A DualBand Power Amplifier

Auto BandSwitching LDMOS Power Amplifier for the Amateur 2 M/70 cm Bands

Rear/Top View

Circuit Description and other Musings:

It all started with a need to make my mobile FM setup more organized and less haywire. Ask anyone who seen my car. The end result is a neater solution with an auto band-switched unit that gives the amateur radio operator an indication of which band is being transmitted on. It allows for low-insertion loss on receive, and silent reliable T/R switching using PIN diodes. Based on some very good experiences I have had in the past with power MOSFETS [1] , I chose to stay with that device type. In this case, these are LDMOS devices that Woody, AK2F located for me [2]. These Mitsubishi units were not difficult to use, and the same can be said for several NXP and PolyFet devices I have used in past projects as well. The gain and power was as expected, and the data sheet information proved to be useful.

This document is meant to be self-explanatory, not a point by point construction article. It is intended for amateur radio use, not commercial or any other use. The amateur builder with some RF experience can see from the photos, schematics, parts lists and test data pretty much what to expect. If you are capable of UHF construction you already know all about short lead length, good grounds,etc. The low-inductance advantages of using several small-value ceramic chip capacitors in parallel verses one big chip cap,etc. Of course, any component substitution of any kind carries some risk, so be aware of this. It is suggested the reader reviews Tables 5,6 and 7 throughly.

Since this project uses LDMOS FETS, which can be static sensitive, it makes sense to use a ground wire to the Q1's gate. Attach (tack solder) a thin bare wire from Q1's mounting flange to the gate lead after removing it from the manufacturer's ESD packaging. Mount and install Q1 (with the wire) after all the other power amplifier components are mounted on the Power Amplifier PCB. With Q1 mounted in its PCB cutout, solder the gate and drain leads of Q1 onto the PCB. Then snip the bare wire.

This document being written January 2009 hopefully concludes this project which started in October 2004. The first item was the 70 cm power amplifier with T/R switch and detector followed by Band-Detect circuit, diplexer and finally the 2M power amplifier with its T/R switch and detector. If the reader wonders why one would use "lumped components" at 70 cm and "microstrip" at 2 M for the power amplifier circuits, I will say "Because You Can!" For whatever reason, that's it's just the way the project evolved. Note that the 2M T/R switch is "lumped" while the 70 cm T/R switch is "distributed" (coax). This Rev A addressed a problem of small capacitors at C6 and C8, which could fail due to high RF current in the drain circuit of the 2 Meter PA.

PUPPY LINUX
THIS DOCUMENT GENERATED USING
OPENOFFICE 3.0 ON PUPPY LINUX
For more information: www.puppylinux.com
Rev- 19Jan2009
Rev A 22 Feb 2024

Internal Construction:

Fig 1. Block Diagram
BLOCK DIAGRAM:
DUAL-BAND POWER AMP

Figure 2. FrontEnd Diplexer

TABLE 1. FRONTEND DIPLEXER

REF DES	DESCRIPTION	NOTES
C1	CHIP CAPS $\sim 4.2 \mathrm{pF}(1.5+2.7 \mathrm{pF})$,NPO	
C2	CHIP CAPS $\sim 4.5 \mathrm{pF}(3.0+1.5 \mathrm{pF})$,NPO	
CA	CHIP CAP 18pF NP0	
LA	COIL, $\sim 105 \mathrm{nH}, 5 \mathrm{~T}, 0.25{ }^{\text {"DIA,AWG\#22 }}$	Leads~0.1" long
LB	COIL, $\sim 100 \mathrm{nH}, 5 \mathrm{5}, 0.25{ }^{\text {"DIA,AWG\#22 }}$	Leads~0.1" long
L1	COIL, $\sim 19.3 \mathrm{nH}, 2 \mathrm{~T}, 0.093$ "DIA,AWG\#22	Leads~0.1" long
J1	BNC FEMALE BULKHEAD	

Figure 3. Band Detect Circuit

TABLE 2.BANDDETECT CIRCUIT

REF DES	DESCRIPTION	NOTES
C41,C42,C43	CHIP CAP 0.1uF 50V	
C44,C45	CHIP CAP 100pF NP0	
R41	CHIP RESISTORS ~570 OHMS (470+100 OHMS)	In -Series
R42	CHIP RESISTOR 82 K	
R43,R44	CHIP RESISTOR 100 K	
R45,R46	CHIP RESISTOR 1.5 K	
Q1,Q2	PNP TRANSISTOR,SOT-89, BCP53 or equiv.	
U1	LM393D	OFF-BOARD
R51,R52,R53	RESISTOR,	OFF-BOARD
D1	LED, GRN , (D1=POWER)	OFF-BOARD
D2,D3	LEDS, RED (D2=2M; D3=70cm)	

