying	practically	to	zero	within	the	period	between
successive	input	impulses.	The	filter	output	is	written	to	the	DAC	in	the	AIC3104	codec	and
the	resulting	analog	signal	may	be	analyzed	using	an	oscilloscope,	spectrum	analyzer,	or

Goldwave.	In	addition,	program	tm4c123_iirsos_delta_intr.c	stores	the	BUFFERSIZE
most	recent	samples	of	the	filter	output	yn	in	array	response,	and	by	saving	the	contents	of	that
array	to	a	data	file	and	using	the	MATLAB	function	tm4c123_logfft(),	the	response	of	the
filter	may	be	viewed	in	both	time	and	frequency	domains.

Listing	4.3	Program	tm4c123_iirsos_delta_intr.c

//	tm4c123_iirsos_delta_intr.c

#include	"tm4c123_aic3104_init.h"

#include	"elliptic.h"

#define	BUFFERSIZE	256

#define	AMPLITUDE	10000.0f

float32_t	w[NUM_SECTIONS][2]	=	{0};

float32_t	dimpulse[BUFFERSIZE];

float32_t	response[BUFFERSIZE];

int16_t	bufptr	=	0;

AIC3104_data_type	sample_data;

void	SSI_interrupt_routine(void)

{

		float32_t	inputl,	inputr;

		int16_t	i;

		int16_t	section;			//	index	for	section	number

		float32_t	input;			//	input	to	each	section

		float32_t	wn,yn;			//	intermediate	and	output	values

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		inputl	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		inputr	=	(float32_t)(sample_data.bit16[0]);

		input	=	dimpulse[bufptr];

		for	(section=0	;	section<	NUM_SECTIONS	;	section++)

		{

				wn	=	input	-	a[section][1]*w[section][0]

									-	a[section][2]*w[section][1];

				yn	=	b[section][0]*wn	+	b[section][1]*w[section][0]

									+	b[section][2]*w[section][1];

				w[section][1]	=	w[section][0];

				w[section][0]	=	wn;

				input	=	yn;

		}

		response[bufptr++]	=	yn;

		if	(bufptr	>=	BUFFERSIZE)	bufptr	=	0;

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		sample_data.bit32	=	((int16_t)(yn*AMPLITUDE));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

}

int	main(void)

{

		int	i;

		for	(i=0	;	i<	BUFSIZE	;	i++)	dimpulse[i]	=	0.0;

		dimpulse[0]	=	10.0;

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1){}

}

Figure	4.13	shows	the	analog	output	signal	generated	by	the	program,	captured	using	a	Rigol
DS1052E	oscilloscope	connected	to	one	of	the	scope	hooks	on	the	audio	booster	pack.	The
upper	trace	shows	the	time-domain	impulse	response	of	the	filter	(per	division)	and	the
lower	trace	shows	the	FFT	of	that	impulse	response	over	a	frequency	range	of	0–12	kHz.	The
output	waveform	is	shaped	both	by	the	IIR	filter	and	by	the	AIC3104	codec	reconstruction
filter.	The	codec	reconstruction	filter	is	responsible	for	the	steep	roll-off	of	gain	at	frequencies
above	4	kHz.	Below	that	frequency,	but	at	frequencies	higher	than	1.5	kHz,	less	pronounced
roll-off	of	gain	due	to	the	IIR	filter	is	discernible.	In	the	upper	trace,	the	characteristics	of	the
codec	reconstruction	filter	are	evident	in	the	slight	ringing	that	precedes	the	greater	part	of	the
impulse	response	waveform.	Halt	the	program	and	save	the	contents	of	array	response.	Figure
4.14	shows	the	magnitude	of	the	FFT	of	the	contents	of	that	array	plotted	using	MATLAB
function	tm4c123_logfft().

Figure	4.13	Output	from	program	tm4c123_iirsos_delta_intr.c	using	coefficient	file
impinv.h,	viewed	using	the	FFT	function	of	a	Rigol	DS1052E	oscilloscope.

Figure	4.14	The	magnitude	frequency	response	of	the	filter	implemented	by	program
tm4c123_iirsos_delta_intr.c	using	coefficient	file	impinv.h,	plotted	using	MATLAB
function	tm4c123_logfft().

4.5.1.2	Aliasing	in	the	Impulse	Invariant	Method
There	are	significant	differences	between	the	magnitude	frequency	response	of	the	analog
prototype	filter	used	in	this	example	(Figure	4.9)	and	that	of	its	impulse-invariant	digital
implementation	(Figure	4.14).	The	gain	of	the	analog	prototype	has	a	magnitude	of	 	dB	at
3000	Hz,	whereas,	according	to	Figure	4.14,	the	gain	of	the	digital	filter	at	that	frequency	has	a
magnitude	closer	to	 11	dB.	This	difference	is	due	to	aliasing.	Whenever	a	signal	is	sampled,
the	problem	of	aliasing	should	be	addressed,	and	in	order	to	avoid	aliasing,	the	signal	to	be
sampled	should	not	contain	any	frequency	components	at	frequencies	greater	than	or	equal	to
half	the	sampling	frequency.	The	impulse	invariant	transformation	yields	a	discrete-time
impulse	response	equivalent	to	the	continuous-time	impulse	response	of	the	analog	prototype	

	at	the	sampling	instants,	but	this	is	not	sufficient	to	ensure	that	the	continuous-time	response
of	a	discrete-time	implementation	of	the	filter	is	equivalent	to	that	of	the	analog	prototype.	The
impulse	invariant	method	will	be	completely	free	of	aliasing	effects	only	if	the	continuous-time
impulse	response	 	contains	no	frequency	components	at	frequencies	greater	than	or	equal	to
half	the	sampling	frequency.

In	this	example,	the	magnitude	frequency	response	of	the	analog	prototype	filter	will	be	folded
back	on	itself	about	the	4000	Hz	point,	and	this	can	be	verified	using	MATLAB	function
freqz(),	which	assesses	the	frequency	response	of	a	digital	filter.	Type

4.40

4.41

4.42

4.43

>>	[b,a]	=	cheby1(2,2,2*pi*1500,'s');

>>	[bz,az]	=	impinvar(b,a,8000);

>>	freqz(bz,az);

at	the	MATLAB	command	line	in	order	to	view	the	theoretical	frequency	response	of	the	filter,
and	compare	this	with	Figure	4.14.

An	alternative	method	of	transforming	an	analog	filter	design	to	a	discrete-time
implementation,	which	eliminates	this	effect,	is	the	use	of	the	bilinear	transform.

4.5.1.3	Bilinear	Transform	Method	of	Digital	Filter	Implementation
The	bilinear	transform	method	of	converting	an	analog	filter	design	into	discrete	time	is
relatively	straightforward,	often	involving	less	algebraic	manipulation	than	the	impulse
invariant	method.	It	is	achieved	by	making	the	substitution

in	 ,	where	 	is	the	sampling	period	of	the	digital	filter,	that	is,

Applying	this	to	the	 -transfer	function	of	(4.32)	results	in	the	following	 -transfer	function.

From	Equation	(4.42),	the	following	difference	equation	may	be	derived.

This	can	be	achieved	in	MATLAB	by	typing

>>	[bd,ad]	=	bilinear(b,a,8000);

The	characteristics	of	the	filter	can	be	examined	by	changing	the	coefficient	file	used	by
programs	stm32f4_iirsos_intr.c,	tm4c123_iirsos_prbs_intr.c,	and
tm4c123_iirsos_delta_intr.c	from	impinv.h	to	bilinear.h.	In	each	case,	change	the
line	that	reads

#include	“impinv.h”

to	read

#include	“bilinear.h”

before	building,	loading,	and	running	the	programs.	Figures	4.15	through	4.18	show	results
obtained	using	programs	tm4c123_iirsos_prbs_intr.c	and

tm4c123_iirsos_delta_intr.c	with	coefficient	file	bilinear.h.	The	attenuation	provided
by	this	filter	at	high	frequencies	is	much	greater	than	in	the	impulse	invariant	case.	In	fact,	the
attenuation	at	frequencies	higher	than	2000	Hz	is	significantly	greater	than	that	of	the	analog
prototype	filter.

Figure	4.15	Output	from	program	tm4c123_iirsos_prbs_intr.c	using	coefficient	file
bilinear.h,	viewed	using	the	FFT	function	of	a	Rigol	DS1052E	oscilloscope.

Figure	4.16	Output	from	program	tm4c123_iirsos_prbs_intr.c	using	coefficient	file
bilinear.h,	viewed	using	Goldwave.

Figure	4.17	Output	from	program	tm4c123_iirsos_delta_intr.c	using	coefficient	file
bilinear.h,	viewed	using	the	FFT	function	of	a	Rigol	DS1052E	oscilloscope.

Figure	4.18	The	magnitude	frequency	response	of	the	filter	implemented	by	program
tm4c123_iirsos_delta_intr.c	using	coefficient	file	bilinear.h,	plotted	using	MATLAB
function	tm4c123_logfft().

4.44

4.45

4.5.1.4	Frequency	Warping	in	the	Bilinear	Transform
The	concept	behind	the	bilinear	transform	is	that	of	compressing	the	frequency	response	of	an
analog	filter	design	such	that	its	response	over	the	entire	range	of	frequencies	from	zero	to
infinity	is	mapped	into	the	frequency	range	from	zero	to	half	the	sampling	frequency	of	the
digital	filter.	This	may	be	represented	by

and

where	 	is	the	frequency	at	which	the	complex	gain	of	the	digital	filter	is	equal	to	the
complex	gain	of	the	analog	filter	at	frequency	 .	This	relationship	between	 	and	 	is
illustrated	in	Figure	4.19.	Consequently,	there	is	no	problem	with	aliasing,	as	seen	in	the	case
of	impulse	invariant	transformation.	However,	as	a	result	of	the	frequency	warping	inherent	in
the	bilinear	transform,	in	this	example,	the	cutoff	frequency	of	the	discrete-time	filter	obtained
is	not	1500	Hz	but	1356	Hz.	Figure	4.19	also	shows	that	the	gain	of	the	analog	filter	at	a
frequency	of	4500	Hz	is	equal	to	the	gain	of	the	digital	filter	at	a	frequency	of	2428	Hz	and	that
the	digital	frequency	1500	Hz	corresponds	to	an	analog	frequency	of	1702	Hz.	If	we	had
wished	to	create	a	digital	filter	having	a	cutoff	frequency	of	1500	Hz,	we	could	have	applied
the	bilinear	transform	of	Equation	(4.35)	to	an	analog	prototype	having	a	cutoff	frequency	of
1702	Hz.

4.46

Figure	4.19	The	effect	of	the	bilinear	transform	on	the	magnitude	frequency	response	of	the
example	filter.

This	technique	is	referred	to	as	prewarping	the	prototype	analog	design	and	is	used	by	default
in	the	MATLAB	filter	design	and	analysis	tool	fdatool,	described	in	the	next	section.	A
digital	filter	with	a	cutoff	frequency	of	1500	Hz	may	be	obtained	by	applying	the	bilinear
transform	to	the	analog	filter.

that	is

4.47

The	analog	filter	represented	by	Equation	(4.46)	can	be	produced	using	the	MATLAB
command

>>	[bb,aa]	=	cheby1(2,2,2*pi*1702,`s');

and	the	BLT	applied	by	typing

>>	[bbd,aad]	=	bilinear(bb,aa,8000);

to	yield	the	result	given	by	Equation	(4.47).	Alternatively,	prewarping	of	the	analog	filter
design	considered	previously	can	be	combined	with	application	of	the	bilinear	transform	by
typing

>>	[bbd,aad]=bilinear(b,a,8000,1500);

at	the	MATLAB	command	line.	Coefficient	file	bilinearw.h	contains	the	coefficients
obtained	as	described	earlier.

4.5.1.5	Using	MATLAB's	Filter	Design	and	Analysis	Tool
MATLAB	provides	a	filter	design	and	analysis	tool,	fdatool,	which	makes	the	calculation	of
IIR	filter	coefficient	values	simple.	Coefficients	can	be	exported	to	the	MATLAB	workspace
in	direct	form	II,	second-order	section	format,	and	MATLAB	function
stm32f4_iirsos_coeffs()	or	tm4c123_iirsos_coeffs(),	supplied	with	this	book	as	files
stm32f4_iirsos_coeffs.m	and	tm4c123_iirsos_coeffs.m	can	be	used	to	generate
coefficient	files	compatible	with	the	programs	in	this	chapter.

Example	4.5

Fourth-Order	Elliptic	Low-Pass	IIR	Filter	Designed	Using	fdatool.

To	invoke	the	Filter	Design	and	Analysis	Tool	window,	type

>>	fdatool

in	the	MATLAB	command	window.	Enter	the	parameters	for	a	fourth-order	elliptic	low-pass
IIR	filter	with	a	cutoff	frequency	of	800	Hz,	1	dB	of	ripple	in	the	pass	band,	and	50	dB	of	stop-
band	attenuation.	Click	on	Design	Filter	and	then	look	at	the	characteristics	of	the	filter	using
options	from	the	Analysis	menu	(Figure	4.20).

Figure	4.20	MATLAB	fdatool	window	showing	the	magnitude	frequency	response	of	a
fourth-order	elliptic	low-pass	filter.

This	example	illustrates	the	steep	transition	from	pass	to	stop	bands	of	an	IIR	filter	possible
even	with	relatively	few	filter	coefficients.	Select	Filter	Coefficients	from	the	Analysis	menu
in	order	to	list	the	coefficient	values	designed.	fdatool	automatically	designs	filters	as
cascaded	second-order	sections.	Each	section	is	similar	to	those	shown	in	block	diagram	form
in	Figure	4.5,	and	each	section	is	characterized	by	six	parameter	values	 ,	 ,	 ,	 ,	 ,	and	
.

By	default,	fdatool	uses	the	bilinear	transform	method	of	designing	a	digital	filter	starting
from	an	analog	prototype.	Figure	4.21	shows	the	use	of	fdatool	to	design	the	Chebyshev	filter
considered	in	the	preceding	examples.	Notice	that	the	magnitude	frequency	response	decreases
more	and	more	rapidly	with	frequency	approaching	half	the	sampling	frequency,	and	compare
this	with	Figure	4.16.	This	is	characteristic	of	filters	designed	using	the	bilinear	transform.

Figure	4.21	MATLAB	fdatool	window	showing	the	magnitude	frequency	response	of	a
second-order	Chebyshev	low-pass	filter.

4.5.1.6	Implementing	a	Filter	Designed	Using	fdatool
In	order	to	implement	a	filter	designed	using	fdatool,	carry	out	the	following	steps:

1.	 Design	the	IIR	filter	using	fdatool.

2.	 Click	Export	in	the	fdatool	File	menu.

3.	 Select	Workspace,	Coefficients,	SOS,	and	G	and	click	Export.

4.	 At	the	MATLAB	command	line,	type	either	stm32f4_iirsos_coeffs(SOS,G)	or
tm4c123_iirsos_coeffs(SOS,G)	and	enter	a	filename,	for	example,	elliptic.h.

Listing	4.4	shows	an	example	of	a	coefficient	file	produced	using	MATLAB	function
stm32f4_iirsos_coeffs()	(Listing	4.5).

Listing	4.4	Coefficient	header	file	elliptic.h

//	elliptic.h

//	this	file	was	generated	automatically	using	function	

stm32f4_iirsos_coeffs.m

#define	NUM_SECTIONS	2

float	b[NUM_SECTIONS][3]	=	{

{3.46359750E-002,	2.72500874E-002,	3.46359750E-002},

{2.90182959E-001,	-2.25444662E-001,	2.90182959E-001}	};

float	a[NUM_SECTIONS][3]	=	{

{1.00000000E+000,	-1.52872987E+000,	6.37029381E-001},

{1.00000000E+000,	-1.51375731E+000,	8.68678568E-001}	};

Listing	4.5	MATLAB	function	stm32f4_iirsos_coeffs()

%	STM32F4_IIRSOS_COEFFS.M

%

%	MATLAB	function	to	write	SOS	IIR	filter	coefficients

%	in	format	suitable	for	use	in	STM32F4	Discovery	programs

%	including	stm32f4_iirsos_intr.c,

%	stm32f4_iirsos_prbs_intr.c	and	stm32f4_iirsosdelta_intr.c

%	assumes	that	coefficients	have	been	exported	from

%	fdatool	as	two	matrices

%	first	matrix	has	format

%	[b10	b11	b12	a10	a11	a12

%			b20	b21	b22	a20	a21	a22

%			...

%]

%	where	bij	is	the	bj	coefficient	in	the	ith	stage

%	second	matrix	contains	gains	for	each	stage

%

function	STM32F4_iirsos_coeffs(coeff,gain)

%

num_sections=length(gain)-1;

fname	=	input('enter	filename	for	coefficients	','s');

fid	=	fopen(fname,'wt');

fprintf(fid,'//	%s\n',fname);

fprintf(fid,'//	this	file	was	generated	using');

fprintf(fid,'\n//	function	STM32F4_iirsos_coeffs.m\n',fname);

fprintf(fid,'\n#define	NUM_SECTIONS	%d\n',num_sections);

%	first	write	the	numerator	coefficients	b

%	i	is	used	to	count	through	sections

fprintf(fid,'\nfloat	b[NUM_SECTIONS][3]	=	{	\n');

for	i=1:num_sections

		if	i num_sections

				fprintf(fid,'{%2.8E,	%2.8E,	%2.8E}	}\n',...

				coeff(i,1)*gain(i),coeff(i,2)*gain(i),coeff(i,3)*gain(i));

		else

				fprintf(fid,'{%2.8E,	%2.8E,	%2.8E},\n',...

				coeff(i,1)*gain(i),coeff(i,2)*gain(i),coeff(i,3)*gain(i));

		end

end

%	then	write	the	denominator	coefficients	a

%	i	is	used	to	count	through	sections

fprintf(fid,'\nfloat	a[NUM_SECTIONS][3]	=	{	\n');

for	i=1:num_sections

		if	i num_sections

				fprintf(fid,'{%2.8E,	%2.8E,	%2.8E}	};\n',...

				coeff(i,4),coeff(i,5),coeff(i,6));

		else

				fprintf(fid,'{%2.8E,	%2.8E,	%2.8E}	};\n',...

				coeff(i,4),coeff(i,5),coeff(i,6));

		end

end

fclose(fid);

Program	tm4c123_iirsos_intr.c,	introduced	in	Example	4.1,	can	be	used	to	implement	the
filter.	Edit	the	line	in	the	program	that	reads

#include	“bilinear.h”

to	read

#include	“elliptic.h”

and	build	and	run	the	program.	The	coefficient	header	file	is	also	compatible	with	programs
tm4c123_iirsos_prbs_intr.c	and	tm4c123_iirsos_delta_intr.c.	Figures	4.22	and	4.23
show	results	obtained	using	program	tm4c123_iirsos_delta_intr.c	and	coefficient	file
elliptic.h.

Figure	4.22	Impulse	response	and	magnitude	frequency	response	of	the	filter	implemented	by
program	tm4c123_iirsos_delta_intr.c,	using	coefficient	file	elliptic.h,	plotted	using
MATLAB	function	tm4c123_logfft().

Figure	4.23	Output	from	program	tm4c123_iirsos_delta_intr.c,	using	coefficient	file
elliptic.h	viewed	using	a	Rigol	DS1052E	oscilloscope.

Example	4.6

Band-Pass	Filter	Design	Using	fdatool.

Figure	4.24	shows	fdatool	used	to	design	an	18th-order	Chebyshev	type	2	IIR	band-pass
filter	centered	at	2000	Hz.	The	filter	coefficient	file	bp2000.h	is	compatible	with	programs
tm4c123_iirsos_intr.c,	tm4c123_iirsos_delta_intr.c,	and
tm4c123_iirsos_prbs_intr.c.	Figures	4.25	and	4.26	show	the	output	from	program
tm4c123_iirsos_prbs_intr.c	using	these	coefficients.

Figure	4.24	MATLAB	fdatool	window	showing	the	magnitude	frequency	response	of	an
18th-order	band-pass	filter	centered	on	2000	Hz.

Figure	4.25	Output	from	program	tm4c123_iirsos_prbs_intr.c,	using	coefficient	file
bp2000.h	viewed	using	a	Rigol	DS1052E	oscilloscope.

Figure	4.26	Output	from	program	tm4c123_iirsos_prbs_intr.c,	using	coefficient	file
bp2000.h	viewed	using	Goldwave.

Example	4.7

Implementation	of	IIR	Filter	Using	CMSIS	Function	arm_biquad_cascade_f32()
(stm32f4_iirsos_CMSIS_intr.c).

This	example	demonstrates	the	use	of	the	CMSIS	DSP	library	IIR	filtering	function
arm_biquad_cascade_df1_f32().

Function	arm_biquad_cascade_df1_f32()	implements	a	second-order	IIR	filter	section	(a
biquad)	using	single	precision	(32-bit)	floating	point	arithmetic.	As	the	function	name	suggests,
the	filter	is	implemented	as	a	direct	form	I	structure.	The	function	processes	a	block	of	input
samples	to	produce	a	corresponding	block	of	output	samples	and	is	therefore	suited	to	the	use
of	DMA-based	i/o.	However,	program	stm32f4_iirsos_CMSIS_intr.c	uses	sample-by-
sample	interrupt-based	i/o	and	a	block	size	of	one	sample	(Listing	4.6).

Listing	4.6	Program	stm32f4_iirsos_CMSIS_intr.c

//	stm32f4_iirsos_CMSIS_intr.c

#include	"stm32f4_wm5102_init.h"

#include	"elliptic.h"

float32_t	coeffs[5*NUM_SECTIONS]	=	{0};

float32_t	state[4*NUM_SECTIONS]	=	{0};

arm_biquad_casd_df1_inst_f32	S;

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	left_in_sample;

		int16_t	right_out_sample,	right_in_sample;

		float32_t	xn,	yn;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				xn	=(float32_t)(left_in_sample);

				arm_biquad_cascade_df1_f32(&S,	&xn,	&yn,	1);

				left_out_sample	=	(int16_t)(yn);

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				right_out_sample	=	0;

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

}

4.48

int	main(void)

{

		int	i,k;

		k	=	0;

		for	(i=0;	i<NUM_SECTIONS	;	i++)

		{

				coeffs[k++]	=	b[i][0];

				coeffs[k++]	=	b[i][1];

				coeffs[k++]	=	b[i][2];

				coeffs[k++]	=	-a[i][1];

				coeffs[k++]	=	-a[i][2];

		}

		arm_biquad_cascade_df1_init_f32(&S,	NUM_SECTIONS,

																																		coeffs,	state);

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){{

}

As	supplied,	the	program	implements	the	fourth-order	elliptic	low-pass	filter	used	in	Example
4.5,	reading	filter	coefficients	from	the	header	file	elliptic.h.

Within	function	SPI2_IRQHandler(),	the	value	of	a	new	left	channel	input	sample	is	copied	to
float32_t	variable	xn.

Function	arm_biquad_cascade_df1_f32()	is	passed	pointers	to

1.	 An	instance	of	an	IIR	filter	structure	of	type	arm_biquad_casd_inst_df1_f32.

2.	 An	array	containing	a	sequence	of	input	sample	values	of	type	float32_t.

3.	 An	array	in	which	to	place	a	sequence	of	output	sample	values	of	type	float32_t.

4.	 The	number	of	input	and	output	sample	values.

An	IIR	filter	structure	S	is	declared	in	program	statement

arm_biquad_casd_inst_df1_f32	S;

and,	after	the	filter	coefficients	specified	in	header	file	elliptic.h	as	arrays	a	and	b	have
been	copied	into	the	array	coeffs	used	by	function	arm_biquad_cascade_df1_f32(),	it	is
initialized	in	program	statement

arm_biquad_cascade_df1_init_f32(&S,	NUM_SECTIONS,	coeffs,	state);

Each	second-order	stage	of	a	filter	is	represented	by	five	coefficient	values,	of	type
float32_t,	stored	in	array	coeffs	in	the	order	 .	These	values	correspond	to	a
transfer	function	of	the	form

4.49

The	arm_biquad_casd_inst_df1_f32	filter	structure	keeps	track	of	the	internal	state	of	each
of	the	NUM_SECTIONS	second-order	IIR	filter	stages,	that	is,	it	stores	and	updates	previous
input	and	output	sample	values	 ,	 ,	 ,	and	 .

