

Loss characteristics of microstrip board materials

- Losses in microstrip lines are the sum of conductor and dielectric losses.
- When dielectric losses are larger than conductor losses, insertion loss vs.
 frequency is a straight-line function, or loss is constant in terms of db/wavelength.

Insertion loss of a cyanate ester microstrip board 91 mm long

Spring, 1999

An equation for losses in the substrate's dielectric

- For open microstrip line, it can be shown* that this equation will predict the insertion loss, given guide wavelength and material characteristics.
- Note that the loss is constant when expressed as dB/λ.
- Use loss data (previous slide) to compute tanδ.

$$L = \frac{8.69 \pi \varepsilon_{r}}{\varepsilon_{r} - 1} \frac{\varepsilon_{eff} - 1}{\varepsilon_{eff}} \frac{\tan \delta}{\lambda_{g}}$$

where ...

L = insertion loss in dB/wavelength

$$\begin{split} \epsilon_r &= \text{bulk dielectric constant} \\ \epsilon_{eff} &= \text{effective dielectric constant} \\ \lambda_g &= \text{guide wavelength} \\ tan\delta &= \text{dielectric loss tangent} \end{split}$$

* M.V. Schneider, "Dielectric loss in integrated microwave circuits," Bell System Technical Journal, vol 48, pp. 225 - 2332, Sept. 1969.

B. Ramo Rao, "Effect of loss and frequency dispersion on the performance of microstrip directional couplers and coupled line filters," IEEE Trans. Microwave Theory Tech., vol. MTT-22, pp. 747 - 750, July 1974

Schottky diode seminar Spring, 1999 I-K

Measurements were made on four low-cost materials

Insertion loss measurements were made on microstrip lines, from which loss/wavelength was obtained. These data were used to compute loss tangent. Materials are listed in increasing order of cost.

Material	Thickness	e	C eff *	loss, dB/I measured	tan d calculated	tan d mfg. claim
FR4 (G10)	0.81mm	4.8	3.65	0.75	0.030	0.023 @ 1 MHz
cyanate ester**	0.81mm	4.5	3.40	0.45	0.018	0.009 @ 1 MHz
G-Tech	0.71mm	3.8	3.00	0.35 ***	0.014	0.018 @ 1 MHz
Rogers 4003	0.51mm	3.4	2.70	0.20 ***	0.008	0.002 @ 10 GHz

* in a microstrip line

** available from International Circuits, Visalia, California. Telephone: 209-741-1154; Web address http://www.intlcircuits.com/

*** measurements made by D.G. Swanson of Watkins-Johnson

Schottky diode seminar Spring, 1999 I-K