
Installing (X)Net on Linux and Raspberry Pi Distros 12-9-2022

This is a “quickstart” walk-through for installing (X)Net v1.39 (aka "linuxnet") on
Linux Mint and the Raspberry Pi, configured to use one or more Direwolf sound card
TNCs. It will likely also work on Ubuntu and other Linux distros. The Raspberry Pi
installation has a couple different procedures, noted in the text. It’s a consolidation
using docs and info provided by Brian N2KGC, Lee K5DAT, Brian N1URO (sk), online
sources, and the English version of the (X)Net manual linked to in this document.

It installs the minimum needed to have a functional (X)Net node connected to
neighboring (X)Net, Flexnet and NetRom nodes via RF. It also includes configuration
to link to a BPQ NetRom node if you to have BPQ running on the same machine as
(X)Net. Internet node-linking info will be added to this doc at a later date.

There may be redundant or unnecessary configuration settings, but this is what worked
for me. Details like auto-starting (X)Net, keep-alive crontab scripts, etc. will be added
to this doc later. Feel free to email corrections, suggestions, or additions to
kp3ft@yahoo.com .

For both Linux and Raspberry:

1. First download the linuxnet.zip file into your /home/USER/ folder or whichever folder
of choice (mine is /home/kp3ft/) from here:
https://www.qsl.net/s/swlkp3//Packet/(X)Net/linuxnet.zip

2. Right-click the file and click “Extract Here”. It unzips as a new folder called
"linuxnet" containing several files.

*** For Raspberrys, you also need to download the xnet_arm7.zip file for Raspberry
Pi2, Pi3, and Pi4, or the xnet_arm6.zip file for Raspberry Pi1 and Zero from here:
https://www.qsl.net/swlkp3/Packet/(X)Net/

Unzip them in the same linuxnet folder mentioned above.

3. Now open the linuxnet folder; there are some text files in that folder you’ll need to
edit in a text editor. (Note: Some configurations of (X)Net installations use a file called
IP.NET, but for this basic setup it’s not used.) These filenames must be kept in
uppercase letters. The first two files are for port, routing, and beacon configuration:
AUTOEXEC.NET and AUTOBOOT.NET. Any text after a “#” is just a comment line,
not part of the config. To disable a line completely, place a “#” at the beginning of the
line. The same # applies to the Direwolf config file edits mentioned later in this
document.

4. Text-edit the AUTOEXEC.NET file, and change the "my call KP3FT-4", "my tcall
KP4DOG", and "my alias CHENGO" to your own config. The "my call" is your actual
node call, "my tcall" is your user-call, and “my alias” is your node alias.
Next, edit or disable the beacon lines. Only the port number, time, and text need to be
changed. In the example below, “1800” is the time interval in seconds, “2” is my UHF
radio port 2, and anything after “text” is the actual transmitted text:

BEACON A 1800 2 ID text CHENGO:KP4DOG in South New Berlin, NY

5. Close and save the file. Now open and edit the AUTOBOOT.NET file. The top three
lines are ports 0, 1, and 2. The first line is for linking to a BPQ node running on the
same machine as (X)Net, so disable it if you aren’t linking to BPQ. (If you are linking
to BPQ, at the bottom of this document is the procedure.)
The next two lines are virtual comports for two different instances of Direwolf.
IMPORTANT For Linux, not Raspberry:

attach sdev0 kiss 1 1 19200 /dev/ttyp0 #virtual COM1 port for Direwolf 1200bd VHF
attach sdev1 kiss 2 1 19200 /dev/ttyp1 #virtual COM2 port for Direwolf 1200bd UHF

If using only one Direwolf instance, edit the first line and disable the second line.
Only three items need to be changed for different comports ,which is the digit right after
“sdev”, the first digit after “kiss”, and the digit after “ttyp”. For example, if you want
(X)Net to use a third instance of Direwolf that is configured for com3, the line would be:
attach sdev2 kiss 3 1 19200 /dev/ttyp2.

IMPORTANT For Raspberrys, those lines need to be edited a little more. The
difference is subtle and easily missed. The Linux “ttyp” is changed to “ptyq” for
Raspberrys:

attach sdev0 kiss 1 1 19200 /dev/ptyq0 #virtual COM1 port for Direwolf 1200bd VHF
attach sdev1 kiss 2 1 19200 /dev/ptyq1 #virtual COM2 port for Direwolf 1200bd UHF

Next, below the port attachment lines is the configuration for each port. Disable or edit
for your own setup. My UHF port example:

