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Abstract—The Maximum Power Transfer Theorem (MPTT) is 
applicable to electrical networks. However, using appropriate 
analogies, it may also be applied to mechanical systems. We 
propose that the MPTT needs certain extensions in order to be 
applicable to practical systems.  We argue that it is logical to 
explicitly extend the conditions for maximum power transfer to 
include the requirement that the system be limited in its power 
output and that the system be operating at that maximum power 
output in order to transfer the maximum power. We provide an 
example of a practical, power limited system, which we analyze 
at its maximum available power level to determine the 
“apparent” source impedance. We introduce the concept of a 
non-dissipative source resistance and will provide the procedure 
for measuring its value using the same principles normally 
associated with the equivalent circuits of Thévenin or Norton. 
The results of the analysis will show that the system is 
conjugately matched and yet operates at high efficiency- clearly 
demonstrating the inadequacy of the traditional interpretation of 
the MPTT and the Thévenin and Norton equivalent circuits.  

I. INTRODUCTION 
The Maximum Power Transfer Theorem: 

The maximum power will be absorbed by one network 
from another joined to it at two terminals, when the 
impedance of the receiving network is varied, if the 
impedance looking into the two networks at the junction 
are conjugates of each other [1]. 

This analysis will use a simple system consisting of a 
prime-mover and DC Generator to illustrate an application of 
the Maximum Power Transfer Theorem (MPTT) and the 
Conjugate Match. Historically, the MPTT has been 
misunderstood – first from the standpoint of understanding all 
of its implications and second from the standpoint of its effect 
on the maximum possible efficiency of a system. 

Consider the possibility that every system have its internal 
impedance equal to its load impedance. Such a system would 
be limited to 50% efficiency.  

What are the implications requiring that the theorem 
applies to “maximum power transfer”? Does that mean that the 
system must be limited in how much power it can deliver? 
What are the implications of having the load impedance vary? 
Does that mean we cannot analyze the system by varying its 
internal impedance instead? 

In this paper we will start with a simple steam driven turbo-
electric generator set and analyze its behavior with a view 
towards understanding the Maximum Power Transfer Theorem 
and all of its implications. A critical requirement in setting up 
such a simple system is ability to easily and clearly define the 
system as “power-limited”. To that end a prime mover with a 
power curve having a single maximum of power availability 
would be ideal. 

We will also perform a similar analysis of an all-
mechanical system in order to demonstrate that the 
observations are equally relevant in a purely mechanical 
system. 

II. OBJECTIVES 
The objectives of this analysis are twofold. The first 

objective is to demonstrate the apparent source impedance of a 
system under conditions of a conjugately matched load using a 
mathematical model and numerical examples. The second 
objective is to identify and highlight those unique conditions 
that result in a conjugate match in such a system. 

Inevitably, some readers will ask, why use an electro-
mechanical system to explore a theorem known and used 
primarily in the electrical world? The primary difficulty in the 
electrical world is the concept of a power-limited system. From 
a pure electrical circuit perspective, power limitations are not 
an intrinsic part of the model. If you put a 3 ohm resistor across 
a 12 volt car battery there will be 4 amperes current flow, 48 
watts dissipated in the resistor. If the resistor is a 10 watt 
resistor, it will be destroyed. That is the kind of power-
limitation that is common in electrical circuits. In contrast, 
everyone seems to understand how mechanical systems are 
limited. If one horse cannot pull the plow, then you need two 
horses. If the 36 HP Volkswagen cannot climb the steep hill, 
then you need a 250 HP Buick for the job. People naturally 
understand those kinds of power limitations – they do not 
understand electrical circuits having power limitations, 
although they do understand that electrical components are 
burned out through error. For a system to be power-limited is 
quite different than burning out electrical components or 
breaking mechanical components. A power-limited system is a 
system with a defined maximum available power output that it 
is incapable of exceeding. 

Considering that most large scale electrical systems draw 
their energy from prime-movers and that prime-movers are 
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inherently power-limited, it seems reasonable to model a 
prime-mover/generator combination. Furthermore, it will prove 
to be a trivial step to later convert that model to an all-
mechanical system in order to extend our findings to the non-
electrical world. 

Another advantage of modeling the system with a turbo-
electric system is that we will find that prime-movers have a 
built in, constant, non-dissipative, source impedance when 
operating at their maximum available power.  

III. SYSTEM DESCRIPTION 
Our hypothetical system consists of three separate elements 

– a steam turbine prime-mover rated at approximately 75 
horsepower (HP), a 10:1 speed reduction gearbox, and a Direct 
Current electrical generator. All three elements of the system 
are directly connected via appropriate drive shafts. The steam 
turbine converts the energy from high temperature, high 
pressure steam into rotational, mechanical energy, which in 
turn drives the gearbox. The gearbox reduces the speed of the 
turbine output shaft in the ratio of 10:1. The gearbox then 
transfers mechanical power to the DC Generator, and the DC 
Generator supplies DC voltage to a load resistor. The load 
resistor simulates a more useful electrical load 

A. The 75 HP Steam Turbine Prime-Mover 
The steam turbine operates at an approximate power output 

of 75 HP, maximum, at an output shaft speed of 12000 
revolutions per minute (RPM). The horsepower (red) and 
torque in foot-pounds (green) characteristic curves, as a 
function of output shaft speed, are shown in Fig. 1.  

 

Figure 1.  Steam turbine horsepower and torque versus speed. 