4.5.1.7	Testing	the	Filter	Using	a	Pseudorandom	Input	Signal
In	program	stm32f4_iirsos_prbs_CMSIS_intr.c,	the	statement	in	program
stm32f4_iirsos_CMSIS_intr.c	that	reads

				xn	=(float32_t)(left_in_sample);

is	replaced	by

				xn	=	(float32_t)(prbs(8000));

in	order	to	use	internally	generated	pseudorandom	noise	as	an	input	and	enable	the	filter
characteristics	to	be	observed	using	an	oscilloscope	or	Goldwave	without	the	need	for	an
externally	applied	input	signal.

In	program	stm32f4_iirsos_delta_CMSIS_intr.c,	the	input	signal	applied	to	the	filter	is	a
sequence	of	discrete	impulses	read	from	array	dimpulse.

Example	4.8

Implementation	of	a	Fourth-Order	IIR	Filter	Using	the	AIC3104	Digital	Effects
Filter	(tm4c123_sysid_biquad_intr.c).

The	AIC3104	codec	contains	two	fourth-order	IIR	filters	(one	for	each	channel)	just	before	the
DAC.	Their	coefficients	can	be	programmed	using	page	1	control	registers	1	through	20	(Left
Channel	Audio	Effects	Filter	Coefficient	Registers)	and	27	through	46	(Right	Channel	Audio
Effects	Filter	Coefficient	Registers).	They	are	enabled	by	setting	bit	3	(left	channel)	and/or	bit
1	(right	channel)	in	page	0	control	register	12	(Audio	Codec	Digital	Filter	Control	Register).
Each	filter	is	implemented	as	two	second-order	(biquad)	sections	with	an	overall	 -transfer
function

where	coefficients	 	and	 	are	16-bit	signed	integers.	Full	details	of	these	filters	are	given
in	the	AIC3104	data	sheet	[1].

Program	tm4c123_sysid_biquad_intr.c	is	almost	identical	to	program
tm4c123_sysid_intr.c,	introduced	in	Chapter	2.	It	uses	an	adaptive	FIR	filter	in	order	to
measure	the	response	of	a	signal	path	including	the	codec.	It	differs	only	in	that	the	codec	is
programmed	to	include	the	fourth-order	IIR	filter	described	earlier.

Function	I2CRegWrite()	may	be	used	to	program	the	8-bit	control	registers	of	the	AIC3104
and	each	of	the	16-bit	coefficients	of	the	filters	must	therefore	be	split	into	two	8-bit	bytes.
MATLAB	function	tm4c123_aic3104_biquad(),	shown	in	Listing	4.7,	has	been	provided	to
automate	the	generation	of	these	program	statements	following	calculation	of	filter	coefficients
using	fdatool.

Listing	4.7	MATLAB	function
tm4c123_aic3104_biquad()

%	TM4C123_AIC3104_BIQUAD.M

%

%	MATLAB	function	to	write	C	program	statements

%	to	program	left	and	right	channel	biquads	in	AIC3104	codec.

%	Assumes	that	coefficients	of	a	fourth	order	IIR	filter

%	have	been	designed	using	fdatool	and	exported	to	workspace

%	as	two	matrices.	These	are	passed	to	function	as	coeff	and

%	gain.

%

%	First	matrix	coeff	has	format

%

%	[b10	b11	b12	a10	a11	a12

%			b20	b21	b22	a20	a21	a22

%]

%

%	where	bij	is	the	bj	coefficient	in	the	ith	stage.

%

%	Second	matrix	gain	contains	gains	for	the	two	stages	of	the

%	fourth	order	filter.	fdatool	generates	three	gains	-	one	for

%	each	second	order	stage	and	an	output	gain.

%

%	This	function	calls	function	tm4c123_make_hex_str()	defined	in

%	file	TM4C123_MAKE_HEX_STR.M.

%

%	Details	of	AIC3104	registers	in	TI	document	SLAS509E.

%

function	tm4c123_aic310_biquad(coeff,gain)

%

fname	=	input('enter	filename	for	C	program	statements	','s');

fid	=	fopen(fname,'wt');

fprintf(fid,'//	%s\n',fname);

fprintf(fid,'//	this	file	was	generated	automatically	using');

fprintf(fid,'	function	tm4c123_aic3104_biquad.m\n',fname);

fn_name	=	'I2CRegWrite';

parameters	=	'I2C1_BASE,	AIC3104_SLAVE_ADDRESS';

fsref	divisors%	left	channel	audio	effects	filter	coefficients

a	=	tm4c123_make_hex_str(round(coeff(1,1)*gain(1)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,	1,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,	2,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(coeff(1,2)*gain(1)*2ˆ14));

fprintf(fid,'%s(%s,	3,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,	4,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(coeff(1,3)*gain(1)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,	5,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,	6,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(coeff(2,1)*gain(2)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,	7,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,	8,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(coeff(2,2)*gain(2)*2ˆ14));

fprintf(fid,'%s(%s,	9,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,10,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(coeff(2,3)*gain(2)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,11,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,12,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(-coeff(1,5)*2ˆ14));

fprintf(fid,'%s(%s,13,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,14,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(-coeff(1,6)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,15,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,16,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(-coeff(2,5)*2ˆ14));

fprintf(fid,'%s(%s,17,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,18,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(-coeff(2,6)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,19,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,20,0x%s%s);\n',fn_name,parameters,a(1),a(2));

%	right	channel	audio	effects	filter	coefficients

a	=	tm4c123_make_hex_str(round(coeff(1,1)*gain(1)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,27,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,28,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(coeff(1,2)*gain(1)*2ˆ14));

fprintf(fid,'%s(%s,29,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,30,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(coeff(1,3)*gain(1)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,31,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,32,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(coeff(2,1)*gain(2)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,33,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,34,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(coeff(2,2)*gain(2)*2ˆ14));

fprintf(fid,'%s(%s,35,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,36,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(coeff(2,3)*gain(2)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,37,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,38,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(-coeff(1,5)*2ˆ14));

fprintf(fid,'%s(%s,39,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,40,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(-coeff(1,6)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,41,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,42,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(-coeff(2,5)*2ˆ14));

fprintf(fid,'%s(%s,43,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,44,0x%s%s);\n',fn_name,parameters,a(1),a(2));

a	=	tm4c123_make_hex_str(round(-coeff(2,6)*(2ˆ15	-	1)));

fprintf(fid,'%s(%s,45,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fprintf(fid,'%s(%s,46,0x%s%s);\n',fn_name,parameters,a(1),a(2));

fclose(fid);

Connect	LINE	OUT	(black)	on	the	audio	booster	pack	to	LINE	IN	(blue)	as	shown	in	Figure
4.27	and	build	and	run	the	program	tm4c123_sysid_biquad_intr.c	as	supplied.	Initially,	the
AIC3104	biquad	filters	are	neither	programmed	nor	enabled.	Halt	the	program	after	a	few
seconds	and	save	the	256	adaptive	filter	coefficients	to	a	data	file	by	typing

save	<filename>	start	address,	(start	address	+	0x400)

in	the	Command	window	of	the	MDK-ARM	debugger,	where	start	address	is	the	address
of	array	firCoeffs32.	Plot	the	contents	of	the	data	file	(the	impulse	response	identified	by	the
adaptive	filter)	using	MATLAB	function	tm4c123_logfft().	You	should	see	something
similar	to	the	graph	shown	in	Figure	4.28.

Figure	4.27	Connection	diagram	for	program	tm4c123_sysid_biquad_intr.c.

Figure	4.28	Frequency	response	of	signal	path	through	DAC,	connecting	cable,	and	ADC
shown	in	Figure	4.27	with	biquad	filters	disabled.

Listing	4.8	File	elliptic_coeffs_biquad.h

//	elliptic_coeffs_biquad.h

//

//	this	file	was	generated	automatically	using	m-file

//	tm4c123_aic3106_biquad.m

//

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		1,0x01);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		2,0x49);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		3,0x00);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		4,0x82);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		5,0x01);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		6,0x49);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		7,0x7f);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		8,0xff);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		9,0xce);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	10,0x47);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	11,0x7f);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	12,0xff);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	13,0x61);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	14,0xd7);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	15,0xae);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	16,0x76);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	17,0x60);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	18,0xe1);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	19,0x90);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	20,0xd0);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	27,0x01);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	28,0x49);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	29,0x00);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	30,0x82);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	31,0x01);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	32,0x49);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	33,0x7f);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	34,0xff);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	35,0xce);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	36,0x47);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	37,0x7f);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	38,0xff);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	39,0x61);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	40,0xd7);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	41,0xae);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	42,0x76);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	43,0x60);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	44,0xe1);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	45,0x90);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,	46,0xd0);

Listing	4.8	shows	the	contents	of	file	elliptic_coeffs_biquad.h.	This	file	was	generated
using	MATLAB	function	aic3104_biquad()	to	process	filter	coefficients	of	a	fourth-order
elliptic	low-pass	filter	designed	using	fdatool.	Cut	and	paste	these	statements	into	program

tm4c123_sysid_biquad_intr.c	just	after	the	program	statement

tm4c123_aic3104_init(FS_8000_HZ,

																					INPUT_LINE,

																					IO_METHOD_INTR,

																					PGA_GAIN_6_DB);

Add	the	statement

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,			0,	0x01);

immediately	preceding	the	statements	cut	and	pasted	from	file	elliptic_coeffs_biquad.h
and	add	the	statements

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,			0,	0x00);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		12,	0x0A);

immediately	following	the	previously	pasted	statements.	The	last	of	these	statements	will
enable	the	biquad	filters	on	both	left-	and	right-hand	channels.	Once	again,	build	and	load	the
program	and	run	it.	Halt	the	program	after	a	few	seconds	and	save	the	coefficients	and	plot
using	MATLAB.	You	should	now	see	the	magnitude	frequency	response	of	the	biquad	filter,	as
shown	in	Figure	4.29.

Figure	4.29	Frequency	response	of	signal	path	through	DAC,	connecting	cable,	and	ADC
shown	in	Figure	4.27	with	biquad	filters	programmed	as	a	fourth-order	elliptic	low-pass	filter
and	enabled.

4.5.1.8	Changing	the	Response	of	the	AIC3104	Digital	Effects	Filter
In	order	to	program	an	alternative	filter	response	into	the	digital	effects	filter,

1.	 Design	an	alternative	fourth-order	IIR	filter	using	fdatool.	Figure	4.30	shows	the	design	of
a	fourth-order	elliptic	band	pass	filter.

2.	 Export	the	filter	coefficients	from	fdatool	to	the	MATLAB	workspace	as	variables	SOS
and	G.

3.	 At	the	MATLAB	command	line,	type	aic3104_biquad(SOS,G)	and	enter	a	filename,	for
example,	bandpass_coeffs_biquad.h.

4.	 Cut	and	paste	the	statements	contained	in	file	bandpass_coeffs_biquad.h	into	program
tm4c123_sysid_biquad_intr.c	(in	place	of	those	used	in	the	previous	example)
immediately	following	the	call	to	function	tm4c123_aic3104_init()	and	immediately
preceding	the	program	statements

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,			0,	0x00);

I2CRegWrite(I2C1_BASE,	AIC3104_SLAVE_ADDRESS,		12,	0x0A);

replacing	the	previous	calls	to	function	I2CRegWrite().

5.	 Build	and	run	the	program	as	before.

6.	 Observe	the	response	identified	using	MATLAB	function	tm4c123_logfft()	to	plot	the
values	stored	in	array	firCoeffs32.

Figure	4.30	fdatool	used	to	design	a	fourth-order	elliptic	band-pass	filter.

Figure	4.31	shows	the	identified	frequency	response	for	the	coefficients	contained	in	file

4.50

4.51

bandpass_coeffs_biquad.h	using	MATLAB	function	tm4c123_logfft().

Figure	4.31	Frequency	response	of	signal	path	through	DAC,	connecting	cable,	and	ADC
shown	in	Figure	4.27	with	biquad	filters	programmed	as	a	fourth-order	elliptic	band-pass	filter
and	enabled.

Example	4.9

Generation	of	a	Sine	Wave	Using	a	Difference	Equation
(stm32f4_sinegenDE_intr.c).

In	Chapter	3,	it	was	shown	that	the	 -transform	of	a	sinusoidal	sequence	 	is
given	by

Comparing	this	with	the	 -transfer	function	of	the	second-order	filter	of	Example	4.1

It	is	apparent	that	by	appropriate	choice	of	filter	coefficients,	we	can	configure	the	filter	to	act
as	a	sine	wave	generator,	that	is,	to	have	a	sinusoidal	impulse	response.	Choosing	 	and	

,	the	denominator	of	the	transfer	function	becomes	 ,	which

4.52

4.53

4.54

corresponds	to	a	pair	of	complex	conjugate	poles	located	on	the	unit	circle	in	the	 -plane.	The
filter	can	be	set	oscillating	by	applying	an	impulse	to	its	input.	Rearranging	Equation	(4.51)
and	setting	 ,	(),	and	

Equation	(4.52)	is	equivalent	to	Equation	(4.50),	implying	that	the	filter	impulse	response	is	
.	Equation	(4.51)	corresponds	to	the	difference	equation

which	is	illustrated	in	block	diagram	form	in	Figure	4.32.

Figure	4.32	Block	diagram	representation	of	Equation	(4.53).

Since	the	input,	 ,	to	the	filter	is	nonzero	only	at	sampling	instant	 ,	the	difference
equation	is	equal	to

for	all	other	 	and	hence	the	sine	wave	generator	may	be	implemented	as	shown	in	Figure
4.33,	using	no	input	signal	but	using	nonzero	initial	values	for	 	and	 .	These
initial	values	determine	the	amplitude	of	the	sinusoidal	output.

Figure	4.33	Block	diagram	representation	of	Equation	(4.54).

Since	the	frequency	of	oscillation	 	is	fixed	by	the	choice	of	 	and	 ,	the
initial	values	chosen	for	 	and	 	represent	two	samples	of	a	sinusoid	of	frequency	
,	which	are	one	sampling	period,	or	 	seconds,	apart	in	time,	that	is,

The	initial	values	of	 	and	 	determine	the	amplitude	 	of	the	sine	wave
generated.	A	simple	solution	to	the	equations,	implemented	in	program
tm4c123_sinegenDE_intr.c	(Listing	4.9),	is

Build	and	run	this	program	as	supplied	(FREQ	=	2000)	and	verify	that	the	output	is	a	2000	Hz
tone.	Change	the	value	of	the	constant	FREQ,	build	and	run	the	program,	and	verify	the
generation	of	a	tone	of	the	frequency	selected.

Listing	4.9	Program	stm32f4_sinegenDE_intr.c

//	stm32f4_sinegenDE_intr.c

#include	"stm32f4_wm5102_init.h"

float32_t	y[3];	//	filter	states	-	previous	output	values

float32_t	a1;			//	filter	coefficient

const	float32_t	AMPLITUDE	=	8000.0;

const	float32_t	FREQ	=	2000.0;

const	float32_t	SAMPLING_FREQ	=	8000.0;

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	left_in_sample;

		int16_t	right_out_sample,	right_in_sample;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				left_in_sample	=	(float32_t)(SPI_I2S_ReceiveData(I2Sx));

				y[0]	=	-(y[1]*a1)-y[2];														//	new	y(n)

				y[2]	=	y[1];																									//	update	y(n-2)

				y[1]	=	y[0];																									//	update	y(n-1)

				left_out_sample	=	(int16_t)(y[0]);

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

		}

		else

		{

				right_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				right_out_sample	=	0;

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

}

int	main(void)

{

		y[1]	=	0.0;

		y[2]	=	AMPLITUDE*sin(2.0*PI*FREQ/SAMPLING_FREQ);

		a1	=	-2.0*cos(2.0*PI*FREQ/SAMPLING_FREQ);

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

Example	4.10

Generation	of	DTMF	Signal	Using	Difference	Equations
(stm32f4_sinegenDTMF_intr.c).

Program	stm32f4_sinegenDTMF_intr.c,	shown	in	Listing	4.10,	uses	the	same	difference
equation	method	as	program	tm4c123_sinegenDE_intr	to	generate	two	sinusoidal	signals	of
different	frequencies,	which,	added	together,	form	a	DTMF	tone	(see	also	Example	2.12,
which	used	a	table	lookup	method).	The	program	also	incorporates	a	buffer	(array
out_buffer)	that	is	used	to	store	the	256	most	recent	output	samples.	Figure	4.34	shows	the
contents	of	that	buffer	in	time	and	frequency	domains,	plotted	using	MATLAB	function
stm32f4_logfft()	after	halting	the	program	and	saving	the	contents	of	out_buffer	to	a	file.
Figure	4.35	shows	the	analog	output	signal	generated	by	the	program	captured	using	an
oscilloscope.	Unlike	the	FFT	function	in	the	oscilloscope,	MATLAB	function
stm32f4_logfft()	has	not	applied	a	Hamming	window	to	the	sample	values.

Figure	4.34	Output	samples	generated	by	program	stm32f4_sinegenDTMF_intr.c	plotted
using	MATLAB	function	stm32f4_logfft().

Figure	4.35	Output	signal	generated	by	program	stm32f4_sinegenDTMF_intr.c	viewed
using	a	Rigol	DS1052E	oscilloscope.

Listing	4.10	Program	stm32f4_sinegenDTMF_intr.c

//	stm32f4_sinegenDTMF_intr.c

#include	"stm32f4_wm5102_init.h"

#define	FREQLO	770

#define	FREQHI	1336

#define	SAMPLING_FREQ	8000

#define	AMPLITUDE	6000

#define	BUFFER_SIZE	256

float	ylo[3];

float	yhi[3];

float	a1lo,	a1hi;

float	out_buffer[BUFFER_SIZE];

int	bufptr	=	0;

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample,	left_in_sample;

		int16_t	right_out_sample,	right_in_sample;

		float32_t	output;

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	 	SET)

		{

				GPIO_SetBits(GPIOD,	GPIO_Pin_15);

				left_in_sample	=	SPI_I2S_ReceiveData(I2Sx);

				ylo[0]	=	-(ylo[1]*a1lo)-ylo[2];

				ylo[2]	=	ylo[1];																					//update	y1(n-2)

				ylo[1]	=	ylo[0];																					//update	y1(n-1)

				yhi[0]	=	-(yhi[1]*a1hi)-yhi[2];

				yhi[2]	=	yhi[1];																					//update	y1(n-2)

4.55

				yhi[1]	=	yhi[0];																					//update	y1(n-1)

				output	=	(yhi[0]+ylo[0]);

				out_buffer[bufptr++]	=	output;

				if	(bufptr>=	BUFSIZE)	bufptr	=	0;

				left_out_sample	=	(int16_t)(output);

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

				GPIO_ResetBits(GPIOD,	GPIO_Pin_15);

		}

		else

		{

				right_out_sample	=	SPI_I2S_ReceiveData(I2Sx);

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

}

int	main(void)

{

		ylo[1]	=	0.0;

		ylo[2]	=	AMPLITUDE*sin(2.0*PI*FREQLO/SAMPLING_FREQ);

		a1lo	=	-2.0*cos(2.0*PI*FREQLO/SAMPLING_FREQ);

		yhi[1]	=	0.0;

		yhi[2]	=	AMPLITUDE*sin(2.0*PI*FREQHI/SAMPLING_FREQ);

		a1hi	=	-2.0*cos(2.0*PI*FREQHI/SAMPLING_FREQ);

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

Example	4.11

Generation	of	a	Swept	Sinusoid	Using	a	Difference	Equation
(stm32f4_sweepDE_intr.c).

Listing	4.11	is	of	program	stm32f4_sweepDE_intr.c,	which	generates	a	sinusoidal	signal,
sweeping	repeatedly	from	low	to	high	frequency.	The	program	implements	the	difference
equation

where	 	and	the	initial	conditions	are	 	and	 .	Example
4.9	illustrated	the	generation	of	a	sine	wave	using	this	difference	equation.

Compared	with	the	lookup	table	method	of	Example	2.15,	making	step	changes	in	the	frequency
of	the	output	signal	generated	using	a	difference	equation	is	slightly	more	problematic.	Each
time	program	stm32f4_sweepDE_intr.c	changes	its	output	frequency	it	reinitializes	the

stored	values	of	previous	output	samples	 	and	 .	These	values	determine	the
amplitude	of	the	sinusoidal	output	at	the	new	frequency	and	must	be	chosen	appropriately.
Using	the	existing	values,	leftover	from	the	generation	of	a	sinusoid	at	the	previous	frequency
might	cause	the	amplitude	of	the	output	sinusoid	to	change.	In	order	to	avoid	discontinuities,	or
glitches,	in	the	output	waveform,	a	further	constraint	on	the	parameters	of	the	program	must	be
observed.	Since	at	each	change	in	frequency,	the	output	waveform	starts	at	the	same	phase	in
its	cycle,	it	is	necessary	to	ensure	that	each	different	frequency	segment	is	output	for	an	integer
number	of	cycles.	This	can	be	achieved	by	making	the	number	of	samples	output	between	step
changes	in	frequency	equal	to	the	sampling	frequency	divided	by	the	frequency	increment.

As	shown	in	Listing	4.11,	the	frequency	increment	is	20	Hz	and	the	sampling	frequency	is	8000
Hz.	Hence,	the	number	of	samples	output	at	each	different	frequency	is	equal	to	8000/20	=	400.
Different	choices	for	the	values	of	the	constants	STEP_FREQ	and	SWEEP_PERIOD	are	possible.

Build	and	run	this	program.	Verify	that	the	output	is	a	swept	sinusoidal	signal	starting	at
frequency	200	Hz	and	taking	(SWEEP_PERIOD/SAMPLING_FREQ)*(MAX_FREQ-
MIN_FREQ)/STEP_FREQ	seconds	to	increase	in	frequency	to	3800	Hz.	Change	the	values
ofSTART_FREQ	and	STOP_FREQ	to	2000	and	3000,	respectively.	Build	the	project	again,	load
and	run	the	program,	and	verify	that	the	frequency	sweep	is	from	2000	to	3000	Hz.

Listing	4.11	Program	stm32f4_sweepDE_intr.c

//	stm32f4_sweepDE_intr.c

#include	"stm32f4_wm5102_init.h"

#define	MIN_FREQ	200

#define	MAX_FREQ	3800

#define	STEP_FREQ	20

#define	SWEEP_PERIOD	400

#define	SAMPLING_FREQ	8000.0f

#define	AMPLITUDE	4000.0f

#define	PI	3.14159265358979f

float32_t	y[3]	=	{0.0,	0.0,	0.0};

float32_t	a1;

float32_t	freq	=	MIN_FREQ;

int16_t	sweep_count	=	0;

;

void	coeff_gen(float	freq)

{

		float32_t	kk;

		kk	=		2.0*PI*freq/SAMPLING_FREQ;

		a1	=	-2.0*arm_cos_f32(kk);

		y[0]	=	0.0;

		y[2]	=	AMPLITUDE*arm_sin_f32(kk);

		y[1]	=	0.0;

		return;

}

void	SPI2_IRQHandler()

{

		int16_t	left_out_sample	=	0;

		int16_t	right_out_sample	=	0

		if	(SPI_I2S_GetFlagStatus(I2Sx,	I2S_FLAG_CHSIDE)	!=	SET)

		{

				GPIO_SetBits(GPIOD,	GPIO_Pin_15);

				left_out_sample	=	SPI_I2S_ReceiveData(I2Sx);

				sweep_count++;

				if	(sweep_count>=	SWEEP_PERIOD)

				{

						if	(freq>=	MAX_FREQ)

								freq	=	MIN_FREQ;

						else

								freq	+=	STEP_FREQ;

						coeff_gen(freq);

						sweep_count	=	0;

				}

				y[0]	=	-(y[1]*a1)-y[2];

				y[2]	=	y[1];																									//	update	y1(n-2)

				y[1]	=	y[0];																									//	update	y1(n-1)

				left_out_sample	=	(int16_t)(y[0]);

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	left_out_sample);

				GPIO_ResetBits(GPIOD,	GPIO_Pin_15);

		}

		else

		{

				right_out_sample	=	SPI_I2S_ReceiveData(I2Sx);

				while	(SPI_I2S_GetFlagStatus(I2Sxext,

											SPI_I2S_FLAG_TXE)	!=	SET){}

				SPI_I2S_SendData(I2Sxext,	right_out_sample);

		}

}

int	main(void)

{

		coeff_gen(freq);

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_INTR);

		while(1){}

}

Example	4.12

Cascaded	Second-Order	Notch	Filters	(tm4c123_iirsos_intr).