Figure 4.Schematic 2M Power Amp

TABLE 3: PARTS LIST : 2 M POWER AMPLIFIER

REF DES	DESCRIPTION	NOTES
C1, C2	CHIP CAP 2200 pF 100V; 0805 SIZE	
C3,C26.C27	CHIP CAP 22 pF 50 V	
C4	CHIP CAPS $\sim 25 \mathrm{pF}(22 \mathrm{pF}+3 \mathrm{pF})$	
C5,C29	CHIP CAPS $\sim 66 \mathrm{pF}(2 \times 22 \mathrm{pF})$	
C6	CHIP CAPS $\sim 66 \mathrm{pF}$ ($3 \times 22 \mathrm{pF}$ each) , 0805, 1206 size	
C7	CHIP CAPS $\sim 188 \mathrm{pF}(4 \times 47 \mathrm{pF})$	
C8	CHIP CAPS $\sim 80 \mathrm{pF}(47+33 \mathrm{pF}) 0805,1206$ size	
C9	CHIP CAPS $\sim 540 \mathrm{pF}(2 \times 270 \mathrm{pF})$	
C10,C11,C12,C13	CHIP CAPS $\sim 20 \mathrm{pF}$ ($4 \times 5 \mathrm{pF}$ each)	
$\begin{gathered} \text { C14,C15,C17,C21,C22 } \\ \text { C23,C24,C25,C30 } \end{gathered}$	CHIP CAP . 01 uF 50V, 0603 or 0805 SIZE	
C16,C19	CHIP TANTALUM 10 uF; 25 WVDC	
C18	CHIP CAPS $0.2 \mathrm{uF}(2 \times .1 \mathrm{uF}) 50 \mathrm{~V}$	
C20	GIMMICK CAP ~1 pF	
C28	CHIP CAP 10 pF 100V	
CR1	Germanium Diode 1N34A	
CR2-CR4	PIN Diodes SM1001-M2 (Microsemi)	See also AeroflexMicrometrics
L1	CHIP IND 39 nH	Coilcraft
L2	CHIP IND 22 nH	Coilcraft
L3	CHIP IND 12 nH	Coilcraft
L4	COIL,Air-Core, $\sim 29 \mathrm{nH} ; 2 \mathrm{~T}$	Note
L5,L6	COIL,Air-Core, ~54nH;3T;AWG\#28	Note
L7	COIL,Air-Core, $\sim 450 \mathrm{nH} ; 12 \mathrm{~T}, \mathrm{AWG} \# 28$	Note
L8	COIL,Air-Core, $\sim 200 \mathrm{nH} ; 7 \mathrm{~T}$	Note
RFC1,RFC2	CHOKE,Air-Core, $200 \mathrm{nH} ; 16 \mathrm{~T}$;AWG\#28	Note
RFC3	CHOKE,Air-Core, $281 \mathrm{nH} ; 10 \mathrm{~T}$	Note
R1	330 OHMS, 1/2 W	
R2	75 OHMS 1 W (2 PCS, 150 OHMS,1/2 W)	
R3	50 OHMS (2 PCS 100 OHM CHIP RES)	
R4	56 K CHIP RES	
R5	100 OHM CHIP RES	
R6	Multi-turn TRIMMER,10 K	
R7	CHIP RES, 1500 OHMS	
Q1	LDMOS TRANSISTOR, RD30HVF1	Mitsubishi
VR1	ZENER DIODE;5.1V,1N751A	
Z1	MICROSTRIP $\mathrm{W}=100 \mathrm{mils}$; $\mathrm{L}=500 \mathrm{mils}$	
Z2	MICROSTRIP $\mathrm{W}=100 \mathrm{mils}$; $\mathrm{L}=400 \mathrm{mils}$	
Z3	MICROSTRIP $\mathrm{W}=100 \mathrm{mils}$; L $=2100 \mathrm{mils}$	

Note : Unless otherwise noted :AWG\#24 Enameled Copper Wire wound on 5/16" diameter drill. Note 2: PCB is .062" THK FR4 (G-10), e~4.5

