
CONFIDENTIAL1

Developing Advanced Signal
Processing Software on the

Cortex ™-M4 Processor

Ian Johnson

Product Manager

ARM

2

Human interfaces
� EPOS terminals
� Image processing
� Audio interfaces

Power management
� UPS
� Lighting systems
� AC/DC converters

Automotive
� ABS systems
� Chassis control
� Airbag systems

Industrial Applications
� Appliances
� Lighting
� Motion control

Medical instrumentation
� Blood pressure meters
� Glucose meters
� Defibrillators

Connectivity
� Bluetooth
� Zigbee
� Ethernet

Motor control
� Field oriented control
� Stepper motors
� BLDC motors etc

Audio
� MP3 players
� Wireless headsets
� Virtual surround

MCUs address broad markets

3

General signal processing
� Signal processing is almost exclusively in the digital domain

� Real world analog signals are converted to a digital representation

� Mathematical operations of many varieties performed on the signals

� Digital information converted back to real world analog signal

� Digital Signal Processing heavily leans on MAC (Multiply
Accumulate) operations inside large loops

� Yet most algorithms have a lot of control code as well

� Most embedded markets demanding an efficient blend of
traditional RISC processing features with DSP capabilities

A
D

C

D
A

C
Control

+
DSP

4

Focus of talk -programming

� Managing the data flow is one challenge of the system

� Input and output data can represent different signals
� Motor position, Audio, Video, RF signal (GPS, etc.), Sensors Etc.

� Data is arriving in real-time at a fixed sample rate
� Audio = 44.1 kHz, Video = 100 MHz, RF = MHz to GHz

� Optimal peripherals and data converters also required

� This talk purely focuses on the software programming

A
D

C

D
A

C

Control
+

DSP

Sensors Display

5

Characteristics of MCUs
� Easy to use architecture – programming in C

� Efficient ISA for best performance and code size

� Ultra low power architecture – sleep modes etc

� Excellent interrupt control and latency

� Deterministic operation in multitude of applications

� Low cost debug and trace

� Bit manipulation techniques

� Memory protection for separation of processes

� Excellent software ecosystem

� Compilers, debuggers, RTOS etc

� Large number of variants with different peripheral mix

6

Characteristics of DSPs
� Harvard architecture

� High performance MAC

� Saturating math

� SIMD instructions for parallel computation

� Barrel shifters

� Floating point hardware

� Circular and bit-reversed addressing

� Zero overhead loops

� Load and store operations in parallel with math operations

7

Digital signal control (DSC) - blend

Digital
Signal

Controller

MCU

Low costs
Ease of use

C Programming
Interrupt handling
Ultra low power

DSP

Harvard architecture
Single cycle MAC

Floating Point
Barrel shifter

8

Most features in DSCs today

�Harvard architecture

�High performance MAC

�Saturating math

�SIMD instructions for parallel computation

�Barrel shifters

�Floating point hardware

– Circular and bit-reversed addressing

– Zero overhead loops

– Load store operations in parallel with math operations

9

Efficient CPU for DSCs
� Cortex-M4 processor

� Thumb®-2 Technology
� DSP and SIMD instructions
� Single cycle MAC (Up to 32 x 32 + 64 -> 64)
� Optional decoupled single precision FPU
� Integrated configurable NVIC

� Microarchitecture
� 3-stage pipeline with branch speculation
� 3x AMBA® AHB-Lite bus Interfaces

� Configurable for ultra low power
� Deep Sleep Mode, Wakeup Interrupt Controller (WIC)
� Power down features for Floating Point Unit

� Flexible configurations for wider applicability
� Configurable Interrupt Controller (1-240 Interrupts and Priorities)
� Optional Memory Protection Unit (MPU)
� Optional Debug & Trace