In	Chapter	3,	two	89-coefficient	FIR	notch	filters	were	used	to	remove	unwanted	tones	from	a
signal.	In	this	example,	the	use	of	simple	second-order	IIR	notch	filters	to	achieve	a	similar
result	is	demonstrated.	A	second-order	IIR	notch	filter	has	the	form

4.56

corresponding,	in	the	 -plane,	to	two	complex	conjugate	zeros	on	the	unit	circle	at	angles	
	from	the	real	axis	and	two	complex	conjugate	poles	of	magnitude	 ,	at	similar	angles.

This	is	illustrated	in	Figure	4.36.

Figure	4.36	Pole-zero	map	for	notch	filter	described	by	Equation	(4.56)	for	 	and	
.

The	magnitude	frequency	response	of	this	filter	contains	a	deep	notch	at	frequency	 	radians
with	3	dB	cutoff	frequencies	spaced	 	radians	apart.	In	other	words,	the	parameter	
determines	the	width	of	the	notch	shown	in	Figure	4.37.

Figure	4.37	Frequency	response	of	notch	filter	described	by	Equation	(4.56)	for	 	and	
.

Two	cascaded	second-order	IIR	notch	filters	with	notches	at	900	and	2700	Hz	programs	may
be	implemented	using	either	program	tm4c123_iirsos_intr.c	or
tmc123_iirsos_prbs_intr.c	simply	by	including	the	header	file	iir_notch_coeffs.h
(shown	in	Listing	4.12).

Listing	4.12	Coefficient	header	file
iir_notch_coeffs.h

//	iir_notch_coeffs.h

//	cascaded	second-order	notch	filters	900	Hz	and	2700	Hz

#define	NUM_SECTIONS	2

float	b[NUM_SECTIONS][3]	=	{

{1.00000000,	1.04499713,	1.00000000},

{1.00000000,	-1.5208,	1.00000000}	};

float	a[NUM_SECTIONS][3]	=	{

{1.00000000,	0.94049741,	0.9025},

{1.00000000,	-1.44476,	0.9025}	};

Run	program	tmc123_iirsos_intr.c	using	that	coefficient	header	file,	and	test	its	response
to	the	input	signal	stored	in	file	corrupt.wav.	Play	the	test	signal	using	Goldwave,	Windows
Media	Player,	or	similar,	and	connect	the	PC	sound	card	output	to	the	(blue)	LINE	IN

connection	on	the	audio	booster	card.

Figure	4.38	shows	pseudorandom	noise	filtered	by	program	tmc123_iirsos_prbs_intr.c
using	header	file	iir_notch_coeffs.h.

Figure	4.38	Pseudorandom	noise	filtered	by	program	tmc123_iirsos_prbs_intr.c	using
header	file	iir_notch_coeffs.h.

Reference
1.	Texas	Instruments,	Inc.,	“TLV320AIC3104	Low-Power	Stereo	Audio	Codec	for	Portable
Audio	and	Telephony”,	Literature	no.	SLAS510D,	2014.

5.1

Chapter	5
Fast	Fourier	Transform

5.1	Introduction
Fourier	analysis	describes	the	transformations	between	time-	and	frequency-domain
representations	of	signals.	Four	different	forms	of	Fourier	transformation	(the	Fourier
transform	(FT),	Fourier	Series	(FS),	Discrete-time	Fourier	transform	(DTFT),	and	discrete
Fourier	transform	(DFT))	are	applicable	to	different	classes	of	signal	according	to	whether,	in
either	domain,	they	are	discrete	or	continuous	and	whether	they	are	periodic	or	aperiodic.	The
DFT	is	the	form	of	Fourier	analysis	applicable	to	signals	that	are	discrete	and	periodic	in	both
domains,	that	is,	it	transforms	a	discrete,	periodic,	time-domain	sequence	into	a	discrete,
periodic,	frequency-domain	representation.	A	periodic	signal	may	be	characterized	entirely	by
just	one	cycle,	and	if	that	signal	is	discrete,	then	one	cycle	comprises	a	finite	number	of
samples.	The	DFT	transforms	 	complex	time-domain	samples	into	 	complex	frequency-
domain	values.	Hence,	both	forward	and	inverse	DFTs	are	described	by	finite	summations	as
opposed	to	either	infinite	summations	or	integrals.	This	is	very	important	in	digital	signal
processing	since	it	means	that	it	is	practical	to	compute	the	DFT	using	a	digital	signal
processor	or	digital	hardware.

The	fast	Fourier	transform	(FFT)	is	a	computationally	efficient	algorithm	for	computing	the
DFT.	It	requires	fewer	multiplications	than	a	more	straightforward	programming
implementation	of	the	DFT	and	its	relative	advantage	in	this	respect	increases	with	the	lengths
of	the	sample	sequences	involved.	The	FFT	makes	use	of	the	periodic	nature,	and	of	symmetry,
in	the	twiddle	factors	used	in	the	DFT.	Applicable	to	spectrum	analysis	and	to	filtering,	the
FFT	is	one	of	the	most	commonly	used	operations	in	digital	signal	processing.	Various,	slightly
different,	versions	of	the	FFT	can	be	derived	from	the	DFT,	and	in	this	chapter,	the	decimation-
in-time	(DIT)	and	decimation-in-frequency	(DIF)	radix-2	and	radix-4	versions	are	described
in	detail.	These	versions	of	the	FFT	differ	in	the	exact	form	of	the	intermediate	computations
that	make	them	up.	However,	ignoring	rounding	errors,	they	each	produce	exactly	the	same
results	as	the	DFT.	In	this	respect,	the	terms	DFT	and	FFT	are	interchangeable.

5.2	Development	of	the	FFT	Algorithm	with	RADIX-2
The	 -point	complex	DFT	of	a	discrete-time	signal	 	is	given	by

The	constants	 	are	referred	to	as	twiddle	constants	or	twiddle	factors,	where

5.3

5.4

5.2
Computing	all	 	values	of	 	()	involves	the	evaluation	of	 	product	terms	of	the
form	 ,	each	of	which	(aside	from	the	requirement	of	computing)	requires	a	complex
multiplication.	For	larger	 ,	the	computational	requirements	(complex	multiplications)	of
the	DFT	can	be	very	great.	The	FFT	algorithm	takes	advantage	of	the	periodicity

and	symmetry

of	 	(where	 	is	even).

Figure	5.1	illustrates	the	twiddle	factors	 	for	 	plotted	as	vectors	in	the	complex	plane.
Due	to	the	periodicity	of	 ,	the	 	different	combinations	of	 	and	 	used	in	evaluation
of	Equation	(5.1)	result	in	only	 	distinct	values	for	 .	The	FFT	makes	use	of	this	small
number	of	precomputed	and	stored	values	of	 	rather	than	computing	each	one	as	it	is
required.	Furthermore,	due	to	the	symmetry	of	 ,	only	 	distinct	numerical	values
need	actually	be	precomputed	and	stored.

Figure	5.1	Twiddle	factors	 	for	 	represented	as	vectors	in	the	complex	plane.

A	second,	important,	way	in	which	the	radix-2	FFT	saves	computational	effort	is	by
decomposing	an	 -point	DFT	into	a	combination	of	 -point	DFTs.	In	the	case	of	radix-2,
that	is,	where	 	is	an	integer	power	of	2,	further	decomposition	of	 -point	DFTs	into
combinations	of	 -point	DFTs	and	so	on	can	be	carried	out	until	2-point	DFTs	have	been
reached.	Computation	of	the	2-point	DFT	does	not	involve	multiplication	since	the	twiddle
factors	involved	are	equal	to	 	yielding	 	and	 .

5.3	Decimation-in-Frequency	FFT	Algorithm	with
RADIX-2

5.5

5.7

5.8

5.9

5.10

5.11

5.12

5.6

Consider	the	 -point	DFT

where

and	let	 	be	an	integer	power	of	2.

Decompose	the	length	 	input	sequence	 	into	two	length	 	sequences,	one	containing	the
first	 	values	 	and	the	other	containing	the	remaining	 	values	

.	Splitting	the	DFT	summation	into	two	parts

The	term	 	is	placed	outside	the	second	summation	since	it	is	not	a	function	of	 .	Making
use	of

Equation	(5.7)	becomes

Because	 	for	even	 	and	 	for	odd	 ,	Equation	(5.9)	can	be	split	into	two
parts.	For	even	 ,

and	for	odd	 ,

For	 ,	that	is,	for	an	 -point	sequence,	and	making	use	of

5.13

5.14

5.15

5.16

5.17

5.18

and

Letting

and

Equations	(5.13)	and	(5.14)	may	be	written	as

and

In	other	words,	the	even	elements	of	 	are	given	by	the	 -point	DFT	of	 ,	where	
are	combinations	of	the	elements	of	the	 -point	input	sequence	 .	The	odd	elements	of	
are	given	by	the	 -point	DFT	of	 ,	where	 	are	different	combinations	of	the
elements	of	the	 -point	input	sequence	 .	This	structure	is	illustrated	graphically,	for	 ,
in	Figure	5.2.

Figure	5.2	Decomposition	of	8-point	DFT	into	two	4-point	DFTs	using	decimation-in-
frequency	with	radix-2.

Consider	next	that	each	of	the	4-point	DFTs	in	Figure	5.2	may	further	be	decomposed	into	two
2-point	DFTs	(Figure	5.3).	Each	of	those	2-point	DFTs	may	further	be	decomposed	into	two	1-
point	DFTs.	However,	the	1-point	DFT	of	a	single	value	is	equal	to	that	value	itself,	and	for
this	reason,	the	2-point	DFT	butterfly	structure	shown	in	Figure	5.4	is	conventionally	treated
as	the	smallest	component	of	the	FFT	structure.

Figure	5.3	Decomposition	of	4-point	DFT	into	two	2-point	DFTs	using	decimation-in-
frequency	with	radix-2.

Figure	5.4	2-point	FFT	butterfly	structure.

The	8-point	DFT	has	thus	been	decomposed	into	a	structure	(Figure	5.5)	that	comprises	only	a
small	number	of	multiplications	(by	twiddle	factors	other	than).

Figure	5.5	Block	diagram	representation	of	8-point	FFT	using	decimation-in-frequency	with
radix-2.

The	FFT	is	not	an	approximation	of	the	DFT.	It	yields	the	same	result	as	the	DFT	with	fewer
computations	required.	This	reduction	becomes	more	and	more	important,	and	advantageous,
with	higher	order	FFTs.

The	DIF	process	may	be	considered	as	taking	the	 -point	input	sequence	 	in	sequence	and
reordering	the	output	sequence	 	in	pairs,	corresponding	to	the	outputs	of	the	final	stage	of	

	2-point	DFT	blocks.

5.4	Decimation-in-Time	FFT	Algorithm	with	RADIX-2
The	DIF	process	decomposes	the	DFT	output	sequence	 	into	a	set	of	shorter

5.19

5.21

5.22

5.23

5.24

5.25

5.20

subsequences,	whereas	DIT	is	a	process	that	decomposes	the	DFT	input	sequence	 	into	a
set	of	shorter	subsequences.

Consider	again	the	 -point	DFT

where

and	let	 	be	an	integer	power	of	2.

Decompose	the	length	 	input	sequence	into	two	length	 	sequences	one	containing	the
even-indexed	values	 	and	the	other	containing	the	odd-indexed	values	

.	Splitting	the	DFT	summation	into	two	parts

since

and

Letting

and

Equation	(5.21)	may	be	written	as

5.26

5.27

5.28

5.29

5.30

However,	 -point	DFTs	 	and	 	are	defined	only	for	 ,	whereas	 -point
DFT	 	is	defined	for	 .	 	and	 	must	be	evaluated	for	 ,	and	

	and	 	must	also	be	evaluated	for	 .	Substituting	
for	 	in	the	definition	of	

Since

and

Equation	(5.26)	becomes

evaluated	for	 .

In	other	words,	the	 -point	DFT	of	input	sequence	 	is	decomposed	into	two	 -point
DFTs	(and),	of	the	even-	and	odd-indexed	elements	of	 ,	the	results	of	which	are
combined	in	weighted	sums	to	yield	 -point	output	sequence	 .	This	is	illustrated
graphically,	for	 ,	in	Figure	5.6.

Figure	5.6	Decomposition	of	8-point	DFT	into	two	4-point	DFTs	using	decimation-in-time
with	radix-2.

Consider	next	that	each	of	the	4-point	DFTs	in	that	figure	may	further	be	decomposed	into	two
2-point	DFTs	(Figure	5.7)	and	that	each	of	those	2-point	DFTs	is	the	2-point	FFT	butterfly
structure	shown	in	Figure	5.4	and	used	in	the	decimation	in	frequency	approach.

Figure	5.7	Decomposition	of	4-point	DFT	into	two	2-point	DFTs	using	decimation-in-time
with	radix-2.

The	8-point	DFT	has	thus	been	decomposed	into	a	structure	(Figure	5.8)	that	comprises	only	a
small	number	of	multiplications	(by	twiddle	factors	other	than).	The	DIT	approach	may	be
considered	as	using	pairs	of	elements	from	a	reordered	 -point	input	sequence	 	as	inputs
to	 	2-point	DFT	blocks	and	producing	a	correctly	ordered	 -point	output	sequence	 .

Figure	5.8	Block	diagram	representation	of	8-point	FFT	using	decimation-in-time	with	radix-
2.

5.4.1	Reordered	Sequences	in	the	Radix-2	FFT	and	Bit-Reversed
Addressing
The	reordered	input	sequence	 	in	the	case	of	the	DIT	approach	and	the	reordered	output
sequence	 	in	the	case	of	DIF	can	be	described	with	reference	to	bit-reversed	addressing.

Taking	as	an	example	the	reordered	length	 	sequence	 	in	the	case	of	DIT,	the	index	of
each	sample	may	be	represented	by	a	log2()	bit	binary	number	(recall	that,	in	the	foregoing
examples,	 	is	an	integer	power	of	2).	If	the	binary	representations	of	the	 	index	values	0	to	

	have	the	order	of	their	bits	reversed,	for	example,	001	becomes	100,	110	becomes	011,
and	so	on,	then	the	resulting	 	values	represent	the	indices	of	the	input	sequence	 	in	the
order	that	they	appear	at	the	input	to	the	FFT	structure.	In	the	case	of	 	(Figure	5.6),	the
input	values	 	are	ordered	 .	The	binary	representations	of
these	indices	are	000,	100,	010,	110,	001,	101,	011,	111.	These	are	the	bit-reversed	versions
of	the	sequence	000,	001,	010,	011,	100,	101,	110,	111.	The	bit-reversed	interpretation	of	the
reordering	holds	for	all	 	(that	are	integer	powers	of	2).

5.5	Decimation-in-Frequency	FFT	Algorithm	with
RADIX-4

5.31

5.32

5.33

5.34

5.35

5.36

Radix-4	decomposition	of	the	DFT	is	possible	if	 	is	an	integer	power	of	4.	If	 ,	then
the	decomposition	will	comprise	 	stages.	The	smallest	significant	DFT	block	that	will
appear	in	the	structure	is	a	4-point	DFT.	Both	DIF	and	DIT	approaches	are	possible.

In	the	DIF	approach,	the	input	sequence	and	the	 -point	DFT	are	split	into	four	sections	such
that

which	may	be	interpreted	as	four	()-point	DFTs.	(Compare	this	with	Equation	(5.7)	in
which	an	 -point	DFT	was	split	into	two	 -point	DFTs.)	Using

Equation	(5.31)	becomes

Letting	 ,

for	 	Equations	(5.33)	through	(5.36)	represent	four	 -point	DFTs	that	in

5.37

5.38

5.40

5.39

combination	yield	one	 -point	DFT.

5.6	Inverse	Fast	Fourier	Transform
The	inverse	discrete	Fourier	transform	(IDFT)	converts	a	discrete	frequency-domain	sequence	

	into	a	corresponding	discrete	time-domain	sequence	 .	It	is	defined	as

Comparing	this	with	the	DFT	Equation	(5.5),	we	see	that	the	forward	FFT	algorithms
described	previously	can	be	used	to	compute	the	inverse	DFT	if	the	following	two	changes	are
made:

1.	 Replace	twiddle	factors	 	by	their	complex	conjugates	 .

2.	 Scale	the	result	by	 .

Program	examples	illustrating	this	technique	are	presented	later	in	this	chapter.

5.7	Programming	Examples

Example	5.1

DFT	of	a	Sequence	of	Complex	Numbers	with	Output	Displayed	Using	MATLAB®
(stm32f4_dft.c).

This	example	illustrates	the	implementation	of	an	 -point	complex	DFT.	Program
stm32f4_dft.c,	shown	in	Listing	5.2,	calculates	the	complex	DFT	described	by

Using	Euler's	formula	to	represent	a	complex	exponential,	that	is,

the	real	and	imaginary	parts	of	 	are	given	by

and

5.41

Listing	5.1	Program	stm32f4_dft.c

//	stm32f4_dft.c

#include	<math.h>

#define	PI	3.14159265358979

#define	N	100

#define	TESTFREQ	800.0

#define	SAMPLING_FREQ	8000.0

typedef	struct

{

		float32_t	real;

		float32_t	imag;

}	COMPLEX;

COMPLEX	samples[N];

void	dft(COMPLEX	*x)

{

		COMPLEX	result[N];

		int	k,n;

		for	(k=0	;	k<N	;	k++)

		{

				result[k].real	=	0.0;

				result[k].imag	=	0.0;

				for	(n=0	;	n<N	;	n++)

				{

						result[k].real	+=	x[n].real*cosf(2*PI*k*n/N)

																						+	x[n].imag*sinf(2*PI*k*n/N);

						result[k].imag	+=	x[n].imag*cosf(2*PI*k*n/N)

																						-	x[n].real*sinf(2*PI*k*n/N);

				}

		}

		for	(k=0	;	k<N	;	k++)

		{

				x[k]	=	result[k];

		}

}

int	main()

{

		int	n;

		for(n=0	;	n<N	;	n++)

		{

				samples[n].real	=	cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);

				samples[n].imag	=	0.0;

		}

		dft(samples);

		while(1){}

}

A	structured	data	type	COMPLEX,	comprising	two	float32_t	values,	is	used	by	the	program	to

represent	complex	values.

Function	dft()	has	been	written	so	that	it	replaces	the	time-domain	input	samples	 ,	stored
in	array	x,	with	their	frequency-domain	representation	 ,	although	it	requires	an	array,
result,	of	 	COMPLEX	values	for	temporary	intermediate	storage.

As	supplied,	the	time-domain	sequence	 	consists	of	exactly	10	cycles	of	a	real-valued
sinusoid.	Assuming	a	sampling	frequency	of	8	kHz,	the	frequency	of	the	sinusoid	is	800	Hz.
The	DFT	of	this	sequence	 	is	equal	to	0	for	all	 	except	 	and	 .	These	two	real
values	correspond	to	frequency	components	at	 800	Hz.

It	is	good	practice	to	test	DFT	or	FFT	functions	using	simple	input	sequences	precisely
because	the	results	are	straightforward	to	interpret.	Different	time-domain	input	sequences	can
be	used	to	test	function	dft(),	most	readily	by	changing	the	value	of	the	constant	TESTFREQ
and/or	by	editing	program	statements

samples[n].real	=	cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);

samples[n].imag	=	0.0;

In	order	to	test	the	program,	assuming	that	it	has	compiled	and	linked	successfully	and	that	you
have	launched	the	debugger,

1.	 Place	breakpoints	at	the	following	two	program	statements

dft(samples);

and

while(1){}

2.	 Run	the	program	to	the	first	breakpoint.	At	this	point,	the	array	samples	should	contain	a
real-valued	time-domain	input	sequence.	The	contents	of	the	array	samples	may	be	viewed
in	a	Memory	window	in	the	MDK-ARM	debugger	as	shown	in	Figure	5.9.

3.	 Save	the	contents	of	array	samples	(100	values	of	type	COMPLEX)	to	a	file	by	typing

SAVE	<filename>	<start	address>,	<end	address>

in	the	MDK-ARM	debugger	Command	window.	start	address	is	the	address	in	memory
of	array	samples,	and	end	address	is	equal	to	(start	address	+	0x190).

4.	 The	contents	of	the	data	file	you	have	created	may	be	viewed	using	MATLAB	function
stm32f4_plot_complex().	You	should	see	something	similar	to	Figure	5.10.

5.	 Run	the	program	again.	It	should	halt	at	the	second	breakpoint.	At	this	point,	function	dft()
has	been	called,	and	array	samples	should	contain	the	complex	DFT	of	the	time-domain
input	sequence.

6.	 Save	the	contents	of	array	samples	to	a	second	data	file	and	plot	the	complex	frequency-
domain	data	 	using	MATLAB	function	stm32f4_plot_complex().	You	should	see
something	similar	to	Figure	5.11.

Figure	5.9	Complex	contents	of	array	samples	(TESTFREQ	=	800.0)	before	calling	function
dft(),	viewed	in	a	Memory	window	in	the	MDK-ARM	debugger.

Figure	5.10	Complex	contents	of	array	samples	(TESTFREQ	=	800.0)	before	calling	function
dft(),	plotted	using	MATLAB	function	stm32f4_plot_complex().

Figure	5.11	Complex	contents	of	array	samples	(TESTFREQ	=	800.0)	after	calling	function
dft(),	plotted	using	MATLAB	function	stm32f4_plot_complex().

Note	the	very	small	magnitude	of	the	imaginary	part	of	 .	Theoretically,	this	should	be	equal
to	zero,	but	function	dft()	introduces	small	arithmetic	rounding	errors.

Change	the	frequency	of	the	time-domain	input	sequence	 	to	900	Hz	by	editing	the
definition	of	the	constant	TESTFREQ	to	read

#define	TESTFREQ	900.0

and	repeat	the	previous	steps.	You	should	see	a	number	of	nonzero	values	in	the	frequency-
domain	sequence,	as	shown	in	Figure	5.12.	This	effect	is	referred	to	as	spectral	leakage	and	is
due	to	the	fact	that	the	 -sample	time-domain	sequence	stored	in	array	samples	does	not	now
represent	an	integer	number	of	cycles	of	a	sinusoid.	Correspondingly,	the	frequency	of	the
sinusoid	is	not	exactly	equal	to	one	of	the	 	discrete	frequency	components,	spaced	at
intervals	of	()	Hz	in	the	frequency-domain	representation	of	 .

Figure	5.12	Complex	contents	of	array	samples	(TESTFREQ	=	900.0)	after	calling	function
dft(),	plotted	using	MATLAB	function	stm32f4_plot_complex().

Change	the	frequency	of	the	time-domain	input	sequence	 	back	to	800	Hz	and	change	the
program	statement

samples[n].real	=	cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);

to	read

samples[n].real	=	sin(2*PI*TESTFREQ*n/SAMPLING_FREQ);

Repeat	the	previous	steps	and	you	should	see	that	the	frequency-domain	representation	of	an
odd	(as	opposed	to	even)	real-valued	function	is	purely	imaginary.