Figure 5. Schematic 70cm Power Amp

TABLE 4: PARTS LIST : 70cm POWER AMPLIFIER

REF DES	DESCRIPTION	NOTES
C1, C9, C11	CHIP CAP 5 pF 100 V NP0	
C2,C5.C6,C8	CHIP CAPS $\sim 10 \mathrm{pF}$ ($2 \times 5 \mathrm{pF}$ each) 50V NP0	
C3	DISC OR CHIP CAP 12 pF NPO	
C4	CHIP CAPS ~94 pF ($2 \times 47 \mathrm{pF}$) NPO	
C7	CHIP CAPS $\sim 25 \mathrm{pF}(5 \times 5 \mathrm{pF})$ NPO	
C10	CHIP CAPS $\sim 20 \mathrm{pF}(4 \times 5 \mathrm{pF})$ NPO	
C12,C14,C23,C25	CHIP CAPS $\sim 200 \mathrm{pF}$ ($2 \times 100 \mathrm{pF}$ each) NP0	
C13,C15,C29	CHIP CAP 100pF NP0	
C16,C22,C24	CHIP CAP . 1 uF 50V ,0603 or 0805 SIZE	
C17,C18,C19,C21	CHIP TANTALUM 1.5 uF; 25 WVDC	
C20	CHIP CAPS $0.02 \mathrm{uF}(2 \times .01 \mathrm{uF}) 50 \mathrm{~V}$	
C28	GIMMICK CAP ~0.5 pF	
CR1	Germanium Diode 1N34A	
CR2-CR4	PIN Diodes SM0502-M1 (Microsemi)	See also AeroflexMicrometrics
L1	1-TURN HAIRPIN; $\mathrm{h}=0.3$ ",w=0.25"	see Fig 5
L2	1-TURN HAIRPIN; $\mathrm{h}=0.4{ }^{\prime \prime}$,w=0.35"	see Fig 5
L3	COIL,Air-Core, $\sim 20 \mathrm{nH} ; 2 \mathrm{~T}$; wind on 5/32" drill	Note
L4	COIL,Air-Core, $\sim 247 \mathrm{nH} ; 6 \mathrm{~T}$; wind on 9/32" drill	Note
L5	1-TURN HAIRPIN; $\mathrm{h}=0.2 \mathrm{c}, \mathrm{w}=0.2^{\prime \prime}$	see Fig 5
L7	COIL,Air-Core; 372nH;12T,AWG\#28;wind on 5/32"drill	Note
RFC1,RFC2	CHOKE,Air-Core;~114nH;6T;AWG\#28;wind on 5/32"drill	Note
R1	390 OHMS, CHIP RES	
R2	Multi-turn TRIMMER,10 K	
R3	1.8 K CHIP RES	
R4	100 OHM CHIP RES	
R5	50 OHM CHIP RES	
R6	330 OHM, 1/2 W	
R7	75 OHM, 1 W	
Q1	LDMOS TRANSISTOR, RD30HUF1	Mitsubishi
VR1	ZENER DIODE;5.1V,1N751A	
Z1,Z2	SEMI-RIGID COAX CABLE, 0.085"DIA, 4.9" LONG	

Note :Unless otherwise noted: AWG\#24 Enameled Copper Wire wound on $5 / 16$ " diameter drill.
Note 2: PCB is .062" THK FR4 (G-10), e~4.5

APPENDIX A. SUGGESTED PROCEDURE
When taking on a project of this magnitude, it helps to break it down into manageable portions. The following sequence of construction/test proved helpful. (Still, this is not intended to be a construction article!)

TABLE 5: SUGGESTED PROCEDURE

1	Power Amps Assembly (omit and bypass T/R Switch/detector
circuit).	

2 Test/Tune each Power Amp. Set each gate bias potentiometer for 0 V initially. Adjust it gradually during tuning process. Apply +12 Volts and +12 V TX (2 M or 70 cm) manually to each. RF input power of approx 2 watts was used. With +12 V and +12 V TX (2 M or 70 cm) manually applied and NO RF power input, the quiescent drain current should be similar to values in "Measured Data" table. Once you adjust the Quiescent Drain Current for the