10

Powerful MAC instructions
OPERATION INSTRUCTION

16 x 16 = 32 SMULBB, SMULBT, SMULTB, SMULTT

16 x 16 + 32 = 32 SMLABB, SMLABT, SMLATB, SMLATT

16 x 16 + 64 = 64 SMLALBB, SMLALBT, SMLALTB, SMLALTT

16 x 32 = 32 SMULWB, SMULWT

(16 x 32) + 32 = 32 SMLAWB, SMLAWT

(16 x 16) ± (16 x 16) = 32 SMUAD, SMUADX, SMUSD, SMUSDX

(16 x 16) ± (16 x 16) + 32 = 32 SMLAD, SMLADX, SMLSD, SMLSDX

(16 x 16) ± (16 x 16) + 64 = 64 SMLALD, SMLALDX, SMLSLD, SMLSLDX

32 x 32 = 32 MUL

32 ± (32 x 32) = 32 MLA, MLS

32 x 32 = 64 SMULL, UMULL

(32 x 32) + 64 = 64 SMLAL, UMLAL

(32 x 32) + 32 + 32 = 64 UMAAL

32 ± (32 x 32) = 32 (upper) SMMLA, SMMLAR, SMMLS, SMMLSR

(32 x 32) = 32 (upper) SMMUL, SMMULR

All the above operations are single cycle on the Cortex-M4 processor

11

Packed data types
� Several instructions operate on “packed” data types

� Byte or halfword quantities packed into words

� Allows more efficient access to packed structure types

� SIMD instructions can act on packed data

� Instructions to extract and pack data

A B

Extract

Pack

12

SIMD operations
SIMD extensions perform multiple operations in one cycle

Sum = Sum + (A x C) + (B x D)

SIMD techniques operate with packed data

32-bit 32-bit

64-bit64-bit

13

SIMD arithmetic operations
S
Signed

Q
Signed

Saturating

SH
Signed

Halving

U
Unsigned

UQ
Unsigned

Saturating

UH
Unsigned

Halving

ADD8 SADD8 QADD8 SHADD8 UADD8 UQADD8 UHADD8

SUB8 SSUB8 QSUB8 SHSUB8 USUB8 UQSUB8 UHSUB8

ADD16 SADD16 QADD16 SHADD16 UADD16 UQADD16 UHADD16

SUB16 SSUB16 QSUB16 SHSUB16 USUB16 UQSUB16 UHSUB16

ASX SASX QASX SHASX UASX UQASX UHASX

SAX SSAX QSAX SHSAX USAX UQSAX UHSAX

Prefix

ASX
1. Exchanges halfwords of the second operand register
2. Adds top halfwords and subtracts bottom halfwords

Instruction

SAX
1. Exchanges halfwords of the second operand register
2. Subtracts top halfwords and adds bottom halfwords

14

Floating point hardware
� IEEE 754 standard compliance

� Single-precision floating point math key to some algorithms

� Add, subtract, multiply, divide, MAC and square root

� Fused MAC – provides higher precision

SP FP OPERATION CYCLE COUNT

USING FPU

Add/Subtract 1

Divide 14

Multiply 1

Multiply Accumulate (MAC) 3

Fused MAC 3

Square Root 14

15

Main DSP operations
� Finite impulse response (FIR) filters

� Data communications

� Echo cancellation (adaptive versions)

� Smoothing data

� Infinite impulse response (IIR) filters

� Audio equalization

� Motor control

� Fast Fourier transforms (FFT)

� Audio compression

� Spread spectrum communication

� Noise removal

16

Mathematical details
� FIR Filter

� IIR or recursive filter

� FFT Butterfly (radix-2)

[] [] []knxkhny
N

k

−=∑
−

=

1

0

[] [] [] []
[] []21

21

21

210

−+−+
−+−+=

nyanya

nxbnxbnxbny

[] [] []
[] [] [] ω

ω

j

j

ekXkXkY

ekXkXkY
−

−

−=

+=

212

211

Most operations are dominated by MACs
These can be on 8, 16 or 32 bit operations

17

Computing Coefficients
� Variables in a DSP algorithm can be

classified as “coefficients” or “state”
� Coefficients – parameters that determine the

response of the filter (e.g., lowpass, highpass,
bandpass, etc.)

� State – intermediate variables that update
based on the input signal

� The Direct Form 1 Biquad has 5 coefficients
and 4 state variables

� Coefficients may be computed
in a number of different ways
� Simple design equations running on the MCU

� External tools such as MATLAB or QED Filter
Design

18

IIR – single cycle MAC benefit

� Only looking at the inner loop, making these assumptions
� Function operates on a block of samples