Whereas	the	radix-2	FFT	is	applicable	only	if	 	is	an	integer	power	of	two,	the	DFT	can	be
applied	to	an	arbitrary	length	sequence,	as	illustrated	by	program	stm32f4_dft.c	(N	=	100).

5.7.1	Twiddle	Factors
Part	of	the	efficiency	of	the	FFT	is	due	to	the	use	of	precalculated	twiddle	factors,	stored	in	a
lookup	table,	rather	than	the	repeated	evaluation	of	sinf()	and	cosf()	functions	as
implemented	in	function	dft()	in	program	stm32f4_dft.c.	The	use	of	precalculated	twiddle
factors	can	be	applied	to	the	function	dft()	to	give	significant	computational	efficiency

improvements.	In	program	stm32f4_dftw.c,	shown	in	Listing	5.4,	these	function	calls	are
replaced	by	reading	precalculated	twiddle	factors	from	array	twiddle.	Build	and	run	program
stm32f4_dftw.c	and	verify	that	it	gives	results	similar	to	those	of	program	stm32f4_dft.c.

Listing	5.2	Program	stm32f4_dftw.c

//	stm32f4_dftw.c

#include	<math.h>

#define	PI	3.14159265358979

#define	N	128

#define	TESTFREQ	800.0

#define	SAMPLING_FREQ	8000.0

typedef	struct

{

		float32_t	real;

		float32_t	imag;

}	COMPLEX;

COMPLEX	samples[N];

COMPLEX	twiddle[N];

void	dftw(COMPLEX	*x,	COMPLEX	*w)

{

		COMPLEX	result[N];

		int	k,n;

		for	(k=0	;	k<N	;	k++)

		{

				result[k].real=0.0;

				result[k].imag	=	0.0;

				for	(n=0	;	n<N	;	n++)

				{

						result[k].real	+=	x[n].real*w[(n*k)%N].real

																						-	x[n].imag*w[(n*k)%N].imag;

						result[k].imag	+=	x[n].imag*w[(n*k)%N].real

																						+	x[n].real*w[(n*k)%N].imag;

				}

		}

		for	(k=0	;	k<N	;	k++)

		{

				x[k]	=	result[k];

		}

}

int	main()

{

		int	n;

		for(n=0	;	n<N	;	n++)

		{

				twiddle[n].real	=	cos(2*PI*n/N);

				twiddle[n].imag	=	-sin(2*PI*n/N);

		}

		for(n=0	;	n<N	;	n++)

		{

		samples[n].real	=	cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);

		samples[n].imag	=	0.0;

		}

		dftw(samples,twiddle);

		while(1){}

}

Example	5.2

Comparing	Execution	Times	for	Different	DFT	Functions	(stm32f4_dft.c,
stm32f4_dftw.c,	stm32f4_fft.c	and	stm32f4_fft_CMSIS.c).

The	execution	times	of	different	DFT	functions	can	be	estimated	using	the	Sec	item	in	the
Register	window	of	the	MDK-ARM	debugger	(Figure	5.13).	Edit	the	preprocessor	command

#define	N	100

to	read

#define	N	128

in	programs	stm32f4_dft.c	and	stm32f4_dftw.c	so	that	similar	length	input	sequences	will
be	passed	to	functions	dft(),	dftw(),	fft(),	and	arm_fft_f32().	The	last	two	functions
will	work	only	if	the	number	of	points,	 ,	is	equal	to	an	integer	power	of	2.	Function	fft()	is
written	in	C	and	is	defined	in	header	file	fft.h	(Listing	5.10)	and	shown	in	Listing.	Function
arm_fft_f32()	is	a	CMSIS	DSP	library	function.

Figure	5.13	MDK-ARM	Register	window	showing	Sec	item.

Listing	5.3	Program	stm32f4_fft.c

//	stm32f4_fft.c

#include	<math.h>

#define	PI	3.14159265358979

#define	N	128

#define	TESTFREQ	800.0

#define	SAMPLING_FREQ	8000.0

typedef	struct

{

		float32_t	real;

		float32_t	imag;

}	COMPLEX;

#include	“fft.h”

COMPLEX	samples[N];

COMPLEX	twiddle[N];

int	main()

{

		int	n;

		for	(n=0	;	n<	N	;	n++)

		{

				twiddle[n].real	=	cos(PI*n/N);

				twiddle[n].imag	=	-sin(PI*n/N);

		}

		for(n=0	;	n<N	;	n++)

		{

		samples[n].real	=	cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);

		samples[n].imag	=	0.0;

		}

		fft(samples,N,twiddle);

		while(1){}

}

Listing	5.4	Function	fft()

//fft.h	complex	FFT	function	taken	from	Rulph's	C31	book

void	fft(COMPLEX	*Y,	int	M,	COMPLEX	*w)

{

		COMPLEX	temp1,temp2;

		int	i,j,k;

		int	upper_leg,	lower_leg;

		int	leg_diff;

		int	num_stages=0;

		int	index,	step;

		i=1;

		do

		{

				num_stages+=1;

				i=i*2;

		}	while	(i!=M);

		leg_diff=M/2;

		step=2;

		for	(i=0;i<num_stages;i++)

		{

				index=0;

				for	(j=0;j<leg_diff;j++)

				{

						for	(upper_leg=j;upper_leg<M;upper_leg+=(2*leg_diff))

						{

								lower_leg=upper_leg+leg_diff;

								temp1.real=(Y[upper_leg]).real	+	(Y[lower_leg]).real;

								temp1.imag=(Y[upper_leg]).imag	+	(Y[lower_leg]).imag;

								temp2.real=(Y[upper_leg]).real	-	(Y[lower_leg]).real;

								temp2.imag=(Y[upper_leg]).imag	-	(Y[lower_leg]).imag;

								(Y[lower_leg]).real=temp2.real*(w[index]).real

																												-temp2.imag*(w[index]).imag;

								(Y[lower_leg]).imag=temp2.real*(w[index]).imag

																												+temp2.imag*(w[index]).real;

								(Y[upper_leg]).real=temp1.real;

								(Y[upper_leg]).imag=temp1.imag;

						}

						index+=step;

				}

				leg_diff=leg_diff/2;

				step*=2;

		}

		j=0;

		for	(i=1;i<(M-1);i++)

		{

				k=M/2;

				while	(k<=j)

				{

						j=j-k;

						k=k/2;

				}

				j=j+k;

				if	(i<j)

				{

						temp1.real=(Y[j]).real;

						temp1.imag=(Y[j]).imag;

						(Y[j]).real=(Y[i]).real;

						(Y[j]).imag=(Y[i]).imag;

						(Y[i]).real=temp1.real;

						(Y[i]).imag=temp1.imag;

				}

		}

		return;

}

Listing	5.5	Program	stm32f4_fft_CMSIS.c

//	stm32f4_fft_CMSIS.c

#define	ARM_MATH_CM4

#include	"stm32f4xx.h"

#include	"arm_math.h"

#include	"arm_const_structs.h"

#define	N	128

#define	TESTFREQ	800.0

#define	SAMPLING_FREQ	8000.0

float32_t	samples[2*N];

int	main()

{

		int	n;

		for(n=0	;	n<N	;	n++)

		{

				samples[2*n]	=	arm_cos_f32(2*PI*TESTFREQ*n/SAMPLING_FREQ);

				samples[2*n+1]	=	0.0;

		}

		arm_cfft_f32(&arm_cfft_sR_f32_len128,	samples,	0,	1);

		while(1){}

}

Then,	carry	out	the	following	steps	for	each	of	the	programs	stm32f4_dft.c,
stm32f4_dftw.c,	stm32f4_fft.c	(Listing	5.8),	and	stm32f4_cfft_CMSIS.c	(Listing	5.11).

1.	 Place	breakpoints	at	the	program	statement	calling	the	DFT	function	and	at	the	next
program	statement,	that	is,	at	program	statements

		dft(samples);

		dftw(samples,twiddle);

		fft(samples,N,twiddle);

or

		arm_cfft_f32(&arm_cfft_sR_f32_len128,	samples,	0,	1);

and

while(1){}

2.	 Run	the	program	to	the	first	breakpoint	and	record	the	value	of	the	Sec	item.

3.	 Run	the	program	again.	It	should	halt	at	the	second	breakpoint.	At	this	point,	function
dft(),	dftw(),	fft(),	or	arm_cfft_f32()	will	have	been	executed.

4.	 Subtract	the	previous	value	of	the	Sec	item	from	its	current	value.	This	will	tell	you	the
time	in	seconds	taken	to	execute	function	dft(),	dftw(),	fft(),	or	arm_cfft_f32().

The	results	that	you	should	see	are	summarized	in	Table	5.1.

Table	5.1	Execution	Times	for	Functions	dft(),	dftw(),	fft()	and	arm_cfft_f32()

Function	Name N Execution	Time	(ms)
dft() 128 324.79
dftw() 128 3.3307
fft() 128 0.1448
arm_cfft_f32() 128 0.0622

Even	using	function	sinf()	and	cosf()	in	function	dft(),	the	use	of	twiddle	factors	very
greatly	reduces	the	computational	effort	expended	computing	the	DFT.	The	FFT	is	more	than	an
order	of	magnitude	more	efficient	than	the	DFT	in	this	example,	and	not	unexpectedly,	the
CMSIS	DSP	library	function	arm_cfft_f32()	is	even	more	efficient	than	function	fft().

5.8	Frame-	or	Block-Based	Programming
Rather	than	processing	one	sample	at	a	time,	the	DFT	algorithm	is	applicable	to	blocks,	or
frames,	of	samples.	Using	the	DFT	in	a	real-time	program,	therefore,	requires	a	slightly
different	approach	to	that	used	for	input	and	output	in	most	of	the	previous	lab	exercises
(interrupt-based	i/o).	It	is	possible	to	implement	buffering,	and	to	process	blocks	of	samples,
using	interrupt-based	i/o.	However,	DMA-based	i/o	is	a	more	intuitive	method	for	frame-
based	processing	and	will	be	used	here.

DMA-based	i/o	on	the	TM4C123	and	STM32F4	processors	was	described	in	Chapter	2.

Example	5.3

DFT	of	a	Signal	in	Real-Time	Using	a	DFT	Function	with	Precalculated	Twiddle
Factors	(tm4c123_dft128_dma.c).

Program	tm4c123_dft128_dma.c,	shown	in	Listing	5.13,	combines	the	DFT	function	dftw()
from	program	tm4c123_dftw.c	and	real-time	DMA-based	i/o	in	order	to	implement	a	basic
form	of	spectrum	analyzer.	In	spite	of	its	inefficiency	compared	with	the	FFT,	the	DFT
implemented	using	function	dftw()	is	capable	of	execution	in	real	time	(for	N	=	128	and	a
sampling	frequency	of	8	kHz)	on	a	TM4C123	LaunchPad	with	a	processor	clock	frequency	of
84	MHz.	The	number	of	samples	in	a	block	is	set	by	the	constant	BUFSIZE,	defined	in	header
file	tm4c123_aic3106_init.h.	BUFSIZE	sets	the	number	of	16-bit	sample	values	that	make
up	one	DMA	transfer	block.	Recall	that	in	the	TM4C123	processor,	separate	DMA	transfers
are	carried	out	for	left	and	right	channels,	and	thus,	BUFSIZE	is	equal	to	the	number	of
sampling	instants	represented	in	one	DMA	transfer.	Function	dftw()	makes	use	of	a	global
constant	N	to	represent	the	number	of	samples	it	processes	and	so	inprogram
tm4c123_dft128_dma.c,	N	is	set	equal	to	BUFSIZE.	In	function	Lprocess_buffer(),	local
pointers	inBuf	and	outBuf	are	used	to	point	to	the	LpingIN,	LpingOUT,	LpongIN,	or

LpongOUT	buffers	as	determined	by	reading	the	Lprocbuffer	flag	set	in	interrupt	service
routine	SSI1IRQHandler().	Real-valued	input	samples	are	copied	into	COMPLEX	array	cbuf
before	it	is	passed	to	function	dftw().	The	complex	DFT	of	each	block	of	real-valued	input
samples	is	computed	using	function	dftw()	and	the	magnitude	of	the	frequency-domain
representation	of	that	block	of	samples	is	computed	using	function	arm_cmplx_mag_f32().
The	magnitude	values	are	returned	by	that	function	in	float32_t	array	outbuffer	and	are
written	to	the	buffer	pointed	to	by	outBuf.

Listing	5.6	Program	tm4c123_dft128_dma.c

//	tm4c123_dft128_dma.c

#include	"tm4c123_aic3104_init.h"

extern	int16_t	LpingIN[BUFSIZE],	LpingOUT[BUFSIZE];

extern	int16_t	LpongIN[BUFSIZE],	LpongOUT[BUFSIZE];

extern	int16_t	RpingIN[BUFSIZE],	RpingOUT[BUFSIZE];

extern	int16_t	RpongIN[BUFSIZE],	RpongOUT[BUFSIZE];

extern	int16_t	Lprocbuffer,	Rprocbuffer;

extern	volatile	int16_t	LTxcomplete,	LRxcomplete;

extern	volatile	int16_t	RTxcomplete,	RRxcomplete;

#include	"hamm128.h"

#define	N	BUFSIZE

#define	TRIGGER	28000

#define	MAGNITUDE_SCALING_FACTOR	32

typedef	struct

{

		float	real;

		float	imag;

}	COMPLEX;

COMPLEX	twiddle[BUFSIZE];

COMPLEX	cbuf[BUFSIZE];

float32_t	outbuffer[BUFSIZE];

void	dftw(COMPLEX	*x,	COMPLEX	*w)

{

		COMPLEX	result[N];

		int	k,n;

		for	(k=0	;	k<N	;	k++)

		{

				result[k].real=0.0;

				result[k].imag	=	0.0;

				for	(n=0	;	n<N	;	n++)

				{

						result[k].real	+=	x[n].real*w[(n*k)%N].real

																						-	x[n].imag*w[(n*k)%N].imag;

						result[k].imag	+=	x[n].imag*w[(n*k)%N].real

																						+	x[n].real*w[(n*k)%N].imag;

				}

		}

		for	(k=0	;	k<N	;	k++)

		{

				x[k]	=	result[k];

		}

}

void	Lprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;

		int16_t	i;

		if	(Lprocbuffer	 	PING)

		{	inBuf	=	LpingIN;	outBuf	=	LpingOUT;	}

		if	(Lprocbuffer	 	PONG)

		{	inBuf	=	LpongIN;	outBuf	=	LpongOUT;	}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				cbuf[i].real	=	(float32_t)(*inBuf++);

				cbuf[i].imag	=	0.0;

		}

		dftw(cbuf,twiddle);

		arm_cmplx_mag_f32((float32_t	*)(cbuf),outbuffer,BUFSIZE);

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				if	(i 0)

				*outBuf++	=	TRIGGER;

				else

						*outBuf++	=	(int16_t)(outbuffer[i]/MAGNITUDE_SCALING_FACTOR);

		}

		LTxcomplete	=	0;

		LRxcomplete	=	0;

		return;

}

void	Rprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;

		int16_t	i;

		if	(Rprocbuffer	 	PING)

		{	inBuf	=	RpingIN;	outBuf	=	RpingOUT;	}

		if	(Rprocbuffer	 	PONG)

		{	inBuf	=	RpongIN;	outBuf	=	RpongOUT;	}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				*outBuf++	=	0;

		}

		RTxcomplete	=	0;

		RRxcomplete	=	0;

		return;

}

void	SSI_interrupt_routine(void){while(1){}}

int	main(void)

{

		int	n;

		for	(n=0	;	n<	BUFSIZE	;	n++)

		{

				twiddle[n].real	=	cos(2*PI*n/BUFSIZE);

				twiddle[n].imag	=	-sin(2*PI*n/BUFSIZE);

		}

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_DMA,

																							PGA_GAIN_6_DB);

	while(1)

		{

			while((!LTxcomplete)|(!LRxcomplete));

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

				Lprocess_buffer();

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

				while((!RTxcomplete)|(!RRxcomplete));

				Rprocess_buffer();

		}

}

5.8.1	Running	the	Program
The	value	of	constant	BUFSIZE	is	defined	in	file	tm4c123_aic3104_init.h	and	may	be
edited	prior	to	building	a	project.	Check	that	the	value	of	BUFSIZE	is	equal	to	128	for	this
program	example.	Build	and	run	the	program.	Use	a	signal	generator	connected	to	the	left
channel	of	the	(blue)	LINE	IN	connector	on	the	audio	booster	pack	to	input	a	sinusoidal	signal
with	a	peak-to-peak	magnitude	of	approximately	200	mV	and	connect	an	oscilloscope	to	the
left	channel	scope	hook.	Vary	the	frequency	of	the	input	signal	between	100	and	3500	Hz.
Figure	5.14	shows	an	example	of	what	you	should	see	on	the	oscilloscope	screen.	In	this	case,
BUFSIZE	was	equal	to	128.	The	two	smaller	pulses	correspond	to	the	magnitudes	of	the
positive	and	negative	frequency	components	of	the	sinusoidal	input	signal	computed	using	the
DFT.	The	larger	pulses	correspond	to	impulses	added	to	the	output	signal	every	128	samples
by	program	tm4c123_dft128_dma.c,	replacing	the	magnitude	of	sample	 ,	for	the	purpose
of	triggering	the	oscilloscope.

Figure	5.14	Output	signal	from	program	tm4c123_dft128_dma.c	viewed	using	an
oscilloscope.

For	comparison,	Figure	5.15	shows	the	corresponding	output	signal	from	program
stm32f4_dft128_dma.c.	The	difference	between	this	and	the	output	from	program
tm4c123_dft128_dma.c	is	the	shape	of	the	pulses,	and	as	explored	in	Chapter	2,	this	is	due	to
subtle	differences	in	the	reconstruction	filters	in	the	WM5102	and	AIC3104	DACs.	In	this
particular	application,	it	is	probably	true	to	say	that	the	results	are	more	readily	interpreted
using	the	TMC123	LaunchPad	and	AIC3104	audio	booster	pack	than	using	the	STM32F407
Discovery	and	Wolfson	audio	card.

Figure	5.15	Output	signal	from	program	stm32f4_dft128_dma.c	viewed	using	an
oscilloscope.

The	data	in	the	output	buffer	is	ordered	such	that	the	first	value	corresponds	to	a	frequency	of	0
Hz.	The	next	64	values	correspond	to	frequencies	62.5	Hz	(fs/N)	to	4	kHz	(fs/2)	inclusive	in
steps	of	62.5	Hz.	The	following	63	values	correspond	to	frequencies	of	 3937.5	Hz	to	 62.5
Hz	inclusive,	in	steps	of	62.5	Hz.

Increase	the	frequency	of	the	input	signal	and	you	should	see	the	two	smaller	pulses	move
toward	a	point	halfway	between	the	larger	trigger	pulses.	As	the	frequency	of	the	input	signal
approaches	4	kHz,	the	magnitude	of	the	two	smaller	pulses	should	diminish,	ideally	reaching
zero	at	a	frequency	of	4	kHz.	In	fact,	a	slight	degree	of	aliasing	may	be	evident	as	the	input
signal	frequency	is	increased	past	4	kHz,	and	the	magnitude	of	the	smaller	pulses	diminishes,
because	the	magnitude	frequency	response	of	the	AIC3104	DAC	reconstruction	filter	is	only	3
dB	down	at	half	the	sampling	frequency.

5.8.2	Spectral	Leakage
If	the	frequency	of	the	sinusoidal	input	signal	is	equal	to	1750	Hz,	then	the	magnitude	of	the
DFT	of	a	frame	of	128	input	samples	should	be	zero	except	at	two	points,	corresponding	to

frequencies	of	 1750	Hz.	Each	block	of	data	output	via	the	DAC	will	contain	one	other
nonzero	value	–	the	trigger	pulse	inserted	at	 .	The	three	impulses	contained	in	each	frame
of	samples	appear	on	the	oscilloscope	as	three	pulses,	each	with	the	form	of	the	impulse
response	of	the	DAC	reconstruction	filter.	Compare	the	shapes	of	the	pulses	shown	in	Figure
5.14	with	the	shape	of	the	pulse	shown	in	Figure	2.45	(output	by	program
tm4c123_dimpulse_intr.c).	Figure	5.16	shows	the	output	signal	corresponding	to	a	1750	Hz
input	signal	in	more	detail.

Figure	5.16	Partial	contents	of	array	outbuffer,	plotted	using	MATLAB	function
tm4c123_plot_real(),	for	input	sinusoid	of	frequency	1750	Hz.

As	the	frequency	of	the	sinusoidal	input	signal	is	changed,	the	shape	and	the	position	(relative
to	the	trigger	pulses)	of	the	smaller	pulses	will	change.	The	precise	shape	of	the	pulses	is	due
to	the	characteristics	of	the	reconstruction	filter	in	the	AIC3104	codec,	as	discussed	in	Chapter
2.	The	fact	that	the	pulse	shape	changes	with	input	signal	frequency	in	this	example	is	due	to
the	phenomenon	of	spectral	leakage.	Change	the	frequency	of	the	input	signal	to	1781	Hz	and
you	should	see	an	output	waveform	similar	to	that	shown	in	Figure	5.17.

Figure	5.17	Detail	of	output	signal	from	program	tm4c123_dft128_dma.c	for	input	sinusoid
of	frequency	1781	Hz.

Program	tm4c123_dft128_dma.c	uses	CMSIS	DSP	library	function	arm_cmplx_mag_f32()
in	order	to	compute	the	magnitude	of	the	complex	DFT	result	returned	by	function	dftw().
This	is	done	because	function	sqrt()	is	very	computationally	expensive.	In	addition	to
copying	blocks	of	data	(alternately)	to	buffers	LpingOUT	and	LpingOUT,	function
Lprocess_buffer()	copies	that	data	to	buffer	outbuffer.	This	enables	the	most	recent	block
of	output	data	to	be	examined	after	the	program	has	been	halted.

After	halting	the	program,	type

SAVE	<filename>	<start	address>,	<end	address>

in	the	MDK-ARM	debugger	Command	window.	start	address	is	the	address	in	memory	of
array	outbuffer,	and	end	address	is	equal	to	(start	address	+	0x100).	Plot	the	contents
of	the	data	file	using	MATLAB	function	tm4c123_plot_real().

Figure	5.16	shows	the	DFT	magnitude	(output)	data	corresponding	to	the	oscilloscope	trace	of
Figure	5.18.	The	trigger	pulse	(not	shown	in	Figure	5.16)	added	to	the	start	of	the	block	of	data
causes	the	impulse	response	of	the	reconstruction	filter	to	appear	on	the	oscilloscope.	It	can	be
deduced	from	Figure	5.16	that	the	frequency	of	the	sinusoidal	input	signal	was	exactly	equal	to
1750	Hz,	corresponding	to	28	 ,	where	 	=	62.5	Hz	is	the	fundamental	frequency
associated	with	a	block	of	128	samples	at	a	sampling	rate	of	8	kHz.	The	solitary	nonzero
frequency-domain	value	produces	an	output	pulse	shape	in	Figure	5.18	similar	to	that	of	the
trigger	pulse.

Figure	5.18	Detail	of	output	signal	from	program	tm4c123_dft128_dma.c	for	input	sinusoid
of	frequency	1750	Hz.

In	contrast,	it	may	be	deduced	from	Figure	5.19	that	the	frequency	of	the	sinusoidal	input	that
produced	the	DFT	magnitude	data	and	hence	the	oscilloscope	trace	of	Figure	5.17	was	in
between	28	 	and	29	 ,	that	is,	between	1750	and	1812.5	Hz.	Figure	5.19	illustrates
spectral	leakage,	and	Figure	5.17	shows	the	result	of	the	data	shown	in	Figure	5.19,	regarded
as	time-domain	samples,	filtered	by	the	reconstruction	filter	in	the	AIC3104	codec.	The	shape
of	the	smaller	pulse	in	Figure	5.17	is	different	to	that	of	the	trigger	pulse.