#70cm RF backbone port (comment line)
po 2 baud 2400 (port 1 at 2400-baud)*
po 2 acon 1 (auto-connect to Netrom nodes. Use 1 after “acon” to enable, 0 to disable)
po 2 dup 0 (duplex operation. Default 0 is disabled, 1 is enabled)
po 2 win 4 (window size)
po 2 quality 192 (node quality)

po 2 name UHF backbone (name of port that shows in “port” list)
route fl ad 2 w2rgi-2 (route Flexnet on port 2 to neighboring node W2RGI-2)
route bc ad 2 w2rgi-2 (route Netrom on port 2 to neighboring node W2RGI-2)

*According to documentation, the baudrate should be the same as the actual radio
baudrate the TNC is using, to avoid overflow. Example: for a VHF user-port on Port 1
with Direwolf configured for 1200-baud, use “po 1 baud 1200”. For an HF packet port
on Port 3 with Direwolf configured for 300-baud, use “po 3 baud 300”.

6. Next, open and edit the C.TXT, D.TXT, and INFO.INF files to your preferences. The
C.TXT file is the connect-text users will see when they connect on any port. D.TXT is
the disconnect-text. INFO.INF is info about your system that users will see if they send
the “info” or “i” command. You can also create port-specific connect-text and
disconnect-text files instead. For example, if you only want c-text and d-text on a VHF
user-port on Port1, create C1.TXT and D1.TXT files. Port2 would be C2.TXT and
D2.TXT, and so on. The HELP.TXT file can probably be left alone, or edit to your
preference. Its contents are sent when a connected user sends “h” or “help”. Close and
save each file when finished editing.

7. Next, edit your Direwolf's "direwolf.conf" file. (If Direwolf isn't installed yet, stop
here and install the latest stable version using this walk-through:
https://www.qsl.net/swlkp3/Packet/(X)Net/DW_Install.doc)

Scroll down to the "KISS 8001" line, and change 8001 to 0 to disable it. (Don't add a
"#" to the line instead to disable it. Normally, a "#" disables a line, but in that case for
whatever reason, Direwolf will still keep a KISS port open on port 8001).

IMPORTANT
For Linux, create a new line called: SERIALKISS /dev/ptyp0 19200
For Raspberrys, create a new line called: SERIALKISS /dev/ttyq0 19200

which will be the virtual com1 that you have (X)Net configured for. More details on
configuring Direwolf’s direwolf.conf config file are in the aforementioned DW_Install
doc. Close and save the file.

If you will be running multiple Direwolf instances with (X)Net, each instance will need
their own “.conf” file named whatever you choose. For example, besides the default
“direwolf.conf”, I have “backbone.conf” for running a second Direwolf instance. In
each “.conf” file, a different “ptyp#” (or “ttyq#” for Raspberrys) port number needs to
be set for (X)Net, e.g.:
SERIALKISS /dev/ptyp1 19200 for virtual COM2 port
SERIALKISS /dev/ptyp2 19200 for virtual COM3 port , and so on.

**(Don’t forget to change Direwolf ’s AGW port numbers in the other .conf files to
something other than the default 8000. (X)Net doesn’t use the AGW ports, but there will
be a conflict between the Direwolf instances if they are all configured with the same
AGW 8000 port. The AGW ports are handy for connecting with a packet terminal client
such as UZ7HO’s EasyTerm client, to use for testing or just a completely separate
TNC/Terminal system with a different callsign, etc.)

8. Now we need to enable Linux to use the “ptyp” or “ttyq” ports.

*** IMPORTANT*** This next step is for Linux, not Raspberry. For Raspberrys, skip
down to step #11 For Raspberry section.

In a Terminal, run:

sudo nano /etc/default/grub

Change the line from:
GRUB_CMDLINE_LINUX=""
to:
GRUB_CMDLINE_LINUX="pty.legacy_count=10"

9. Close and save it, then run:

sudo update-grub

10. IMPORTANT: reboot the computer for the changes to take effect. After reboot,
linuxnet and Direwolf are now configured to talk to each other.

11. For Raspberry :
Raspberry’s don’t use Grub, so its ttyq ports need to be set manually for each Direwolf
instance. To do this, you first need to install “socat” on the Raspberry:

sudo apt install socat

After socat is installed, run:

sudo socat -d -d -ly PTY,link=/dev/ttyq0 PTY,link=/dev/ptyq0 &

and leave it running.

This enables Direwolf to use the ttyq port you configured it for earlier. A second
instance of Direwolf configured to use ttyq1 would need another Terminal entry:

sudo socat -d -d -ly PTY,link=/dev/ttyq1 PTY,link=/dev/ptyq1 &

and so on for each additional Direwolf instance and pty port.

IMPORTANT: That command needs to be run first before starting Direwolf on the
Raspberry.