� Coefficients b0, b1, b2, a1, and a2 are in registers

� Previous states, x[n-1], x[n-2], y[n-1], and y[n-2] are in registers

� Inner loop on Cortex-M3 takes 27-47 cycles per sample

� Inner loop on Cortex-M4 takes 16 cycles per sample

xN = *x++; 2 2
yN = xN * b0; 3-7 1
yN += xNm1 * b1; 3-7 1
yN += xNm2 * b2; 3-7 1
yN -= yNm1 * a1; 3-7 1
yN -= yNm2 * a2; 3-7 1
*y++ = yN; 2 2
xNm2 = xNm1; 1 1
xNm1 = xN; 1 1
yNm2 = yNm1; 1 1
yNm1 = yN; 1 1
Decrement loop counter 1 1
Branch 2 2

Cortex-M3
cycle count

[] [] [] []
[] []21

21

21

210

−−−−
−+−+=

nyanya

nxbnxbnxbny

Cortex-M4
cycle count

19

Example – MP3 playback

MHz bandwidth requirement for MP3 decode

MCU1

MCU2

DSP1

DSP2

DSP1

DSP2

20

Keeping programming simple
� Complex hardware needs to be easy to program

� Assembly optimization is hard work

� Interfacing with easy to use tools is very important

� All Cortex-M processors can be fully programmed in C
� Quicker learning curve for faster application development

� Easy to maintain, reuse and port

� Reusing code essential for faster delivery
� Cortex-M processors fully upwards compatible

� Programming standards essential for code reuse

21

Cortex Microcontroller Standard (CMSIS)

� Cortex Microcontroller Software Interface Standard
� Abstraction layer for all Cortex-M processor based devices

� Developed in conjunction with silicon, tools and middleware partners

� Benefits to the embedded developer
� Consistent software interfaces for silicon and middleware vendors

� Simplifies re-use across Cortex-M processor-based devices

� Reduces software development cost and time-to-market

� Reduces learning curve for new Cortex microcontroller developers

22

Cortex -M4 CMSIS extensions
� Cortex-M4 support available today in ARM Compiler and Keil-MDK

� C Compiler intrinsic functions for Cortex-M4 extended Instructions

� Optimized Floating Point Library using FPU CPU Instructions

� Complete µVision Debugger support; including Instruction Set Simulation

� CMSIS - Expanded with Cortex-M4 Features (Intrinsic Functions)

� Every CMSIS compliant C Compiler supports Cortex-M4 extensions

� Optimized Library using CMSIS

� Designed to make DSP programs

easy to develop for MCU users

� General Functions
math, trigonometric, control functions
(building blocks)

� Digital Filter Algorithms
for filter design utilities and DSP
toolkits (MATLAB, LabVIEW, etc.)

23

CMSIS-DSP Library
� C Source Code, optimized for Cortex-M4

� For CMSIS compliant C Compilers (ARM/Keil, IAR, GCC)

24

CMSIS-DSP Library

� Enabling product that is free-of-charge
� For silicon vendors, tool partners, and end-user’s

� Extends application range of Cortex-M3/M4 MCUs
to high-performance, low power signal processing
� Can be used on existing Cortex-M3 microcontrollers

� Generic, vendor independent, designed to be a standard
� Works with any good RTOS message passing system (i.e. Keil RTX)

� But can be used stand-alone

� For CMSIS compliant C Compilers (ARM/Keil, IAR, GCC, etc.)

25

� Cortex-M4 SIMD + FPU
� Fix point: ~2x faster

� Floating point: ~10x faster
2,

24
4

8,
81

9

FIR q15
fixed point

41

IIR q31
fixed point

8,
59

6

PID q15
fixed point

8,
31

0

Matrix Mul
fixed point

13
,6

19

15
8,

87
8

Correlationfl
oating point

2,
46

2

27 2,
46

2

DSP Library Benchmark: Cortex-M3 vs. Cortex-M4

Cortex-M3 Cortex-M4 Memory Access CyclesCycles: smaller numbers are better

-
75

%

-
35

%

-
69

%

-
70

%

-
91

%

On Cortex-M4: uses SIMD & FPU
instructions

DSP Library Performance

26

Conclusion
� Signal processing needs in low cost MCUs are increasing

� Motor control, industrial automation, automotive, audio etc

� MCUs and DSCs with signal processing features coming
� Single cycle MAC, SIMD arithmetic, saturation, floating point h/w etc

� High performance signal processing with Cortex-M4 DSCs
� MP3 decode within 10MHz requirement possible on low cost devices

� Signal processing is not as hard as you might think !
� Can be programmed fully in C

� Software standards like CMSIS make programming easier