Figure	5.19	Partial	contents	of	array	outbuffer,	plotted	using	MATLAB	function
tm4c123_plot_real(),	for	input	sinusoid	of	frequency	1781	Hz.

5.8.2.1	Modifying	Program	tm4c123_dft128_dma.c	to	Reduce	Spectral	Leakage
One	method	of	reducing	spectral	leakage	is	to	multiply	the	frames	of	input	samples	by	a
window	function	prior	to	computing	the	DFT.	add	the	preprocessor	command

#include	"hamm128.h"

to	program	tm4c123_dft128_dma.c	and	alter	the	program	statement	that	reads

				cbuf[i].real	=	(float32_t)(*inBuf++);

to	read

				cbuf[i].real	=	(float32_t)(*inBuf++)*hamming[i];

File	hamm128.h	contains	the	declaration	of	array	hamming,	initialized	to	contain	values
representing	a	128-point	Hamming	window.	In	order	to	run	this	program	successfully,	the	value
of	the	constant	BUFSIZE,	set	in	file	tm4c123_aic3104_init.h,	must	be	equal	to	128.	Rebuild
and	run	the	program.	Figures	5.20	and	5.21	show	the	shape	of	the	small	pulse	you	can	expect	to
see	on	the	oscilloscope,	regardless	of	the	frequency	of	the	sinusoidal	input	signal,	and	Figures
5.22	and	5.23	show	the	corresponding	DFT	magnitude	data.	The	spectral	leakage	evident	in
these	figures	is	less	than	that	in	Figures	5.17	and	5.19.

Figure	5.20	Detail	of	output	signal	from	program	tm4c123_dft128_dma.c,	modified	to	apply
a	Hamming	window	to	blocks	of	input	samples,	for	input	sinusoid	of	frequency	1750	Hz.

Figure	5.21	Detail	of	output	signal	from	program	tm4c123_dft128_dma.c,	modified	to	apply
a	Hamming	window	to	blocks	of	input	samples,	for	input	sinusoid	of	frequency	1781	Hz.

Figure	5.22	Partial	contents	of	array	outbuffer,	plotted	using	MATLAB	function
tm4c123_plot_real(),	for	input	sinusoid	of	frequency	1750	Hz.	(Hamming	window	applied
to	blocks	of	input	samples.)

Figure	5.23	Partial	contents	of	array	outbuffer,	plotted	using	MATLAB	function
tm4c123_plot_real(),	for	input	sinusoid	of	frequency	1781	Hz.	(Hamming	window	applied
to	blocks	of	input	samples.)

Example	5.4

FFT	of	a	Real-Time	Input	Signal	Using	an	FFT	Function	in	C
(tm4c123_fft128_dma.c).

Program	tm4c123_fft128_dma.c	implements	a	128-point	FFT	in	real	time	using	an	external
input	signal.	It	calls	an	FFT	function	fft()	written	in	C.	That	function	is	defined	in	the
separate	header	file	fft.h	(Listing	5.10).	The	function	was	written	originally	for	use	with	the
Texas	Instruments	C31	DSK	and	is	described	in	[1].

Program	tm4c123_fft128_dma.c	is	similar	to	program	tm4c123_dft	128_dma.c	in	all
respects	other	than	its	use	of	function	fft()	in	place	of	the	less	computationally	efficient
function	dftw()	and	the	slightly	different	computation	of	twiddle	factors.	Build	and	run	this
program.	Repeat	the	experiments	carried	out	in	Example	5.10	and	verify	that	the	results
obtained	are	similar.

Example	5.5

FFT	of	a	Real-Time	Input	Signal	Using	CMSIS	DSP	function	arm_cfft_f32()
(tm4c123_fft128_CMSIS_dma.c).

Program	tm4c123_fft128_CMSIS_dma.c,	shown	in	Listing	5.14	uses	the	computationally

efficient	CMSIS	DSP	library	function	arm_cfft_f32()	in	order	to	calculate	the	FFT	of	a
block	of	samples.	Other	than	that,	it	is	similar	to	the	previous	two	examples	and	should
produce	similar	results.	The	twiddle	factors	used	by	function	arm_cfft_f32()	are	provided
by	a	structure	defined	in	header	file	arm_const_structs.h	and	the	parameter	passed	to	the
function	must	match	the	value	of	the	constant	BUFSIZE	defined	in	file
tm4c123_aic3104_init.h.	For	example,	if	the	value	of	BUFSIZE	is	equal	to	256,	then	the
address	of	the	structure	arm_cfft_sR_f32_len256	must	be	passed	to	function
arm_cfft_f32().	Similarly,	the	header	file	defining	the	Hamming	window	used	by	the
program	must	match	the	value	of	the	constant	BUFSIZE.	For	example,	if	the	value	of	BUFSIZE	is
equal	to	64,	then	the	file	hamm64.h	must	be	included.

Listing	5.7	Program	tm4c123_fft128_CMSIS_dma.c

//	tm4c123_fft128_CMSIS_dma.c

#include	"tm4c123_aic3104_init.h"

#include	"arm_const_structs.h"

//	the	following	#include	must	match	BUFSIZE

//	defined	in	file	tm4c123_aic3104_init.h

//#include	"hamm64.h"

#include	"hamm128.h"

//#include	"hamm256.h"

extern	int16_t	LpingIN[BUFSIZE],	LpingOUT[BUFSIZE];

extern	int16_t	LpongIN[BUFSIZE],	LpongOUT[BUFSIZE];

extern	int16_t	RpingIN[BUFSIZE],	RpingOUT[BUFSIZE];

extern	int16_t	RpongIN[BUFSIZE],	RpongOUT[BUFSIZE];

extern	int16_t	Lprocbuffer,	Rprocbuffer;

extern	volatile	int16_t	LTxcomplete,	LRxcomplete;

extern	volatile	int16_t	RTxcomplete,	RRxcomplete;

#define	TRIGGER	28000

#define	MAGNITUDE_SCALING_FACTOR	32

float32_t	cbuf[2*BUFSIZE];

float32_t	outbuffer[BUFSIZE];

void	Lprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;

		float32_t	*cbufptr;

		int16_t	i;

		if	(Lprocbuffer	 	PING)

		{	inBuf	=	LpingIN;	outBuf	=	LpingOUT;	}

		if	(Lprocbuffer	 	PONG)

		{	inBuf	=	LpongIN;	outBuf	=	LpongOUT;	}

		cbufptr	=	cbuf;

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				*cbufptr++	=	(float32_t)(*inBuf++)*hamming[i];

				*cbufptr++	=	0.0f;

		}

//	the	following	function	call	must	match	BUFSIZE

//	defined	in	file	tm4c123_aic3104_init.h

//		arm_cfft_f32(&arm_cfft_sR_f32_len64,	(float32_t	*)(cbuf),	0,	1);

				arm_cfft_f32(&arm_cfft_sR_f32_len128,	(float32_t	*)(cbuf),	0,	1);

//		arm_cfft_f32(&arm_cfft_sR_f32_len256,	(float32_t	*)(cbuf),	0,	1);

		arm_cmplx_mag_f32((float32_t	*)(cbuf),outbuffer,BUFSIZE);

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				if	(i 0)

						*outBuf++	=	TRIGGER;

				else

						*outBuf++	=	(int16_t)(outbuffer[i]/MAGNITUDE_SCALING_FACTOR);

		}

		LTxcomplete	=	0;

		LRxcomplete	=	0;

		return;

}

void	Rprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;

		int16_t	i;

		if	(Rprocbuffer	 	PING)

		{	inBuf	=	RpingIN;	outBuf	=	RpingOUT;	}

		if	(Rprocbuffer	 	PONG)

		{	inBuf	=	RpongIN;	outBuf	=	RpongOUT;	}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				*outBuf++	=	0;

		}

		RTxcomplete	=	0;

		RRxcomplete	=	0;

		return;

}

void	SSI_interrupt_routine(void){while(1){}}

int	main(void)

{

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_DMA,

																							PGA_GAIN_6_DB);

	while(1)

		{

				while((!LTxcomplete)|(!LRxcomplete));

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

				Lprocess_buffer();

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

				while((!RTxcomplete)|(!RRxcomplete));

				Rprocess_buffer();

		}

}

Example	5.6

Real-Time	FFT	of	a	Sinusoidal	Signal	from	a	Lookup	Table
(tm4c123_fft128_sinetable_dma.c).

This	example	program	adapts	program	tm4c123_fft128_dma.c	to	read	input	from	an	array
initialized	to	contain	one	cycle	of	a	sinusoid.	Thus,	no	signal	source	is	required	in	order	to
view	output	signals	similar	to	those	in	the	previous	examples.	The	input	signal,	read	from	array
sine_table,	is	output	on	the	right	channel	of	the	AIC3104	codec,	allowing	both	input	and
output	signals	to	be	viewed	together	on	an	oscilloscope	as	shown	in	Figure	5.24.	Pressing
SW1	on	the	TM4C123	LaunchPad	steps	the	frequency	of	the	input	signal	through	a	range	of
different	values.

Figure	5.24	Output	signal	generated	by	program	tm4c123_fft128_sinetable_dma.c,
displayed	using	a	Rigol	DS1052E	oscilloscope.

5.9	Fast	Convolution
Fast	convolution	is	a	technique	whereby	two	sequences	of	(time-domain)	samples	are
convolved	not	by	direct	implementation	of	the	convolution	sum	but	by	multiplying	together
their	frequency-domain	representations.	Computation	of	the	convolution	sum	is
computationally	expensive	for	large	 ,	transformation	between	time	and	frequency	domains
may	be	implemented	efficiently	using	the	fast	Fourier	transform.	An	important	application	of
fast	convolution	is	the	implementation	of	FIR	filters	in	which	blocks	of	input	samples	are
convolved	with	the	filter	coefficients	to	produce	blocks	of	filter	output	samples.

The	steps	involved	in	fast	convolution	are	as	follows:

1.	 Transform	a	block	of	input	samples	into	the	frequency	domain	using	the	FFT.

2.	 Multiply	the	frequency-domain	representation	of	the	input	signal	by	the	frequency-domain
representation	of	the	filter	coefficients.

3.	 Transform	the	result	back	into	the	time	domain	by	using	the	inverse	FFT.

The	filter	coefficients	need	to	be	transformed	into	the	frequency	domain	only	once.

A	number	of	considerations	must	be	taken	into	account	for	this	technique	to	be	implemented	in
practice.

1.	 The	radix-2	FFT	is	applicable	only	to	blocks	of	samples	where	 	is	an	integer	power	of	2.

2.	 In	order	to	multiply	them	together,	the	frequency-domain	representations	of	the	input	signal
and	of	the	filter	coefficients	must	be	the	same	length.

3.	 The	result	of	linearly	convolving	two	sample	sequences	of	lengths	 	and	 	is	a	sequence
of	length	().	If	an	input	sequence	is	split	into	blocks	of	 	samples,	the	result	of
convolving	each	block	with	a	block	of	 	filter	coefficients	will	be	 	output
samples	long.	In	other	words,	the	output	due	to	one	block	of	N	input	samples	extends
beyond	the	corresponding	block	of	 	output	samples	and	into	the	next.	These	blocks
cannot	simply	be	concatenated	in	order	to	construct	a	longer	output	sequence	but	must	be
overlapped	and	added.

These	considerations	are	addressed	by	the	following:

1.	 Making	 	an	integer	power	of	2.

2.	 Processing	length	 	blocks	of	input	samples	and	zero-padding	both	these	samples	and	the
filter	coefficients	used	to	length	 	before	using	a	 -point	FFT.	This	requires	that	the
number	of	filter	coefficients	is	less	than	or	equal	to	 .

3.	 Overlapping	and	adding	the	length	 	blocks	of	output	samples	obtained	using	a	 -point
inverse	FFT	of	the	result	of	multiplying	frequency-domain	representations	of	input	samples
and	filter	coefficients.

Example	5.7

Real-Time	Fast	Convolution	(tm4c123_fastconv_dma.c).

Fast	convolution	is	implemented	by	program	tm4c123_fastconv_dma.c,	shown	in	Listing
5.16.

As	described	earlier,	because	multiplication	of	two	signals	represented	in	the	frequency
domain	corresponds	to	circular,	and	not	linear,	convolution	in	the	time	domain,	it	is	necessary
to	zero-pad	both	the	blocks	of	BUFSIZE	input	samples	and	the	N	FIR	filter	coefficients	to	a
length	greater	than	(BUFSIZE	+	N	-1)	before	transforming	into	the	frequency	domain.	In	this

program	example,	a	(BUFSIZE*2)-point	FFT	is	used	and	hence	the	maximum	number	of	FIR
filter	coefficients	possible	is	(BUFSIZE+1).	Inverse	Fourier	transformation	(DFT)	of	the	result
of	the	multiplication	of	two	(BUFSIZE*2)-point	signal	representations	in	the	frequency	domain
yields	(BUFSIZE*2)	time-domain	samples.	Yet,	these	are	the	result	of	processing	just	BUFSIZE
time-domain	input	samples.	Blocks	of	(BUFSIZE*2)	time-domain	output	samples	are
overlapped	(by	BUFSIZE	samples)	and	added	together	in	order	to	obtain	the	overall	output	of
the	filter	in	blocks	of	BUFSIZE	samples.

Listing	5.8	Program	tm4c123_fastconv_dma.c

//	tm4c123_fastconv_dma.c

#include	"tm4c123_aic3104_init.h"

#include	"lp55.h"

#include	"fft.h"

extern	int16_t	LpingIN[BUFSIZE],	LpingOUT[BUFSIZE];

extern	int16_t	LpongIN[BUFSIZE],	LpongOUT[BUFSIZE];

extern	int16_t	RpingIN[BUFSIZE],	RpingOUT[BUFSIZE];

extern	int16_t	RpongIN[BUFSIZE],	RpongOUT[BUFSIZE];

extern	int16_t	Lprocbuffer,	Rprocbuffer;

extern	volatile	int16_t	LTxcomplete,	LRxcomplete;

extern	volatile	int16_t	RTxcomplete,	RRxcomplete;

COMPLEX	procbuf[2*BUFSIZE],coeffs[2*BUFSIZE];

COMPLEX	twiddle[2*BUFSIZE];

float	overlap[BUFSIZE];

float	a,b;

void	Lprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;

		int16_t	i;

		if	(Lprocbuffer	 	PING)

		{	inBuf	=	LpingIN;	outBuf	=	LpingOUT;	}

		if	(Lprocbuffer	 	PONG)

		{	inBuf	=	LpongIN;	outBuf	=	LpongOUT;	}

		for	(i	=	0;	i	<	(2*BUFSIZE)	;	i++)

		{

				procbuf[i].real	=	0.0;

				procbuf[i].imag	=	0.0;

		}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				procbuf[i].real	=	(float32_t)(*inBuf++);

		}

		fft(procbuf,2*BUFSIZE,twiddle);

		for	(i=0	;	i<(2*BUFSIZE)	;	i++)

		{

				a	=	procbuf[i].real;

				b	=	procbuf[i].imag;

				procbuf[i].real	=	coeffs[i].real*a

																						-	coeffs[i].imag*b;

				procbuf[i].imag	=	-(coeffs[i].real*b

																								+	coeffs[i].imag*a);

		}

		fft(procbuf,2*BUFSIZE,twiddle);

		for	(i=0	;	i<(2*BUFSIZE)	;	i++)

		{

				procbuf[i].real	/=	(2*BUFSIZE);

		}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				*outBuf++	=	(int16_t)(procbuf[i].real	+	overlap[i]);

				overlap[i]	=	procbuf[i+BUFSIZE].real;

		}

		LTxcomplete	=	0;

		LRxcomplete	=	0;

		return;

}

void	Rprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;

		int16_t	i;

		if	(Rprocbuffer	 	PING)

		{	inBuf	=	RpingIN;	outBuf	=	RpingOUT;	}

		if	(Rprocbuffer	 	PONG)

		{	inBuf	=	RpongIN;	outBuf	=	RpongOUT;	}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				*outBuf++	=	0x0000;

		}

		RTxcomplete	=	0;

		RRxcomplete	=	0;

		return;

}

void	SSI_interrupt_routine(void){while(1){}}

int	main(void)

{

		int	i;

		for	(i=0	;	i<	(2*BUFSIZE)	;	i++)

		{

				twiddle[i].real	=	cos(PI*i/(2*BUFSIZE));

				twiddle[i].imag	=	-sin(PI*i/(2*BUFSIZE));

		}

		for(i=0	;	i<((2*BUFSIZE))	;	i++)

		{	coeffs[i].real	=	0.0;	coeffs[i].imag	=	0.0;}

		for(i=0	;	i<N	;	i++)	coeffs[i].real	=	h[i];

		fft(coeffs,(2*BUFSIZE),twiddle);

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_DMA,

																							PGA_GAIN_6_DB);

	while(1)

		{

				while((!RTxcomplete)|(!RRxcomplete));

				Rprocess_buffer();

				while((!LTxcomplete)|(!LRxcomplete));

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

				Lprocess_buffer();

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		}

}

5.9.1	Running	the	Program
Build	and	run	the	program	and	verify	that	it	implements	a	low-pass	filter,	as	determined	by	the
use	of	filter	coefficient	header	file	lp55.h.	Functionally,	the	program	is	equivalent	to	program
tm4c123_fir_dma.c,	described	in	Chapter	3,	and	similarly	introduces	a	delay	of	BUFSIZE*2
sampling	instants	to	an	analog	signal	passing	through	the	system.	The	program	has	been	written
so	that,	just	as	in	the	case	of	program	tm4c123_fir_dma.c,	the	FIR	filter	coefficients	are	read
from	a	separate	header	file	specified	by	a	preprocessor	command,	for	example,

#include	“lp55.h”

The	maximum	possible	value	of	N	(the	number	of	filter	coefficients,	defined	in	the	header	file),
is	(BUFSIZE+1).

5.9.2	Execution	Time	of	Fast	Convolution	Method	of	FIR	Filter
Implementation
The	execution	time	of	the	fast	convolution	algorithm	implemented	by	program	may	be
estimated	by	observing	the	pulse	output	on	GPIO	pin	PE2	using	an	oscilloscope.

Example	5.8

Graphic	Equalizer	(tm4c123_graphicEQ_dma.c).

Listing	5.17	is	of	program	tm4c123_graphicEQ_dma.c,	which	implements	a	three-band
graphic	equalizer.	It	uses	CMSIS	DSP	library	function	arm_cfft_f32()	in	order	implement
the	complex	FFT	calculations.

Listing	5.9	Program	tm4c123_graphicEQ_dma.c)

//	tm4c123_graphicEQ_dma.c

#include	"tm4c123_aic3104_init.h"

#include	"GraphicEQcoeff.h"

#include	"fft.h"

extern	int16_t	LpingIN[BUFSIZE],	LpingOUT[BUFSIZE];

extern	int16_t	LpongIN[BUFSIZE],	LpongOUT[BUFSIZE];

extern	int16_t	RpingIN[BUFSIZE],	RpingOUT[BUFSIZE];

extern	int16_t	RpongIN[BUFSIZE],	RpongOUT[BUFSIZE];

extern	int16_t	Lprocbuffer,	Rprocbuffer;

extern	volatile	int16_t	LTxcomplete,	LRxcomplete;

extern	volatile	int16_t	RTxcomplete,	RRxcomplete;

COMPLEX	xL[2*BUFSIZE],coeffs[2*BUFSIZE];

COMPLEX	twiddle[2*BUFSIZE];

COMPLEX	treble[2*BUFSIZE],bass[2*BUFSIZE];

COMPLEX	mid[2*BUFSIZE];

float	overlap[BUFSIZE];

float	a,b;

float32_t	bass_gain	=	0.1;

float32_t	mid_gain	=	1.0;

float32_t	treble_gain	=	0.25;

int16_t	NUMCOEFFS	=	sizeof(lpcoeff)/sizeof(float);

void	Lprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;

		int16_t	i;

		if	(Lprocbuffer	 	PING)

		{	inBuf	=	LpingIN;	outBuf	=	LpingOUT;	}

		if	(Lprocbuffer	 	PONG)

		{	inBuf	=	LpongIN;	outBuf	=	LpongOUT;	}

		for	(i	=	0;	i	<	(2*BUFSIZE)	;	i++)

		{

				xL[i].real	=	0.0;

				xL[i].imag	=	0.0;

		}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				xL[i].real	=	(float32_t)(*inBuf++);

		}

		fft(xL,2*BUFSIZE,twiddle);

		for	(i=0	;	i<BUFSIZE	;	i++)

		{

				coeffs[i].real	=	bass[i].real*bass_gain

																					+	mid[i].real*mid_gain

																					+	treble[i].real*treble_gain;

				coeffs[i].imag	=	bass[i].imag*bass_gain

																					+	mid[i].imag*mid_gain

																					+	treble[i].imag*treble_gain;

		}

		for	(i=0	;	i<(2*BUFSIZE)	;	i++)

		{

				a	=	xL[i].real;

				b	=	xL[i].imag;

				xL[i].real	=	coeffs[i].real*a	-	coeffs[i].imag*b;

				xL[i].imag	=	-(coeffs[i].real*b	+	coeffs[i].imag*a);

		}

		fft(xL,2*BUFSIZE,twiddle);

		for	(i=0	;	i<(2*BUFSIZE)	;	i++)

		{

				xL[i].real	/=	(2*BUFSIZE);

		}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				*outBuf++	=	(int16_t)(xL[i].real	+	overlap[i]);

				overlap[i]	=	xL[i+BUFSIZE].real;

		}

		LTxcomplete	=	0;

		LRxcomplete	=	0;

		return;

}

void	Rprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;

		int16_t	i;

		if	(Rprocbuffer	 	PING)

		{	inBuf	=	RpingIN;	outBuf	=	RpingOUT;	}

		if	(Rprocbuffer	 	PONG)

		{	inBuf	=	RpongIN;	outBuf	=	RpongOUT;	}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				*outBuf++	=	0x0000;

		}

		RTxcomplete	=	0;

		RRxcomplete	=	0;

		return;

}

void	SSI_interrupt_routine(void){while(1){}}

int	main(void)

{

		int	i;

		for	(i=0	;	i<	(2*BUFSIZE)	;	i++)

		{

				twiddle[i].real	=	cos(PI*i/(2*BUFSIZE));

				twiddle[i].imag	=	-sin(PI*i/(2*BUFSIZE));

		}

		for(i=0	;	i<(BUFSIZE*2)	;	i++)

		{

				coeffs[i].real	=	0.0;

				coeffs[i].imag	=	0.0;

				bass[i].real	=	0.0;

				mid[i].real	=	0.0	;

				treble[i].real	=	0.0;

				bass[i].imag	=	0.0;

				mid[i].imag	=	0.0	;

				treble[i].imag	=	0.0;

		}

		for(i=0	;	i<(BUFSIZE)	;	i++)

		{

				overlap[i]	=	0.0;

		}

		for(i=0	;	i<NUMCOEFFS	;	i++)

		{

				bass[i].real	=	lpcoeff[i];

				mid[i].real	=	bpcoeff[i];

				treble[i].real	=	hpcoeff[i];

		}

		fft(bass,(2*BUFSIZE),twiddle);

		fft(mid,(2*BUFSIZE),twiddle);

		fft(treble,(2*BUFSIZE),twiddle);

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_DMA,

																							PGA_GAIN_6_DB);

	while(1)

		{

				while((!RTxcomplete)|(!RRxcomplete));

				Rprocess_buffer();

				while((!LTxcomplete)|(!LRxcomplete));

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

				Lprocess_buffer();

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		}

}

The	coefficient	header	file	graphicEQcoeff.h	contains	three	sets	of	coefficients:	a	low-pass
filter	with	a	cutoff	frequency	of	1.3	kHz,	a	band-pass	filter	with	cutoff	frequencies	at	1.3	and
2.6	kHz,	and	a	high-pass	filter	with	a	cutoff	frequency	of	2.6	kHz.	These	filters	were	designed
using	the	MATLAB	function	fir1().	The	three	sets	of	filter	coefficients	are	transformed	into
the	frequency	domain	just	once,	and	subsequently,	linear,	weighted	sums	of	their	frequency
domain	representations	are	used	in	the	fast	convolution	process.	A	similar	overlap-add	scheme
to	that	used	in	the	fast	convolution	example	is	employed.	The	gains	in	the	three	frequency
bands	are	set	by	the	program	statements

float32_t	bass_gain	=	0.1;

float32_t	mid_gain	=	1.0;

float32_t	treble_gain	=	0.25;

As	provided,	the	program	would	allow	for	the	values	of	these	gains	to	be	changed	while	it	is
running.	The	weighted	sum	of	the	frequency-domain	representations	of	the	three	filters	is
computed	for	each	block	of	samples	by	the	following	program	statements.

		for	(i=0	;	i<BUFSIZE	;	i++)

		{

				coeffs[i].real	=	bass[i].real*bass_gain

																					+	mid[i].real*mid_gain

																					+	treble[i].real*treble_gain;

				coeffs[i].imag	=	bass[i].imag*bass_gain

																					+	mid[i].imag*mid_gain

																					+	treble[i].imag*treble_gain;

		}

However,	as	it	stands,	the	program	does	not	include	a	mechanism	for	altering	the	gains.