3 Build T/R Switch and Detector circuits on each power amplifier board.
4 Test Power Amps with T/R switch and detector circuits. Apply +12 V TX to the T/R switches to enable TX.
Test the detector circuits for DC output with RF applied. Detectors should work over the range of $\sim 200 \mathrm{~mW}$ to 4 watts input (positive output).
5 Build/Test Front-end Diplexer. A spectrum analyzer with RF generator or a network analyzer is recommended.
6 Build and test Band Detect Circuit. Do a simple DC test for this assembly. Power the Band Detect circuit with +12 V . With 0 Volts (grounded DET 2 M or grounded DET 70 cm inputs there should be no +12 V TX 2 M or +12 V TX 70 cm drive. Apply $\sim 90 \mathrm{mV}$ DC to these inputs and the +12 V TX 2 M or +12 V TX 70 cm drive should be available. The corresponding LED's should light up. The threshold is $\sim 82 \mathrm{mV}$.
7 Final Assembly:
Interconnect Front-End Diplexer,Band Detect Circuit,2M
Power Amp and 70cm Power Amp. The interconnect signal names should be consistent from one assembly to another. Check your wiring!
8 Final Test:
Power up with +12 VDC. This should be able to detect the RF input for each respective band (from~200mW to ~ 4 watts) and you should get close to the original power output that you saw in step 4. You should see the LED's light only when you apply RF input- if otherwise, check for instabilities.

APPENDIX B. SOME TEST DATA

TABLE 6: Measured Values:(For Reference Only)

PARAMETER	2M DATA	70cm DATA	Notes
Quiescent Drain Current: Only +12 applied. NO +12 V TX or RF input!	~ 1.1 microamp	~11 microamp	A very low drain current with no drive is a good indication. Not for potentiometer adjustment!
Quiescent Drain Current: +12 and +12 V TX (2 M or 70 cm) applied. NO RF input!	56 mA	228 mA	Your values may vary. This mode "Class C" does not require much quiescent drain current. Once you set the Quiescent Drain Current, do not adjust the potentiometer again. Do not adjust by gate voltage.
RF Power Input (Measured From HT using Diode Detector and 10 dB Pad)	$\begin{aligned} & \mathrm{LP}=0.365 \mathrm{~W} \\ & \mathrm{HP}=4.08 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{LP}=0.33 \\ & \mathrm{~W} \\ & \mathrm{HP}=3.12 \\ & \mathrm{~W} \end{aligned}$	ICOM IC-T7H
RF Power Output (Bird Model 4304)	$\begin{aligned} & \mathrm{LP}=18 \mathrm{~W} \\ & \mathrm{HP}=33 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{LP}=6 \mathrm{~W} \\ & \mathrm{HP}=25 \mathrm{~W} \end{aligned}$	Measured in Mobile Installation, Engine Idling
Calculated Gain	$\begin{aligned} & \text { LP~ } 16.9 \mathrm{~dB} \\ & \mathrm{HP} \sim 9.1 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{LP} \sim \\ & 12.6 \mathrm{~dB} \\ & \mathrm{HP} \sim 9.0 \\ & \mathrm{~dB} \end{aligned}$	For Reference Only! Your results may vary.
Harmonics	$\sim-60 \mathrm{dBc}$	$\sim-60 \mathrm{dBc}$	(HP 8558B/182T)

TABLE 7: RX PATH

RX Path Data	RX Path Loss
2M to Input Port	$0.61 \mathrm{~dB} @ 2 \mathrm{M}$
70 cm to Input Port	$1.1 \mathrm{~dB} @ 70 \mathrm{~cm}$

Notes:
[1] Three Fine Mice, QST,December 1986.pg 19
[2] Diamond Advanced Components, 450Washington St, Dedham,MA 02026 Also, Woody AK2F encouraged the author to document this project.

APPENDIX B. SOME TEST DATA (CONTINUED)

SWEPT DIPLEXER RESPONSE:
The Red trace is $\mathrm{dB}[\mathrm{S} 21]$ for common port (J1) to the "Coax to 2M PA" line.
Likewise, the Green trace is db[S21] for common port (J1) to the "Coax to 70cm PA" line. The Black line is return loss for J1.

Some spot frequency values: (Your results may vary. These are exceptional!!)

BAND	$\mathrm{db}[\mathrm{S} 11]$	$\mathrm{db}[\mathrm{S} 21]$	$\mathrm{db}[\mathrm{S} 31]$	$\mathrm{db}[\mathrm{S} 22]$	$\mathrm{db}[\mathrm{S} 33]$
2 M	23.8	0.14	38.2	22	
70 cm	25.4	51.9	0.19		32