12. Installation is finished. Now you can run and test (X)Net and Direwolf. Direwolf
needs to be started first, with root permission. In a Terminal start Direwolf with:

sudo direwolf -qd

13. In another Terminal, cd into your linuxnet folder and start (X)Net, also as root:

For Linux, run:

sudo ./linuxnet

For Raspberry Pi2, Pi3, and Pi4 units, run:

sudo ./xnet_arm7

For the Raspberry Pi1, Zero, and Pico, run:

sudo ./xnet_arm6

*** If the xnet_arm6 or xnet_arm7 executables don’t run, you may have to make them
executable by running in Terminal:

chmod +x xnet_arm6

or

chmod +x xnet_arm7

depending on which model Raspberry you have.

14. (X)Net should now be running in the Terminal, looking something like this:

When you start (X)Net, you’ll need to wait around 10 minutes for (X)Net to start
sending/receiving (X)Net and Flexnet node broadcasts and link to the neighbor node(s)
you configured for. After that, your node and destination lists should be populated
(provided the neighbor node(s) are configured on their end to link to you). The axUDP
link to BPQ takes a shorter time to establish, around a minute or two.

15. Hit the ESC key. Then at the * prompt, enter:

c <your my call> (in my case it's: c kp4dog)

You should now have a "=>" prompt. From there you can use it as a normal packet
terminal. At this point you can immediately test the connection to your configured
neighbor (X)Net or Flexnet node, by sending “c callsign”, in my case: c w2rgi-2.
To disconnect from that node, send “q” or “quit”.

If configured to link to a BPQ node on your LAN, wait a couple minutes for (X)Net and
BPQ to “see” each other, then you can test the BPQ link by connecting to the BPQ node,
in my case : c kp3ft-7.

You can also go into SYSOP mode by entering “sys” at the * prompt, which allows you
to add or make changes such as PACLEN, RETRIES, etc. Detailed documentation on
SYSOP and other commands, configuration, etc. can be found in the English translation
of the (X)Net manual here:
https://www.qsl.net/swlkp3/Packet/(X)Net/xneten.doc

To quit SYSOP mode, enter “q” or “quit”.

If you want to terminate the running (X)Net completely, enter “quit” again (sending just
“q” doesn’t work in this case).

A couple things of note: Direwolf must be started before linuxnet, and both Direwolf
and linuxnet must be started with sudo privileges. Also, if you close linuxnet and then
restart it, it won't reconnect to Direwolf. You need to close Direwolf and linuxnet, then
restart them with Direwolf being first. If running BPQ linked to (X)Net, BPQ doesn’t
need to be started in any particular order, or restarted at any point.

If you edit AUTOEXEC.NET and AUTOBOOT.NET, be sure to close the running
linuxnet first. You can edit and save the C.TXT, D.TXT, INFO.INF, and HELP.TXT
files without closing linuxnet, and the changes also have immediate effect.

BPQ-to-(X)Net link config:

Configures BPQ and (X)Net to link to each other if running on the same machine
address 127.0.0.1.

1. For BPQ and (X)Net to link via UDP, udp ports 10093 and 10094 are used. First shut
down BPQ and (X)Net if they are running. Open BPQ’s “bpq32.cfg” file and scroll
down to its AX/IP port settings. (My entire BPQ AX/IP port config is below at the end
of this document for reference.) Make sure you have a line “UDP 10093” enabled.
Then add a line to point to your (X)Net node callsign using port 10094, for example
mine is:

MAP KP4DOG 127.0.0.1 UDP 10094 B

Close and save when finished.

2. Now, in your (X)Net’s AUTOBOOT.NET file, set up an axUDP line to link to BPQ.
For example, mine:

attach ip0 axUDP 0 1 l10094 d10093 127.0.0.1

Further down that file, create or edit a port section for the BPQ link relevant to your
setup. Mine is:

#BPQ port (comment line)
po 0 dup 0
po 0 baud 115200

po 0 win 7
po 0 name kp3ft-7 BPQ (name that shows in the ports list)
po 0 qual 203
route bc ad 0 kp3ft-7 (route broadcast on port 0 to your BPQ node callsign)
route bc ad 0 NODES (route broadcast node-list on port 0)

BPQ AX/IP port for reference:

PORT
 PORTNUM=6
 ID=AX/IP
 DRIVER=BPQAXIP
 QUALITY=203
 MINQUAL=168
 FRACK=5000
 RESPTIME=1000
 RETRIES=5
 MAXFRAME=7
 PACLEN=255
 DIGIFLAG=0
 CONFIG
 MHEARD
 UDP 10093
 BROADCAST NODES
 MAP KP4DOG 127.0.0.1 UDP 10094 B
ENDPORT