The	magnitude	frequency	response	of	the	graphic	equalizer	may	be	observed	using	the	FFT
function	on	an	oscilloscope	or	using	Goldwave	and	either	by	replacing	the	programs	statement

				xL[i].real	=	(float32_t)(*inBuf++);

with	the	program	statement

				xL[i].real	=	(float32_t)(prbs(8000));

or	by	using	a	microphone	as	an	input	device	and	blowing	gently	on	the	microphone.

Figure	5.25	shows	the	frequency	content	of	pseudorandom	noise	that	has	been	filtered	by	the
graphic	equalizer	with	the	gain	settings	bass_gain	=	0.1,	mid_gain	=	0.1,	and
treble_gain	=	0.25.

Figure	5.25	Output	signal	from	program	tm4c123_graphicEQ_CMSIS_dma.c,	displayed	using
Goldwave,	for	a	pseudorandom	noise	input	signal.	bass_gain	=	0.1,	mid_gain	=	0.1,
treble_gain	=	0.25.

Reference
1.	Chassaing,	R.,	“Digital	Signal	Processing	Laboratory	Experiments	with	C31”,	John	Wiley
&	Sons,	Inc.,	New	York,	1999.

Chapter	6
Adaptive	Filters

6.1	Introduction
Adaptive	filters	are	used	in	situations	where	the	characteristics	or	statistical	properties	of	the
signals	involved	are	either	unknown	or	time-varying.	Typically,	a	nonadaptive	FIR	or	IIR	filter
is	designed	with	reference	to	particular	signal	characteristics.	But	if	the	signal	characteristics
encountered	by	such	a	filter	are	not	those	for	which	it	was	specifically	designed,	then	its
performance	may	be	suboptimal.	The	coefficients	of	an	adaptive	filter	are	adjusted	in	such	a
way	that	its	performance	according	to	some	measure	improves	with	time	and	approaches
optimum	performance.	Thus,	an	adaptive	filter	can	be	very	useful	either	when	there	is
uncertainty	about	the	characteristics	of	a	signal	or	when	these	characteristics	are	time-varying.

Adaptive	systems	have	the	potential	to	outperform	nonadaptive	systems.	However,	they	are,	by
definition,	nonlinear	and	more	difficult	to	analyze	than	linear,	time-invariant	systems.	This
chapter	is	concerned	with	linear	adaptive	systems,	that	is,	systems	that,	when	adaptation	is
inhibited,	have	linear	characteristics.	More	specifically,	the	filters	considered	here	are
adaptive	FIR	filters.

At	the	heart	of	the	adaptive	systems	considered	in	this	chapter	is	the	structure	shown	in	block
diagram	form	in	Figure	6.1.

Figure	6.1	Basic	adaptive	filter	structure.

Its	component	parts	are	an	adjustable	filter,	a	mechanism	for	performance	measurement	(in	this
case,	a	comparator	to	measure	the	instantaneous	error	between	adaptive	filter	output	and
desired	output)	and	an	adaptation	mechanism	or	algorithm.	In	subsequent	figures,	the
adaptation	mechanism	is	incorporated	into	the	adjustable	filter	block	as	shown	in	Figure	6.2

6.1

Figure	6.2	Simplified	block	diagram	of	basic	adaptive	filter	structure.

It	is	conventional	to	refer	to	the	coefficients	of	an	adaptive	FIR	filter	as	weights,	and	the	filter
coefficients	of	the	adaptive	filters	in	several	of	the	program	examples	in	this	chapter	are	stored
in	arrays	using	the	identifier	w	rather	than	h	as	tended	to	be	used	for	FIR	filters	in	Chapter	3.
The	weights	of	the	adaptive	FIR	filter	are	adjusted	so	as	to	minimize	the	mean	squared	value	

	of	the	error	 .	The	mean	squared	error	 	is	defined	as	the	expected	value,	or
hypothetical	mean,	of	the	square	of	the	error,	that	is,

This	quantity	may	also	be	interpreted	as	representing	the	variance,	or	power,	of	the	error
signal.

6.2	Adaptive	Filter	Configurations
Four	basic	configurations	into	which	the	adaptive	filter	structure	of	Figure	6.2	may	be
incorporated	are	commonly	used.	The	differences	between	the	configurations	concern	the
derivation	of	the	desired	output	signal	 .	Each	configuration	may	be	explained	assuming	that
the	adaptation	mechanism	will	adjust	the	filter	weights	so	as	to	minimize	the	mean	squared
value	 	of	the	error	signal	 	but	without	the	need	to	understand	how	the	adaptation
mechanism	works.

6.2.1	Adaptive	Prediction

In	this	configuration	(Figure	6.3),	a	delayed	version	of	the	desired	signal	 	is	input	to
the	adaptive	filter,	which	predicts	the	current	value	of	the	desired	signal	 .	In	doing	this,	the
filter	learns	something	about	the	characteristics	of	the	signal	 	and/or	of	the	process	that
generated	it.	Adaptive	prediction	is	used	widely	in	signal	encoding	and	noise	reduction.

Figure	6.3	Basic	adaptive	filter	structure	configured	for	prediction.

6.2.2	System	Identification	or	Direct	Modeling
In	this	configuration	(Figure	6.4),	broadband	noise	 	is	input	both	to	the	adaptive	filter	and
to	an	unknown	plant	or	system.	If	adaptation	is	successful	and	the	mean	squared	error	is
minimized	(to	zero	in	an	idealized	situation),	then	it	follows	that	the	outputs	of	both	systems	(in
response	to	the	same	input	signal)	are	similar	and	that	the	characteristics	of	the	systems	are
equivalent.	The	adaptive	filter	has	identified	the	unknown	plant	by	taking	on	its	characteristics.
This	configuration	was	introduced	in	Chapter	2	as	a	means	of	identifying	or	measuring	the
characteristics	of	an	audio	codec	and	was	used	again	in	some	of	the	examples	in	Chapters	3
and	4.	A	common	application	of	this	configuration	is	echo	cancellation	in	communication
systems.

Figure	6.4	Basic	adaptive	filter	structure	configured	for	system	identification.

6.2.3	Noise	Cancellation
This	configuration	differs	from	the	previous	two	in	that	while	the	mean	squared	error	is
minimized,	it	is	not	minimized	to	zero,	even	in	the	ideal	case,	and	it	is	the	error	signal	
rather	than	the	adaptive	filter	output	 	that	is	the	principal	signal	of	interest.	Consider	the
system	illustrated	in	Figure	6.5.	A	primary	sensor	is	positioned	so	as	to	pick	up	signal	 .
However,	this	signal	is	corrupted	by	uncorrelated	additive	noise	 ,	that	is,	the	primary	sensor
picks	up	signal	 .	A	second	reference	sensor	is	positioned	so	as	to	pick	up	noise	from	the
same	source	as	 	but	without	picking	up	signal	 .	This	noise	signal	is	represented	in	Figure
6.5	as	 .	Since	they	originate	from	the	same	source,	it	may	be	assumed	that	noise	signals	

and	 	are	strongly	correlated.	It	is	assumed	here	also	that	neither	noise	signal	is	correlated
with	signal	 .	In	practice,	the	reference	sensor	may	pick	up	signal	 	to	some	degree,	and	there
may	be	some	correlation	between	signal	and	noise,	leading	to	a	reduction	in	the	performance
of	the	noise	cancellation	system.

Figure	6.5	Basic	adaptive	filter	structure	configured	for	noise	cancellation.

The	noise	cancellation	system	aims	to	subtract	the	additive	noise	 	from	the	primary	sensor
output	 .	The	role	of	the	adaptive	filter	is	therefore	to	estimate,	or	derive,	 	from	 ,	and
intuitively	(since	the	two	signals	originate	from	the	same	source),	this	appears	feasible.

An	alternative	representation	of	the	situation	described	earlier,	regarding	the	signals	detected
by	the	two	sensors	and	the	correlation	between	 	and	 ,	is	shown	in	Figure	6.6.	Here,	it	is
emphasized	that	 	and	 	have	taken	different	paths	from	the	same	noise	source	to	the	primary
and	reference	sensors,	respectively.	Note	the	similarity	between	this	and	the	system
identification	configuration	shown	in	Figure	6.4.	The	mean	squared	error	 	may	be
minimized	if	the	adaptive	filter	is	adjusted	to	have	similar	characteristics	to	the	block	shown
between	signals	 	and	 .	In	effect,	the	adaptive	filter	learns	the	difference	in	the	paths
between	the	noise	source	and	the	primary	and	reference	sensors,	represented	in	Figure	6.6	by
the	block	labeled	 .	The	minimized	error	signal	will,	in	this	idealized	situation,	be	equal	to
the	signal	 ,	that	is,	a	noise-free	signal.

Figure	6.6	Alternative	representation	of	basic	adaptive	filter	structure	configured	for	noise
cancellation	emphasizing	the	difference	 	in	paths	from	a	single	noise	source	to	primary	and
reference	sensors.

6.2.4	Equalization
In	this	configuration	(Figure	6.7),	the	adaptive	filter	is	used	to	recover	a	delayed	version	of
signal	 	from	signal	 	(formed	by	passing	 	through	an	unknown	plant	or	filter).	The
delay	is	included	to	allow	for	propagation	of	signals	through	the	plant	and	adaptive	filter.	After
successful	adaptation,	the	adaptive	filter	takes	on	the	inverse	characteristics	of	the	unknown
filter,	although	there	are	limitations	on	the	nature	of	the	unknown	plant	for	this	to	be
achievable.	Commonly,	the	unknown	plant	is	a	communication	channel	and	 	is	the	signal
being	transmitted	through	that	channel.	It	is	natural	at	this	point	to	ask	why,	if	a	delayed	but
unfiltered	version	of	signal	 	is	available	for	use	as	the	desired	signal	 	at	the	receiver,	it
is	necessary	to	attempt	to	derive	a	delayed	but	unfiltered	version	of	 	from	signal	 .	In
general,	a	delayed	version	of	 	is	not	available	at	the	receiver,	but	for	the	purposes	of
adaptation	over	short	periods	of	time,	it	is	effectively	made	available	by	transmitting	a
predetermined	sequence	and	using	a	copy	of	this	stored	at	the	receiver	as	the	desired	signal.	In
most	cases,	a	pseudorandom,	broadband	signal	is	used	for	this	purpose.

Figure	6.7	Basic	adaptive	filter	structure	configured	for	equalization.

6.5

6.2

6.3

6.4

6.6

6.3	Performance	Function
Consider	the	block	diagram	representation	of	an	FIR	filter	introduced	in	Chapter	3	and	shown
again	in	Figure	6.8.

Figure	6.8	Block	diagram	representation	of	FIR	filter.

In	the	following	equations,	the	filter	weights	and	the	input	samples	stored	in	the	FIR	filter
delay	line	at	the	 th	sampling	instant	are	represented	as	vectors	 	and	 ,	respectively,
where

and

Hence,	using	vector	notation,	the	filter	output	at	the	 th	sample	instant	is	given	by

Instantaneous	error	is	given	by

and	instantaneous	squared	error	by

Mean	squared	error	(expected	value	of	squared	error)	is	therefore	given	by

6.7

6.8

6.11

6.13

6.9

6.10

6.12

The	expected	value	of	a	sum	of	variables	is	equal	to	the	sum	of	the	expected	values	of	those
variables.	However,	the	expected	value	of	a	product	of	variables	is	the	product	of	the	expected
values	of	the	variables	only	if	those	variables	are	statistically	independent.	Signals	 	and	

	are	generally	not	statistically	independent.	If	the	signals	 	and	 	are	statistically	time-
invariant,	the	expected	values	of	the	products	 	and	 	are	constants	and	hence

where	the	vector	 	of	cross-correlation	between	input	and	desired	output	is	defined	as

and	the	input	autocorrelation	matrix	 	is	defined	as

The	performance	function,	or	surface,	 	is	a	quadratic	function	of	 	and	as	such	is
referred	to	in	the	following	equations	as	 .	Since	it	is	a	quadratic	function	of	 ,	it	has	one
global	minimum	corresponding	to	 .	The	optimum	value	of	the	weights,	 ,	may	be
found	by	equating	the	gradient	of	the	performance	surface	to	zero,	that	is,

and	hence,	in	terms	of	the	statistical	quantities	just	described

and	hence,

In	a	practical,	real-time	application,	solving	Equation	(6.13)	may	not	be	possible	either
because	signal	statistics	are	unavailable	or	simply	because	of	the	computational	effort
involved	in	inverting	the	input	autocorrelation	matrix	 .

6.3.1	Visualizing	the	Performance	Function
If	there	is	just	one	weight	in	the	adaptive	filter,	then	the	performance	function	will	be	a
parabolic	curve,	as	shown	in	Figure	6.9.	If	there	are	two	weights,	the	performance	function
will	be	a	three-dimensional	surface,	a	paraboloid,	and	if	there	are	more	than	two	weights,	then
the	performance	function	will	be	a	hypersurface	(i.e.,	difficult	to	visualize	or	to	represent	in	a

6.14

figure).	In	each	case,	the	role	of	the	adaptation	mechanism	is	to	adjust	the	filter	coefficients	to
those	values	that	correspond	to	a	minimum	in	the	performance	function.

Figure	6.9	Performance	function	for	single	weight	case.

6.4	Searching	for	the	Minimum
An	alternative	to	solving	Equation	(6.13)	by	matrix	inversion	is	to	search	the	performance
function	for	 ,	starting	with	an	arbitrary	set	of	weight	values	and	adjusting	these	at	each
sampling	instant.

One	way	of	doing	this	is	to	use	the	steepest	descent	algorithm.	At	each	iteration	(of	the
algorithm)	in	a	discrete-time	implementation,	the	weights	are	adjusted	in	the	direction	of	the
negative	gradient	of	the	performance	function	and	by	an	amount	proportional	to	the	magnitude
of	the	gradient,	that	is,

where	 	represents	the	value	of	the	weights	at	the	 th	iteration	and	 	is	an	arbitrary
positive	constant	that	determines	the	rate	of	adaptation.	If	 	is	too	large,	then	instability	may
ensue.	If	the	statistics	of	the	signals	 	and	 	are	known,	then	it	is	possible	to	set	a
quantitative	upper	limit	on	the	value	of	 ,	but	in	practice,	it	is	usual	to	set	 	equal	to	a	very
low	value.	One	iteration	of	the	steepest	descent	algorithm	described	by	Equation	(6.14)	is
illustrated	for	the	case	of	a	single	weight	in	Figure	6.10.

6.15

6.16

6.17

Figure	6.10	Steepest	descent	algorithm	illustrated	for	single	weight	case.

6.5	Least	Mean	Squares	Algorithm
The	steepest	descent	algorithm	requires	an	estimate	of	the	gradient	 	of	the	performance
surface	 	at	each	step.	But	since	this	depends	on	the	statistics	of	the	signals	involved,	it	may
be	computationally	expensive	to	obtain.	The	least	mean	squares	(LMS)	algorithm	uses
instantaneous	error	squared	 	as	an	estimate	of	mean	squared	error	 	and	yields	an
estimated	gradient

or

Equation	(6.6)	gave	an	expression	for	instantaneous	squared	error

Differentiating	this	with	respect	to	 ,

6.18

6.20

6.23

6.19

6.21

6.22

Hence,	the	steepest	descent	algorithm,	using	this	gradient	estimate,	is

This	is	the	LMS	algorithm.	Gradient	estimate	 	is	imperfect,	and,	therefore,	the	LMS
adaptive	process	may	be	noisy.	This	is	a	further	motivation	for	choosing	a	conservatively	low
value	for	 .

The	LMS	algorithm	is	well	established,	computationally	inexpensive,	and,	therefore,	widely
used.	Other	methods	of	adaptation	include	recursive	least	squares,	which	is	more
computationally	expensive	but	converges	faster,	and	normalized	LMS,	which	takes	explicit
account	of	signal	power.	Given	that	in	practice	the	choice	of	value	for	 	is	somewhat
arbitrary,	a	number	of	simpler	fixed	step	size	variations	are	practicable	although,	somewhat
counterintuitively,	these	variants	may	be	computationally	more	expensive	to	implement	using	a
digital	signal	processor	with	single-cycle	multiply	capability	than	the	straightforward	LMS
algorithm.

6.5.1	LMS	Variants
For	the	sign-error	LMS	algorithm,	Equation	(6.18)	becomes

where	 	is	the	signum	function

For	the	sign-data	LMS	algorithm,	Equation	(6.18)	becomes

For	the	sign-sign	LMS	algorithm,	Equation	(6.18)	becomes

which	reduces	to

and	which	involves	no	multiplications.

6.5.2	Normalized	LMS	Algorithm
The	rate	of	adaptation	of	the	standard	LMS	algorithm	is	sensitive	to	the	magnitude	of	the	input
signal	 .	This	problem	may	be	ameliorated	by	using	the	normalized	LMS	algorithm	in	which

6.24

the	adaptation	rate	 	in	the	LMS	algorithm	is	replaced	by

6.6	Programming	Examples
The	following	program	examples	illustrate	adaptive	filtering	using	the	LMS	algorithm	applied
to	an	FIR	filter.

Example	6.1

Adaptive	Filter	Using	C	Code	(stm32f4_adaptive.c).

This	example	implements	the	LMS	algorithm	as	a	C	program.	It	illustrates	the	following	steps
for	the	adaptation	process	using	the	adaptive	structure	shown	in	Figure	6.2.

1.	 Obtain	new	samples	of	the	desired	signal	 	and	the	reference	input	to	the	adaptive	filter	
.

2.	 Calculate	the	adaptive	FIR	filter	output	 ,	applying	Equation	(6.4).

3.	 Calculate	the	instantaneous	error	 	by	applying	Equation	(6.5).

4.	 Update	the	coefficient	(weight)	vector	 	by	applying	the	LMS	algorithm	(6.18).

5.	 Shift	the	contents	of	the	adaptive	filter	delay	line,	containing	previous	input	samples,	by
one.

6.	 Repeat	the	adaptive	process	at	the	next	sampling	instant.

Program	stm32f4_adaptive.c	is	shown	in	Listing	6.2.	The	desired	signal	is	chosen	to	be	
,	and	the	input	to	the	adaptive	filter	is	chosen	to	be	 .	The

adaptation	rate	 ,	filter	order	 ,	and	number	of	samples	processed	in	the	program	are	equal
to	0.01,	21,	and	60,	respectively.	The	overall	output	is	the	adaptive	filter	output	 ,	which
converges	to	the	desired	cosine	signal	 .

Listing	6.1	Program	stm32f4_adaptive.c.

//	stm32f4_adaptive.c

#include	"stm32f4_wm5102_init.h"

#define	BETA	0.01f																														//	learning	rate

#define	N		21																																									//	number	of	

filter	coeffs

#define	NUM_ITERS		60																		//	number	of	iterations

float32_t	desired[NUM_ITERS];	//	storage	for	results

float32_t	y_out[NUM_ITERS];

float32_t	error[NUM_ITERS];

float32_t	w[N]	=	{0.0};							//	adaptive	filter	weights

float32_t	x[N]	=	{0.0};							//	adaptive	filter	delay	line

int	i,	t;

float32_t	d,	y,	e;

int	main()

{

		for	(t	=	0;	t	<	NUM_ITERS;	t++)

		{

				x[0]	=	sin(2*PI*t/8);					//	get	new	input	sample

				d	=	2*cos(2*PI*t/8);						//	get	new	desired	output

				y	=	0;																				//	compute	filter	output

				for	(i	=	0;	i	<=	N;	i++)

						y	+=	(w[i]*x[i]);

				e	=	d	-	y;																//	compute	error

				for	(i	=	N;	i	>=	0;	i--)

				{

						w[i]	+=	(BETA*e*x[i]);		//	update	filter	weights

						if	(i	!=	0)

								x[i]	=	x[i-1];								//	shift	data	in	delay	line

				}

				desired[t]	=	d;											//	store	results

				y_out[t]	=	y;

				error[t]	=	e;

		}

		while(1){}

}

Because	the	program	does	not	use	any	real-time	input	or	output,	it	is	not	necessary	for	it	to	call
function	stm32f4_wm5102_init().	Figure	6.11	shows	plots	of	the	desired	output	desired,
adaptive	filter	output	y_out,	and	error	error,	plotted	using	MATLAB®	function
stm32f4_plot_real()	after	the	contents	of	those	three	arrays	have	been	saved	to	files	by
typing

SAVE	desired.dat	<start	address>,	<start	address	+	0xF0>

SAVE	y_out.dat	<start	address>,	<start	address	+	0xF0>

SAVE	error.dat	<start	address>,	<start	address	+	0xF0>

in	the	Command	window	in	the	MDK-ARM	debugger,	where	start	address	is	the	address
of	arrays	desired,	y_out,	and	error.	Within	60	sampling	instants,	the	filter	output	effectively

converges	to	the	desired	cosine	signal.	Change	the	adaptation	or	convergence	rate	BETA	to	0.02
and	verify	a	faster	rate	of	adaptation	and	convergence.

Figure	6.11	Plots	of	(a)	desired	output,	(b)	adaptive	filter	output,	and	(c)	error	generated	using
program	stm32f4_adaptive.c	and	displayed	using	MATLAB	function
stm32f4_plot_real().

Example	6.2

Adaptive	Filter	for	Noise	Cancellation	Using	Sinusoids	as	Inputs
(tm4c123_adaptnoise_intr.c).

This	example	illustrates	the	use	of	the	LMS	algorithm	to	cancel	an	undesired	sinusoidal	noise
signal.	Listing	6.4	shows	program	tm4c123_adaptnoise_intr.c,	which	implements	an
adaptive	FIR	filter	using	the	structure	shown	in	Figure	6.5.

Listing	6.2	Program	tm4c123_adaptnoise_intr.c.

//	tm4c123_adaptnoise_intr.c

#include	"tm4c123_aic3104_init.h"

#define	SAMPLING_FREQ	8000

#define	NOISE_FREQ	1200.0

#define	SIGNAL_FREQ	2500.0

#define	NOISE_AMPLITUDE	8000.0

#define	SIGNAL_AMPLITUDE	8000.0

#define	BETA	4E-12f																				//	adaptive	learning	rate

#define	N	10																																		//	number	of	weights

float32_t	w[N];														//	adaptive	filter	weights

float32_t	x[N];														//	adaptive	filter	delay	line

float32_t	theta_increment_noise;

float32_t	theta_noise	=	0.0;

float32_t	theta_increment_signal;

float32_t	theta_signal	=	0.0;

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	inputL,	inputR;

		int16_t	i;

		float32_t	yn,	error,	signal,	signoise,	refnoise,	dummy;

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		inputL	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		inputR	=	(float32_t)(sample_data.bit16[0]);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		theta_increment_noise	=	2*PI*NOISE_FREQ/SAMPLING_FREQ;

		theta_noise	+=	theta_increment_noise;

		if	(theta_noise	>	2*PI)	theta_noise	-=	2*PI;

		theta_increment_signal	=	2*PI*SIGNAL_FREQ/SAMPLING_FREQ;

		theta_signal	+=	theta_increment_signal;

		if	(theta_signal	>	2*PI)	theta_signal	-=	2*PI;

		refnoise	=	(NOISE_AMPLITUDE*arm_cos_f32(theta_noise));

		signoise	=	(NOISE_AMPLITUDE*arm_sin_f32(theta_noise));

		signal	=	(SIGNAL_AMPLITUDE*arm_sin_f32(theta_signal));

		x[0]	=	refnoise;	//	reference	input	to	adaptive	filter

		yn	=	0;										//	compute	adaptive	filter	output

		for	(i	=	0;	i	<	N;	i++)

				yn	+=	(w[i]	*	x[i]);

		error	=	signal	+	signoise	-	yn;		//	compute	error

		for	(i	=	N-1;	i	>=	0;	i--)																		//	update	weights

		{																																//	and	delay	line

				dummy	=	BETA*error;

				dummy	=	dummy*x[i];

				w[i]	=	w[i]	+	dummy;

				x[i]	=	x[i-1];

		}

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		sample_data.bit32	=	((int16_t)(error));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(signal	+	signoise));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

}

int	main()

{

		int16_t	i;

		for	(i=0	;	i<N	;	i++)

		{

				w[i]	=	0.0;

				x[i]	=	0.0;

		}

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1){}

}

A	desired	sinusoid	signal,	of	frequency	SIGNAL_FREQ	(2500	Hz),	with	an	added	(undesired)
sinusoid	signoise,	of	frequency	NOISE_FREQ	(1200	Hz),	forms	one	of	two	inputs	to	the	noise
cancellation	structure	and	represents	the	signal	plus	noise	from	the	primary	sensor	in	Figure
6.12.	A	sinusoid	refnoise,	with	a	frequency	of	NOISE_FREQ	(1200	Hz),	represents	the
reference	noise	signal	in	Figure	6.12	and	is	the	input	to	an	N-coefficient	adaptive	FIR	filter.
The	signal	refnoise	is	strongly	correlated	with	the	signal	signoise	but	not	with	the	desired
signal.	At	each	sampling	instant,	the	output	of	the	adaptive	FIR	filter	is	calculated,	its	N
weights	are	updated,	and	the	contents	of	the	delay	line	x	are	shifted.	The	error	signal	is	the
overall	desired	output	of	the	adaptive	structure.	It	comprises	the	desired	signal	and	additive
noise	from	the	primary	sensor	(signal	+	signoise)	from	which	the	adaptive	filter	output	yn
has	been	subtracted.	The	input	signals	used	in	this	example	are	generated	within	the	program
and	both	the	input	signal	signal	+	signoise	and	the	output	signal	error	are	output	via	the
AIC3104	codec	on	right	and	left	channels,	respectively.

Figure	6.12	Block	diagram	representation	of	program	tm4c213_adaptnoise_intr.c.

Build	and	run	the	program	and	verify	the	following	output	result.	The	undesired	1200-Hz
sinusoidal	component	of	the	output	signal	(error)	is	gradually	reduced	(canceled),	while	the
desired	2500-Hz	signal	remains.	A	faster	rate	of	adaptation	can	be	observed	by	using	a	larger
value	of	beta.	However,	if	beta	is	too	large,	the	adaptation	process	may	become	unstable.
Program	tm4c213_adaptnoise_intr.c	demonstrates	real-time	adjustments	to	the	coefficients
of	an	FIR	filter.	The	program	makes	use	of	CMSIS	DSP	library	functions	arm_sin_f32()	and
arm_cos_f32()	in	order	to	compute	signal	and	noise	signal	values.	Standard	functions	sin()
and	cos()	would	be	computationally	too	expensive	to	use	in	real	time.	The	adaptive	FIR	filter
is	implemented	straightforwardly	using	program	statements

		yn	=	0;																	//	compute	adaptive	filter	output

		for	(i	=	0;	i	<	N;	i++)

				yn	+=	(w[i]	*	x[i]);

		error	=	signal	+	signoise	-	yn;		//	compute	error

		for	(i	=	N-1;	i	>=	0;	i--)							//	update	weights

		{																																//	and	delay	line

				dummy	=	BETA*error;

				dummy	=	dummy*x[i];

				w[i]	=	w[i]	+	dummy;

				x[i]	=	x[i-1];

		}

in	which	the	entire	contents	of	the	filter	delay	line	x	are	shifted	at	each	sampling	instant.
Program	tm4c123_adaptnoise_CMSIS_intr.c	shown	in	Listing	6.5	makes	use	of	the	more
computationally	efficient	CMSIS	DSP	library	function	arm_lms_f32().

Listing	6.3	Program
tm4c123_adaptnoise_CMSIS_intr.c).

//	tm4c123_adaptnoise_CMSIS_intr.c

#include	"tm4c123_aic3104_init.h"

#define	SAMPLING_FREQ	8000

#define	NOISE_FREQ	1200.0f

#define	SIGNAL_FREQ	2500.0f

#define	NOISE_AMPLITUDE	8000.0f

#define	SIGNAL_AMPLITUDE	8000.0f

#define	BETA	1E-13

#define	NUM_TAPS	10

#define	BLOCK_SIZE	1

float32_t	theta_increment_noise;

float32_t	theta_noise	=	0.0;

float32_t	theta_increment_signal;

float32_t	theta_signal	=	0.0;

float32_t	firStateF32[BLOCK_SIZE	+	NUM_TAPS	-1];

float32_t	firCoeffs32[NUM_TAPS]	=	{0.0};

arm_lms_instance_f32	S;

void	SSI_interrupt_routine(void)

}

		AIC3104_data_type	sample_data;

		float32_t	inputl,	inputr;

		float32_t	yout,	error,	signal,	signoise

		float32_t	refnoise,	sigplusnoise;

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		inputl	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		inputr	=	(float32_t)(sample_data.bit16[0]);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		theta_increment_noise	=	2*PI*NOISE_FREQ/SAMPLING_FREQ;

		theta_noise	+=	theta_increment_noise;

		if	(theta_noise>	2*PI)	theta_noise	-=	2*PI;

		theta_increment_signal	=	2*PI*SIGNAL_FREQ/SAMPLING_FREQ;

		theta_signal	+=	theta_increment_signal;

		if	(theta_signal>	2*PI)	theta_signal	-=	2*PI;

		refnoise	=	(NOISE_AMPLITUDE*arm_cos_f32(theta_noise));

		signoise	=	(NOISE_AMPLITUDE*arm_sin_f32(theta_noise));

		signal	=	(SIGNAL_AMPLITUDE*arm_sin_f32(theta_signal));

		sigplusnoise	=	signoise+signal;

		arm_lms_f32(&S,	&refnoise,	&sigplusnoise,

														&yout,	&error,	1);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		sample_data.bit32	=	((int16_t)(error));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(sigplusnoise));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

}

int	main()

{

		arm_lms_init_f32(&S,	NUM_TAPS,	firCoeffs32,

																			firStateF32,	BETA,	1);

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1);

}

6.6.1	Using	CMSIS	DSP	Function	arm_lms_f32()
In	order	to	implement	an	adaptive	FIR	filter	using	CMSIS	DSP	library	function
arm_lms_f32(),	as	in	the	previous	example,	the	following	variables	must	be	declared.

1.	 A	structure	of	type	arm_lms_instance_f32

2.	 A	floating-point	state	variable	array	firStateF32

3.	 A	floating-point	array	of	filter	coefficients	firCoeffs32.

The	arm_lms_instance_f32	structure	comprises	an	integer	value	equal	to	the	number	of
coefficients,	N	used	by	the	filter,	a	floating-point	value	equal	to	the	learning	rate	BETA,	and
pointers	to	the	array	of	N	floating-point	filter	coefficients	and	to	the	N	+	BLOCKSIZE	-	1
floating-point	state	variable	array.	The	state	variable	array	contains	current	and	previous
values	of	the	input	to	the	filter.	Before	calling	function	arm_lms_f32(),	the	structure	is
initialized	using	function	arm_lms_init_f32().	This	assigns	values	to	the	elements	of	the
structure	and	initializes	the	contents	of	the	state	variable	array	to	zero.	Function
arm_lms_init_f32()	does	not	allocate	memory	for	the	filter	coefficient	or	state	variable
arrays.	They	must	be	declared	separately.	Function	arm_lms_init_f32()	does	not	initialize
or	alter	the	contents	of	the	filter	coefficient	array.

Subsequently,	function	arm_lms_f32()	may	be	called,	passing	to	it	pointers	to	the
arm_lms_instance_f32	structure	and	to	floating-point	arrays	of	input	samples,	output
samples,	desired	output	samples,	and	error	samples.	Each	of	these	arrays	contains	BLOCKSIZE
samples.	Each	call	to	function	arm_lms_f32()	processes	BLOCKSIZE	samples,	and	although	it
is	possible	to	set	BLOCKSIZE	to	one,	the	function	is	optimized	according	to	the	architecture	of
the	ARM	Cortex-M4	to	operate	on	at	least	four	samples	per	call.	More	details	of	function
arm_lms_f32()	can	be	found	in	the	CMSIS	documentation	[1].

Example	6.3

Adaptive	FIR	Filter	for	Noise	Cancellation	Using	External	Inputs
(stm32f4_noise_cancellation_CMSIS_dma.c).

This	example	extends	the	previous	one	to	cancel	an	undesired	noise	signal	using	external
inputs.	Program	stm32f4_noise_cancellation_CMSIS_dma.c,	shown	in	Listing	6.7,
requires	two	external	inputs,	a	desired	signal,	and	a	reference	noise	signal	to	be	input	to	left
and	right	channels	of	LINE	IN,	respectively.	A	stereo	3.5-mm	jack	plug	to	dual	RCA	jack	plug
cable	is	useful	for	implementing	this	example	using	two	different	signal	sources.	Alternatively,
a	test	input	signal	is	provided	in	file	speechnoise.wav.	This	may	be	played	through	a	PC
sound	card	and	input	to	the	audio	card	via	a	stereo	3.5	mm	jack	plug	to	3.5	mm	jack	plug	cable.
speechnoise.wav	comprises	pseudorandom	noise	on	the	left	channel	and	speech	on	the	right
channel.

Listing	6.4	Program
stm32f4_noise_cancellation_CMSIS_dma.c

//	stm32f4_noise_cancellation_CMSIS_dma.c

#include	"stm32f4_wm5102_init.h"

#include	"bilinear.h"

extern	uint16_t	pingIN[BUFSIZE],	pingOUT[BUFSIZE]

extern	uint16_t	pongIN[BUFSIZE],	pongOUT[BUFSIZE];

int	rx_proc_buffer,	tx_proc_buffer;

volatile	int	RX_buffer_full	=	0;

volatile	int	TX_buffer_empty	=	0;

#define	BLOCK_SIZE	1

#define	NUM_TAPS	32

float32_t	beta	=	1e-11;

float32_t	firStateF32[BLOCK_SIZE	+	NUM_TAPS	-1];

float32_t	firCoeffs32[NUM_TAPS]	=	{0.0};

arm_lms_instance_f32	S;

float32_t	input,	signoise,	wn,	yn,	yout,	error;

float	w[NUM_SECTIONS][2]	=	{0.0f,	0.0f};	//	IIR	coeffs

void	DMA1_Stream3_IRQHandler()

{

		if(DMA_GetITStatus(DMA1_Stream3,DMA_IT_TCIF3))

		{

				DMA_ClearITPendingBit(DMA1_Stream3,DMA_IT_TCIF3);

				if(DMA_GetCurrentMemoryTarget(DMA1_Stream3))

						rx_proc_buffer	=	PING;

				else

						rx_proc_buffer	=	PONG;

				RX_buffer_full	=	1;

		}

}

void	DMA1_Stream4_IRQHandler()

{

		if(DMA_GetITStatus(DMA1_Stream4,DMA_IT_TCIF4))

		{

				DMA_ClearITPendingBit(DMA1_Stream4,DMA_IT_TCIF4);

				if(DMA_GetCurrentMemoryTarget(DMA1_Stream4))

						tx_proc_buffer	=	PING;

				else

						tx_proc_buffer	=	PONG;

				TX_buffer_empty	=	1;

		}

}

void	process_buffer()

{

		int	i;

		uint16_t	*rxbuf,	*txbuf;

		float32_t	refnoise,	signal;

		int16_t	left_in_sample,	right_in_sample;

		int	section;

		//	determine	which	buffers	to	use

		if	(rx_proc_buffer	 	PING)	rxbuf	=	pingIN;

		else	rxbuf	=	pongIN;

		if	(tx_proc_buffer	 	PING)	txbuf	=	pingOUT;

		else	txbuf	=	pongOUT;

		for	(i=0	;	i<(BUFSIZE/2)	;	i++)

		{

				right_in_sample	=	*rxbuf++;

				left_in_sample	=	*rxbuf++;

				refnoise	=	(float32_t)(right_in_sample);

				signal	=	(float32_t)(left_in_sample);

				input	=	refnoise;

				for	(section=0	;	section<NUM_SECTIONS	;	section++)

				{

						wn	=	input	-	a[section][1]*w[section][0]

											-	a[section][2]*w[section][1];

						yn	=	b[section][0]*wn	+	b[section][1]*w[section][0]

											+	b[section][2]*w[section][1];

						w[section][1]	=	w[section][0];

						w[section][0]	=	wn;

						input	=	yn;

				}

				signoise	=	yn	+	signal;

				arm_lms_f32(&S,	&refnoise,	&signoise,

																&yout,	&error,	1);

				*txbuf++	=	(int16_t)(signoise);

				*txbuf++	=	(int16_t)(error);

		}

		TX_buffer_empty	=	0;

		RX_buffer_full	=	0;

}

int	main()

{

		arm_lms_init_f32(&S,	NUM_TAPS,	firCoeffs32,

																			firStateF32,	beta,	1);

		stm32_wm5102_init(FS_8000_HZ,

																				WM5102_LINE_IN,

																				IO_METHOD_DMA);

		while(1)

		{

				while	(!(RX_buffer_full	&&	TX_buffer_empty)){}

				GPIO_SetBits(GPIOD,	GPIO_Pin_15);

				process_buffer();

				GPIO_ResetBits(GPIOD,	GPIO_Pin_15);

		}

}

Figure	6.13	shows	the	program	in	block	diagram.	Within	the	program,	a	primary	noise	signal,
correlated	to	the	reference	noise	signal	input	on	the	left	channel,	is	formed	by	passing	the
reference	noise	through	an	IIR	filter.	The	primary	noise	signal	is	added	to	the	desired	signal
(speech)	input	on	the	right	channel.

Figure	6.13	Block	diagram	representation	of	program
tm4c123_noise_cancellation_intr.c.

Build	and	run	the	program	and	test	it	using	file	speechnoise.wav.	As	adaptation	takes	place,
the	output	on	the	left	channel	of	LINE	OUT	should	gradually	change	from	speech	plus	noise	to
speech	only.	You	may	need	to	adjust	the	volume	at	which	you	play	the	file	speechnoise.wav.
If	the	input	signals	are	too	quiet,	then	adaptation	may	be	very	slow.	This	is	an	example	of	the
disadvantage	of	the	LMS	algorithm	versus	the	NLMS	algorithm.	After	adaptation	has	taken
place,	the	32	coefficients	of	the	adaptive	FIR	filter,	firCoeffs32,	may	be	saved	to	a	data	file
by	typing

SAVE	<filename>	<start	address>,	<end	address>

in	the	Command	window	of	the	MDK-ARM	debugger,	where	start	address	is	the	address
of	array	firCoeffs32	and	end	address	is	equal	to	start	address	+	0x80,	and	plotted
using	MATLAB	function	stm32f4_logfft().	This	should	reveal	the	time-	and	frequency-
domain	characteristics	of	the	IIR	filter	implemented	by	the	program,	as	identified	by	the
adaptive	filter	and	as	shown	in	Figure	6.14.

Figure	6.14	Impulse	response	and	magnitude	frequency	response	of	IIR	filter	identified	by	the
adaptive	filter	in	program	tm4c123_noise_cancellation_intr.c	and	plotted	using
MATLAB	function	tm4c123_logfft().

Example	6.4

Adaptive	FIR	Filter	for	System	Identification	of	a	Fixed	FIR	Filter	as	the	Unknown
System	tm4c123_adaptIDFIR_CMSIS_intr.c).

Listing	6.9	shows	program	tm4c123_adaptIDFIR_CMSIS_intr.c,	which	uses	an	adaptive
FIR	filter	to	identify	an	unknown	system.	A	block	diagram	of	the	system	implemented	in	this
example	is	shown	in	Figure	6.15.	The	unknown	system	to	be	identified	is	a	55-coefficient	FIR
band-pass	filter	centered	at	2000	Hz.	The	coefficients	of	this	fixed	FIR	filter	are	read	from
header	file	bp55.h,	previously	used	in	Example	3.23.	A	60-coefficient	adaptive	FIR	filter	is
used	to	identify	the	fixed	(unknown)	FIR	band-pass	filter.

Figure	6.15	Block	diagram	representation	of	program	tm4c123_adaptIDFIR_CMSIS_intr.c.

A	pseudorandom	binary	noise	sequence,	generated	within	the	program,	is	input	to	both	the
fixed	(unknown)	and	the	adaptive	FIR	filters	and	an	error	signal	formed	from	their	outputs.	The
adaptation	process	seeks	to	minimize	the	variance	of	that	error	signal.	It	is	important	to	use
wideband	noise	as	an	input	signal	in	order	to	identify	the	characteristics	of	the	unknown	system
over	the	entire	frequency	range	from	zero	to	half	the	sampling	frequency.

Listing	6.5	Program
tm4c123_adaptIDFIR_CMSIS_intr.c.

//	tm4c123_adaptIDFIR_CMSIS_intr.c

#include	"tm4c123_aic3104_init.h"

#include	"bp55.h"

#define	BETA	5E-13														//	adaptive	learning	rate

#define	NUM_COEFFS	60

#define	BLOCK_SIZE	1

float32_t	firStateF32[BLOCK_SIZE	+	NUM_COEFFS	-1];

float32_t	firCoeffs32[NUM_COEFFS]	=	{0.0};

arm_lms_instance_f32	S_lms;

float32_t	state[N];

arm_fir_instance_f32	S_fir;

volatile	int16_t	out_flag	=	0;	//	determines	output

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	x_fir,	y_fir;

		float32_t	inputl,	inputr;

		float32_t	x_lms,	y_lms,	error;

		SSIDataGet(SSI0_BASE,&sample_data.bit32);			//	input	RIGHT

		inputl	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);			//	input	LEFT

		inputr	=	(float32_t)(sample_data.bit16[0]);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);	//	PE2	high

		x_fir	=	(float32_t)(prbs(8000));

		x_lms	=	x_fir;

		arm_fir_f32(&S_fir,	&x_fir,	&y_fir,	1);

		arm_lms_f32(&S_lms,	&x_lms,	&y_fir,	&y_lms,	&error,	1);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);	//	PE2	low

		if	(out_flag	 	0)

				sample_data.bit32	=	((int16_t)(y_lms));

		else

				sample_data.bit32	=	((int16_t)(y_fir));

		SSIDataPut(SSI0_BASE,sample_data.bit32);	//	output	RIGHT

		sample_data.bit32	=	((int16_t)(error));

		SSIDataPut(SSI1_BASE,sample_data.bit32);	//	output	LEFT

		SSIIntClear(SSI0_BASE,SSI_RXFF);			//	clear	interrupt	flag

}

int	main()

{

		arm_fir_init_f32(&S_fir,	N,	h,	state,	1);

		arm_lms_init_f32(&S_lms,	NUM_COEFFS,	firCoeffs32,	firStateF32,

																			BETA,	1);

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1)

		{

				ROM_SysCtlDelay(10000);

				//	test	SWI1	closed/pressed

				if	(!GPIOPinRead(GPIO_PORTF_BASE,	GPIO_PIN_4))

				{

						ROM_SysCtlDelay(10000);

						out_flag	=	(out_flag+1)%2;	//	toggle	out_flag

						//	wait	until	SWI	not	closed/pressed

						while	(!GPIOPinRead(GPIO_PORTF_BASE,	GPIO_PIN_4)){}

				}

		}

}

Build,	load,	and	run	the	program.	The	blue	user	pushbutton	on	the	Discovery	may	be	used	to
toggle	the	output	between	y_fir	(the	output	from	the	fixed	(unknown)	FIR	filter)	and	y_lms

(the	output	from	the	adaptive	FIR	filter)	as	the	signal	written	to	the	right	channel	of	LINE	OUT
on	the	audio	card.	error	(the	error	signal)	is	always	written	to	the	left	channel	of	LINE	OUT.
Verify	that	the	output	of	the	adaptive	FIR	filter	(y_lms)	converges	to	bandlimited	noise	similar
in	frequency	content	to	the	output	of	the	fixed	FIR	filter	(y_fir)	and	that	the	variance	of	the
error	signal	(error)	gradually	diminishes	as	adaptation	takes	place.

Edit	the	program	to	include	the	coefficient	file	bs55.h	(in	place	of	bp55.h),	which	implements
a	55-coefficient	FIR	band-stop	filter	centered	at	2	kHz.	Rebuild	and	run	the	program	and	verify
that,	after	adaptation	has	taken	place,	the	output	of	the	adaptive	FIR	filter	is	almost	identical	to
that	of	the	FIR	band-stop	filter.	Figure	6.16	shows	the	output	of	the	program	while	adaptation
is	taking	place.	The	upper	time-domain	trace	shows	the	output	of	the	adaptive	FIR	filter,	the
lower	time-domain	trace	shows	the	error	signal,	and	the	magnitude	of	the	FFT	of	the	output	of
the	adaptive	FIR	filter	is	shown	below	them.	Increase	(or	decrease)	the	value	of	beta	by	a
factor	of	10	to	observe	a	faster	(or	slower)	rate	of	convergence.	Change	the	number	of	weights
(coefficients)	from	60	to	40	and	verify	a	slight	degradation	in	the	identification	process.	You
can	examine	the	adaptive	filter	coefficients	stored	in	array	firCoeffs32	in	this	example	by
saving	them	to	data	file	and	using	the	MATLAB	function	stm32f4_logfft()	to	plot	them	in
the	time	and	frequency	domains.

Figure	6.16	Output	from	program	stm32f4_adaptIDFIR_CMSIS_intr.c	using	coefficient
header	file	bs55.h	viewed	using	Rigol	DS1052E	oscilloscope.

Example	6.5

Adaptive	FIR	Filter	for	System	ID	of	a	Fixed	FIR	as	an	Unknown	System	with
Adaptive	Filter	Initialized	as	a	Band-Pass	Filter
(stm32f4_adaptIDFIR_CMSIS_init_intr.c).

In	this	example,	program	stm32f4_adaptIDFIR_CMSIS_intr.c	has	been	modified	slightly	in
order	to	create	program	stm32f4_adaptIDFIR_init_intr.c.	This	program	initializes	the
weights,	firCoeffs32,	of	the	adaptive	FIR	filter	using	the	coefficients	of	an	FIR	band-pass
filter	centered	at	3	kHz,	rather	than	initializing	the	weights	to	zero.	Both	sets	of	filter
coefficients	(adaptive	and	fixed)	are	read	from	file	adaptIDFIR_CMSIS_init_coeffs.h.
Build,	load,	and	run	the	program.	Initially,	the	frequency	content	of	the	output	of	the	adaptive
FIR	filter	is	centered	at	3	kHz.	Then,	gradually,	as	the	adaptive	filter	identifies	the	fixed
(unknown)	FIR	band-pass	filter,	its	output	changes	to	bandlimited	noise	centered	on	frequency
2	kHz.	The	adaptation	process	is	illustrated	in	Figure	6.17,	which	shows	the	frequency	content
of	the	output	of	the	adaptive	filter	at	different	stages	in	the	adaptation	process.

Figure	6.17	Output	from	adaptive	filter	in	program
tm4c123_adaptIDFIR_CMSIS_init_intr.c.

As	in	most	of	the	example	programs	in	this	chapter,	the	rate	of	adaptation	has	been	set	very
low.

Example	6.6

Adaptive	FIR	for	System	ID	of	Fixed	IIR	as	an	Unknown	System
(tm4c123_iirsosadapt_CMSIS_intr.c).

An	adaptive	FIR	filter	can	be	used	to	identify	the	characteristics	not	only	of	other	FIR	filters
but	also	of	IIR	filters	(provided	that	the	substantial	part	of	the	IIR	filter	impulse	response	is
shorter	than	that	possible	using	the	adaptive	FIR	filter).	Program
tm4c123_iirsosadapt_CMSIS_intr.c,	shown	in	Listing	6.12	combines	programs
tm4c123_iirsos_intr.c	(Example	4.2)	and	tm4c123_adaptIDFIR_CMSIS_intr.c	in	order
to	illustrate	this	(Figure	6.18).	The	IIR	filter	coefficients	used	are	those	of	a	fourth-order	low-
pass	elliptic	filter	(see	Example	4.9)	and	are	read	from	file	elliptic.h.	Build	and	run	the
program	and	verify	that	the	adaptive	filter	converges	to	a	state	in	which	the	frequency	content
of	its	output	matches	that	of	the	(unknown)	IIR	filter.	Listening	to	the	decaying	error	signal
output	on	the	left	channel	of	LINE	OUT	on	the	audio	booster	pack	gives	an	indication	of	the
progress	of	the	adaptation	process.	Figures	6.19	and	6.20	show	the	output	of	the	adaptive	filter
(displayed	using	the	FFT	function	of	a	Rigol	DS1052E	oscilloscope)	and	the	magnitude	FFT	of
the	coefficients	(weights)	of	the	adaptive	FIR	filter	saved	to	a	data	file	and	displayed	using
MATLAB	function	tm4c123_logfft().	The	result	of	the	adaptive	system	identification
procedure	is	similar	in	form	to	that	obtained	by	recording	the	impulse	response	of	an	elliptic
low-pass	filter	using	program	tm4c123_iirsosdelta_intr.c	in	Example	4.10.

Figure	6.18	Block	diagram	representation	of	program
tm4c123_iirsosadapt_CMSIS_intr.c.

Figure	6.19	Output	from	adaptive	filter	in	program	tm4c123_iirsosadapt_CMSIS_intr.c
viewed	using	a	Rigol	DS1052E	oscilloscope.

Figure	6.20	Adaptive	filter	coefficients	from	program
tm4c123_iirsosadapt_CMSIS_intr.c	plotted	using	MATLAB	function	tm4c123_logfft().

Listing	6.6	Program
tm4c123_iirsosadapt_CMSIS_intr.c.

//	tm4c123_iirsosadapt_CMSIS_intr.c

#include	"tm4c123_aic3104_init.h"

#include	"elliptic.h"

#define	BETA	1E-12

#define	NUM_TAPS	128

#define	BLOCK_SIZE	1

float32_t	firStateF32[BLOCK_SIZE	+	NUM_TAPS	-1];

float32_t	firCoeffs32[NUM_TAPS]	=	{0.0};

arm_lms_instance_f32	S;

float32_t	w[NUM_SECTIONS][2]	=	{0.0f,	0.0f};

void	SSI_interrupt_routine(void)

{

		AIC3104_data_type	sample_data;

		float32_t	adapt_in,	adapt_out,	error;

		float32_t	iir_in,	wn,	iir_out,	input;

		int16_t	section;

		SSIDataGet(SSI0_BASE,&sample_data.bit32);

		input	=	(float32_t)(sample_data.bit16[0]);

		SSIDataGet(SSI1_BASE,&sample_data.bit32);

		input	=	(float32_t)(sample_data.bit16[0]);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

		iir_in	=	(float32_t)(prbs(8000));

										adapt_in	=	iir_in;

										for	(section=0	;	section<NUM_SECTIONS	;	section++)

		{

				wn	=	iir_in	-	a[section][1]*w[section][0]

																-	a[section][2]*w[section][1];

				iir_out	=	b[section][0]*wn

														+	b[section][1]*w[section][0]

														+	b[section][2]*w[section][1];

				w[section][1]	=	w[section][0];

				w[section][0]	=	wn;

				iir_in	=	iir_out;

		}

		arm_lms_f32(&S,	&adapt_in,	&iir_out,	&adapt_out,

														&error,	1);

		GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		sample_data.bit32	=	((int16_t)(adapt_out));

		SSIDataPut(SSI0_BASE,sample_data.bit32);

		sample_data.bit32	=	((int16_t)(error));

		SSIDataPut(SSI1_BASE,sample_data.bit32);

		SSIIntClear(SSI0_BASE,SSI_RXFF);

}

int	main()

{

		arm_lms_init_f32(&S,	NUM_TAPS,	firCoeffs32,

																			firStateF32,	BETA,	1);

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_INTR,

																							PGA_GAIN_6_DB);

		while(1);

}

Example	6.7

Adaptive	FIR	Filter	for	System	Identification	of	an	External	System
(tm4c123_sysid_CMSIS_intr.c).

Program	tm4c123_sysid_CMSIS_intr.c,	introduced	in	Chapter	2,	extends	the	previous
examples	to	allow	the	identification	of	an	external	system,	connected	between	the	LINE	OUT
and	LINE	IN	sockets	of	the	audio	booster	pack.	In	Example	3.17,	program
tm4c123_sysid_CMSIS_intr.c	was	used	to	identify	the	characteristics	of	a	moving	average
filter	implemented	using	a	second	TM4C123	LaunchPad	and	audio	booster	pack.	Alternatively,
a	purely	analog	system	or	a	filter	implemented	using	different	DSP	hardware	can	be	connected
between	LINE	OUT	and	LINE	IN	and	its	characteristics	identified.	Connect	two	systems	as
shown	in	Figure	6.21.	Load	and	run	tm4c123_iirsos_intr.c,	including	coefficient	header
file	elliptic.h	on	the	first.	Run	program	tm4c123_sysid_CMSIS_intr.c	on	the	second.
Halt	program	tm4c123_sysid_CMSIS_intr.c	after	a	few	seconds	and	save	the	256	adaptive
filter	coefficients	firCoeffs32	to	a	data	file.	You	can	plot	the	saved	coefficients	using
MATLAB	function	tm4c123_logfft().	Figure	6.22	shows	typical	results.

Figure	6.21	Connection	diagram	for	program	tm4c123_sysid_CMSIS_intr.c	in	Example
6.14.

Figure	6.22	Adaptive	filter	coefficients	from	program	tm4c123_sysid_CMSIS_intr.c
plotted	using	MATLAB	function	tm4c123_logfft()

A	number	of	features	of	the	plots	shown	in	Figure	6.22	are	worthy	of	comment.	Compare	the
magnitude	frequency	response	in	Figure	6.22(b)	with	that	in	Figure	6.20(b).	The	characteristics
of	the	codec	reconstruction	and	antialiasing	filters	and	of	the	ac	coupling	between	codecs	and
jack	sockets	on	both	boards	are	included	in	the	signal	path	identified	by	program
tm4c123_sysid_CMSIS_intr.c	in	this	example	and	are	apparent	in	the	roll-off	of	the
magnitude	frequency	response	at	frequencies	above	3800	Hz	and	below	100	Hz.	There	is	no

roll-off	in	Figure	6.20(b).	Compare	the	impulse	response	in	Figure	6.22(b)	with	that	in	Figure
6.20(b).	Apart	from	its	slightly	different	form,	corresponding	to	the	roll-off	in	its	magnitude
frequency	response,	there	is	an	additional	delay	of	approximately	12	ms.

Example	6.8

Adaptive	FIR	Filter	for	System	Identification	of	an	External	System	Using	DMA-
Based	I/O	(tm4c123_sysid_CMSIS_dma.c).

Functionally,	program	tm4c123_sysid_CMSIS_dma.c	(Listing	6.15)	is	similar	to	program
tm4c123_sysid_CMSIS_intr.c.	Both	programs	use	an	adaptive	FIR	filter,	implemented	using
CMSIS	DSP	library	function	arm_lms_f32(),	to	identify	the	impulse	response	of	a	system
connected	between	LINE	OUT	and	LINE	IN	connections	to	the	audio	booster	pack.	However,
program	tm4c123_sysid_CMSIS_dma.c	is	more	computationally	efficient	and	can	run	at
higher	sampling	rates.	Because	function	arm_lms_f32()	is	optimized	to	process	blocks	of
input	data	rather	than	just	one	sample	at	a	time,	it	is	appropriate	to	use	DMA-based	rather	than
interrupt-based	i/o	in	this	example.	However,	DMA-based	i/o	introduces	an	extra	delay	into
the	signal	path	identified,	and	this	is	evident	in	the	examples	of	successfully	adapted	weights
shown	in	Figure	6.23.	In	each	case,	the	adaptive	filter	used	256	weights.	The	program	has	been
run	successfully	using	up	to	512	weights	at	a	sampling	rate	of	8	kHz	on	the	TM4C123
LaunchPad	with	a	processor	clock	rate	of	84	MHz.

Figure	6.23	Adaptive	filter	coefficients	from	program	tm4c123_sysid_CMSIS_dma.c	plotted
using	MATLAB	function	tm4c123_logfft().	(a)	BUFSIZE	=	32	(b)	BUFSIZE	=	64.

Listing	6.7	Program	tm4c123_sysid_CMSIS_dma.c.

//	tm4c123_sysid_CMSIS_dma.c

#include	"tm4c123_aic3104_init.h"

extern	int16_t	LpingIN[BUFSIZE],	LpingOUT[BUFSIZE];

extern	int16_t	LpongIN[BUFSIZE],	LpongOUT[BUFSIZE];

extern	int16_t	RpingIN[BUFSIZE],	RpingOUT[BUFSIZE];

extern	int16_t	RpongIN[BUFSIZE],	RpongOUT[BUFSIZE];

extern	int16_t	Lprocbuffer,	Rprocbuffer;

extern	volatile	int16_t	Lbuffer_full,	Rbuffer_full;

extern	volatile	int16_t	LTxcomplete,	LRxcomplete,

extern	volatile	int16_t	RTxcomplete,	RRxcomplete;

#define	BETA	1E-12									//	adaptive	learning	rate

#define	NUM_TAPS	256

float32_t	firStateF32[BUFSIZE	+	NUM_TAPS	-1];

float32_t	firCoeffs32[NUM_TAPS]	=	{0.0};

arm_lms_instance_f32	S;

void	Lprocess_buffer(void)

{

		float32_t	adapt_in[BUFSIZE],	adapt_out[BUFSIZE]

		float32_t	desired[BUFSIZE],	error[BUFSIZE];

		int16_t	*inBuf,	*outBuf;				//	temp	buffer	pointers

		int	i;

		if	(Lprocbuffer	 	PING)				//	use	ping	or	pong	buffers

		{	inBuf	=	LpingIN;	outBuf	=	LpingOUT;	}

		if	(Lprocbuffer	 	PONG)

		{	inBuf	=	LpongIN;	outBuf	=	LpongOUT;}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				adapt_in[i]	=	(float32_t)(prbs(8000));

				desired[i]	=	(float32_t)(*inBuf++);

		}

				arm_lms_f32(&S,	adapt_in,	desired,

																adapt_out,	error,	BUFSIZE);

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)

		{

				*outBuf++	=	(int16_t)(adapt_in[i]);

		}

		LTxcomplete	=	0;

		LRxcomplete	=	0;

		return;

}

void	Rprocess_buffer(void)

{

		int16_t	*inBuf,	*outBuf;				//		temp	buffer	pointers

		int	i;

		if	(Rprocbuffer	 	PING)				//	use	ping	or	pong	buffers

		{	inBuf	=	RpingIN;	outBuf	=	RpingOUT;	}

		if	(Rprocbuffer	 	PONG)

		{	inBuf	=	RpongIN;	outBuf	=	RpongOUT;}

		for	(i	=	0;	i	<	(BUFSIZE)	;	i++)	*outBuf++	=	(int16_t)(0);

		RTxcomplete	=	0;

		RRxcomplete	=	0;

		return;

}

void	SSI_interrupt_routine(void){while(1){}}

int	main(void)

{

		arm_lms_init_f32(&S,	NUM_TAPS,	firCoeffs32,	firStateF32,

																			BETA,	BUFSIZE);

		tm4c123_aic3104_init(FS_8000_HZ,

																							AIC3104_LINE_IN,

																							IO_METHOD_DMA,

																							PGA_GAIN_6_DB);

		while	(1)

		{

				while((!RTxcomplete)|(!RRxcomplete));

				Rprocess_buffer();

				while((!LTxcomplete)|(!LRxcomplete));

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	4);

				Lprocess_buffer();

				GPIOPinWrite(GPIO_PORTE_BASE,	GPIO_PIN_2,	0);

		}

}

Index
Adaptive	filters

for	channel	equalization

for	noise	cancellation

for	prediction

for	sinusoidal	noise	cancellation

for	system	ID	of	FIR	filter

for	system	ID	of	IIR	filter

for	system	ID	of	moving	average	filter

AIC3104	codec

ADC	gain

de-emphasis

identification	of	bandwidth	of

impulse	response	of

programmable	digital	effects	filter

sampling	frequency

Aliasing

in	impulse	invariance	method

Amplitude	modulation	(AM)

Analog-to-digital	converter	(ADC)

Antialiasing	filter

arm_biquad_cascade_df1_f32()

arm_cfft_f32()

arm_fir_f32()

arm_lms_f32()

Bilinear	transformation	(BLT)

design	procedure	using

frequency	warping	in

Bit	reversed	addressing

Blackman	window	function

Breakpoints

Butterfly	structure

Cascade	IIR	filter	structure

CMSIS	DSP	library

arm_biquad_cascade_df1_f32()

arm_cfft_f32()

arm_fir_f32()

arm_lms_f32()

Convolution

Decimation-in-frequency	(DIF)	algorithm

Decimation-in-time	(DIT)	algorithm

Difference	equations

DTMF	tone	generation	using

sine	generation	using

swept	sinusoid	generation	using

Digital-to-analog	converter	(DAC)

12-bit

Direct	form	I	IIR	filter	structure

Direct	form	II	IIR	filter	structure

Direct	form	II	transpose	IIR	filter	structure

Direct	memory	access	(DMA)

delay	introduced	by

in	STM32F407

in	TM4C123

Discrete	Fourier	transform	(DFT)

of	complex-number	sequence

of	real-time	signal

Discrete-time	Fourier	Transform	(DTFT)

DTMF	generation

using	difference	equations

using	lookup	tables

Fast	convolution

Fast	Fourier	transform	(FFT)

bit	reversed	addressing

butterfly	structure

decimation-in-frequency	algorithm	for

decimation-in-time	algorithm	for

radix-2

radix-4

of	real-time	input

of	a	real-time	input	signal

of	a	sinusoidal	signal

fdatool	filter	design	and	analysis	tool

Finite	impulse	response	(FIR)	filters

window	design	method

Fourier	series	(FS)

Fourier	transform	(FT)

Frame-based	processing

Frequency	inversion,	scrambling	by

Frequency	warping

Goldwave

Graphic	equalizer

Hamming	window	function

Hanning	window	function

Impulse	invariance	method

Impulse	response

of	AIC3104	codec

of	WM5102	codec

Infinite	impulse	response	(IIR)	filters

cascade	IIR	filter	structure

direct	form	I	IIR	filter	structure

direct	form	II	IIR	filter	structure

direct	form	II	transpose	IIR	filter	structure

parallel	IIR	filter	structure

second	order	sections

I/O

DMA-based

interrupt-based

polling-based

Inverse	fast	Fourier	transform	(IFFT)

Kaiser	window	function

Least	mean	squares	(LMS)	algorithm

sign-data	algorithm

sign-error	algorithm

sign-sign	algorithm

Lookup	table

DTMF	generation	with

impulse	generation	with

sine	wave	generation	with

square-wave	generation	with

swept	sine	wave	generation	with

MDK-ARM

Memory	data,	viewing	and	saving

Moving	average	filter

Noise	cancellation

Notch	filters

FIR

IIR

Overlap-add

Parallel	form	IIR	filter	structure

Parks-Miller	algorithm

Performance	function

Ping-pong	buffers

PRBS

Prediction

Pseudorandom	noise

as	input	to	FIR	filter

as	input	to	IIR	filter

as	input	to	moving	average	filter

Radix-2	decimation-in-frequency	FFT	algorithm

Radix-2	decimation-in-time	FFT	algorithm

Radix-4	decimation-in-frequency	FFT	algorithm

Reconstruction	filter

Rectangular	window	function

Sine	wave	generation

using	difference	equation

using	lookup	table

using	sinf()	function	call

Sinusoidal	noise	cancellation,	adaptive	filter	for

Spectral	leakage

Square	wave	generation

SSI0IntHandler()

Steepest	descent	algorithm

stm32f4_adaptIDFIR_CMSIS_	init_intr.c

stm32f4_adaptive.c

stm32f4_average_intr.c

stm32f4_average_prbs_intr.c

stm32f4_dft.c

stm32f4_dftw.c

stm32f4_dimpulse_DAC12_intr.c

stm32f4_dimpulse_intr.c

stm32f4_fft.c

stm32f4_fft_CMSIS.c

stm32f4_fft128_dma.c

stm32f4_fir_coeffs.m

stm32f4_fir_dma.c

stm32f4_fir_intr.c

stm32f4_fir_prbs_buf_intr.c

stm32f4_fir_prbs_CMSIS_dma.c

stm32f4_iirsos_intr.c

stm32f4_iirsostr_intr.c

stm32f4_logfft.m

stm32f4_loop_buf_intr.c

stm32f4_loop_dma.c

stm32f4_loop_intr.c

stm32f4_loop_poll.c

stm32f4_noise_cancellation_	CMSIS_dma.c

stm32f4_plot_complex.m

stm32f4_plot_real.m

stm32f4_prbs_DAC12_intr.c

stm32f4_sine_intr.c

stm32f4_sine48_intr.c

stm32f4_sine8_intr.c

stm32f4_sine8_DAC12_intr.c

stm32f4_sinegenDE_intr.c

stm32f4_sinegenDTMF_intr.c

stm32f4_square_DAC12_intr.c

stm32f4_square_intr.c

stm32f4_sweep_intr.c

stm32f4_sweepDE_intr.c

System	identification

of	codec	antialiasing	and	reconstruction	filters

of	FIR	filter

of	IIR	filter

of	moving	average	filter

tm4c123_adaptIDFIR_CMSIS_intr.c

tm4c123_adaptnoise_CMSIS_intr.c

tm4c123_adaptnoise_intr.c

tm4c123_aic3104_biquad.m

tm4c123_aliasing_intr.c

tm4c123_AM_poll.c,

tm4c123_delay_intr.c

tm4c123_dft128_dma.c

tm4c123_dimpulse_intr.c

tm4c123_echo_intr.c

tm4c123_fastconv_dma.c

tm4c123_fft128_CMSIS_dma.c

tm4c123_fft128_sinetable_dma.c

tm4c123_fir_dma.c

tm4c123_fir_intr.c

tm4c123_fir_prbs_CMSIS_dma.c

tm4c123_fir_prbs_intr.c

tm4c123_fir3lp_intr.c

tm4c123_fir3ways_intr.c

tm4c123_fir4types_intr.c

tm4c123_fir_coeffs.m

tm4c123_flanger_dimpulse_intr.c

tm4c123_flanger_intr.c

tm4c123_graphicEQ_dma.c

tm4c123_iirsos_CMSIS_intr.c

tm4c123_iirsos_coeffs.m

tm4c123_iirsos_delta_intr.c

tm4c123_iirsos_intr.c

tm4c123_iirsos_prbs_intr.c

tm4c123_iirsosadapt_CMSIS_intr.c

tm4c123_logfft.m

tm4c123_loop_buf_intr.c

tm4c123_loop_dma.c

tm4c123_loop_intr.c

tm4c123_loop_poll.c

tm4c123_notch2_intr.c

tm4c123_prandom_intr.c

tm4c123_prbs_biquad_intr.c

tm4c123_prbs_deemph_intr.c

tm4c123_prbs_prbs_intr.c

tm4c123_prbs_intr.c

tm4c123_ramp_intr.c

tm4c123_scrambler_intr.c

tm4c123_sine48_intr.c

tm4c123_sine48_loop_intr.c

tm4c123_sineDTMF_intr.c

tm4c123_square_1kHz_intr.c

tm4c123_square_intr.c

tm4c123_sysid_average_CMSIS_	intr.c

tm4c123_sysid_biquad_intr.c

tm4c123_sysid_CMSIS_dma.c

tm4c123_sysid_CMSIS_intr.c

tm4c123_sysid_deemph_CMSIS_intr.c

tm4c123_sysid_flange_intr.c

Twiddle	factors

Voice	scrambling,	using	filtering	and	modulation

Window	functions

Blackman

Hamming

Hanning

Kaiser

rectangular

WM5102	codec

impulse	response	of

Z-transform	(ZT)

Zero	padding

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley's	ebook	EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright
	Table of Contents
	Dedication
	Preface
	Chapter 1: ARM® CORTEX®-M4 Development Systems
	1.1 Introduction
	Reference

	Chapter 2: Analog Input and Output
	2.1 Introduction
	2.2 TLV320AIC3104 (AIC3104) Stereo Codec for Audio Input and Output
	2.3 WM5102 Audio Hub Codec for Audio Input and Output
	2.4 Programming Examples
	2.5 Real-Time Input and Output Using Polling, Interrupts, and Direct Memory Access (DMA)
	2.6 Real-Time Waveform Generation
	2.7 Identifying the Frequency Response of the DAC Using Pseudorandom Noise
	2.8 Aliasing
	2.9 Identifying The Frequency Response of the DAC Using An Adaptive Filter
	2.10 Analog Output Using the STM32F407'S 12-BIT DAC
	References

	Chapter 3: Finite Impulse Response Filters
	3.1 Introduction to Digital Filters
	3.2 Ideal Filter Response Classifications: LP, HP, BP, BS
	3.3 Programming Examples

	Chapter 4: Infinite Impulse Response Filters
	4.1 Introduction
	4.2 IIR Filter Structures
	4.3 Impulse Invariance
	4.4 BILINEAR TRANSFORMATION
	4.5 Programming Examples
	Reference

	Chapter 5: Fast Fourier Transform
	5.1 Introduction
	5.2 Development of the FFT Algorithm with RADIX-2
	5.3 Decimation-in-Frequency FFT Algorithm with RADIX-2
	5.4 Decimation-in-Time FFT Algorithm with RADIX-2
	5.5 Decimation-in-Frequency FFT Algorithm with RADIX-4
	5.6 Inverse Fast Fourier Transform
	5.7 Programming Examples
	5.8 Frame- or Block-Based Programming
	5.9 Fast Convolution
	Reference

	Chapter 6: Adaptive Filters
	6.1 Introduction
	6.2 Adaptive Filter Configurations
	6.3 Performance Function
	6.4 Searching for the Minimum
	6.5 Least Mean Squares Algorithm
	6.6 Programming Examples

	Index
	End User License Agreement