These horsepower and torque characteristic curves were not 
measured from a real steam turbine – they are “representative” 
characteristics of a broad class of prime movers - e.g., gasoline 
or diesel engines, steam turbines, hydraulic turbines, 
windmills, gas turbines, etc. A characteristic common to prime 
movers is the nearly linear, downward sloping torque curve in 
the range of interest. In our hypothetical system the maximum 
available horsepower is available at approximately 12000 RPM 
and approximately 32.5 foot-pounds of torque. It is especially 
important to realize that the horsepower curve and the torque 
curve are not independent of one another. In such systems the 
horsepower output is the product of torque and speed. 

For this analysis, we have idealized the torque curve to be 
linear over the range of interest. Had we used real world data, 
it would not materially affect our results, and a non-linear 
torque characteristic would unnecessarily complicate the math 
model. See Section XI - Appendix A for some real-world 
prime-mover data. 

We should ask why the horsepower and torque curves are 
as they are. What if the torque curve were flat with no slope, or 
what if it has an upward slope instead of a downward slope? If 
the torque curve were constant instead of sloping downward, 
then the horsepower would be an ever-increasing function. 
There is no prime-mover known to man with such a 
characteristic. We are constraining the torque curve to be linear 
over our range of interest (+ or – 25% around the nominal 
operating speed of 12000 RPM). Since the torque curve is 
constrained to have a linear slope downward in the region of 
interest, it follows that there can only be one maxima for the 
horsepower curve, which is found by setting the first derivative 
of the horsepower with respect to speed to zero and solving for 
the speed.. 

B. The 10:1 Gearbox 
A gearbox is often provided in order reduce the high shaft 

speed of the turbine to a speed more suitable for an electric 
generator. Generally speaking, steam turbines operate most 
efficiently at very high shaft speeds in comparison with DC 
generators. In our analysis we find the gearbox a convenient 
place to assign a 92% efficiency, which is intended to represent 
the total mechanical losses of the rotating components of the 
turbine and gearbox combined. Note that we do not model the 
steam source and conversion of steam energy to mechanical 
energy. 

C. The DC Generator 
A permanent-magnet, DC generator was chosen in order to 

avoid the complexities of self-excited series, shunt or 
compound generator configurations. The generator has been 
idealized to ensure a linear speed-voltage characteristic over 
the range of interest centered on 1200 RPM. The generator is 
sized for a power level of approximately 50 kW and is 
assigned a nominal efficiency of about 95%, which will be 
implemented as a series resistance of 1 ohm. 



IV. A MATHEMATICAL MODEL FOR THE SYSTEM 
The equations that will be used to model each component 

of the system will be given in detail, starting with the steam 
turbine. After the steam turbine, gearbox and DC Generator 
have been modeled, we will present a mathematical approach 
for determining the source impedance as seen from the load 
resistance looking toward the source. The math model models 
a power-limited system operating at its maximum available 
power output. The math model will be used to determine the 
operating point of the system in terms of the important 
parameters, such as speed, torque, horsepower, efficiency, 
electrical power generated and electrical power consumed in 
the load. Numerical examples will be given along with 
graphical plots in order to visualize the relationships among 
those variables. 

The system output impedance will be measured using the 
model just as if we were measuring the values on a real system 
in the laboratory. Those measurements will be compared with 
more sophisticated mathematical analyses of the system. The 
behavior of the model in relation to the MPTT will be explored 
in detail – first to demonstrate and confirm the principles of the 
MPTT and also to contrast the interpretation and meaning of 
the MPTT with other theorems attributed to L. C. Thévenin 
and E. L. Norton. Contradictions will arise, and they will be 
dealt with appropriately. 

A. The Mathematical Model of the Steam Turbine 
As can be seen in Fig. 1, the steam turbine has a torque 

curve that is linear over the region of interest. The linear region 
has been extended to the intercept at speed = 0 in order to 
provide the linear expression for torque as a function of the 
torque coefficient in foot pounds per RPM, a stall torque in 
foot pounds, and the speed in RPM. The relationship between 
torque and speed is shown in (1), where TS is the stall torque 
and kT  is the slope of the idealized torque curve. 

T = TS – kT * N                                          (1) 

 Eq (1) shows that the torque starts out with a “stall torque” 
at zero RPM and decreases linearly to zero torque at some 
speed that is referred to as the “runaway” speed. A real-world 
prime-mover generally has a non-linear torque curve, but over 
the nominal operating range of interest, the torque vs. speed 
curve can be considered linear and characterized by the stall 
torque intercept at zero speed and the maximum runaway 
speed intercept at zero torque. Eventually, we will conclude 
that the slope of the torque curve in the linearized region of 
interest is analogous to electrical conductance and that its 
reciprocal is analogous to electrical resistance. 

Since the steam turbine horsepower is the direct result of its 
delivered torque, we will rate the steam turbine as having an 
arbitrary stall torque intercept of 65 foot pounds and a runaway 
speed of 24000 RPM. Equation (2) defines a constant for 
converting the product of torque in foot-pounds and speed in 
RPM into horsepower (HP). Equation (3) is the relationship 

between power in units of horsepower (HP), torque T in foot-
pounds and speed, N, in RPM. 

kN = 2π / 33000 = .0001904                           (2) 

P = kN * T * N                                      (3) 

If we take the derivative of the power expression with 
respect to speed, set that equal to zero, and solve the resulting 
expression for speed, we will obtain the speed at which the 
developed horsepower is a maximum.  The stall torque is 65 
foot-pounds, as was stated earlier. The slope, kT, of the torque 
curve is 0.002708333 as determined from the two intercepts, 
65 foot-pounds and 24000 RPM. Performing the calculations 
for the speed at which maximum power is developed, we 
obtain 12000 RPM. Using that speed in (1), we obtain 32.5 
foot-pounds of torque as the nominal operating point. Using 
that torque and the 12000 RPM speed we calculate the actual 
maximum available horsepower from (3), which is 74.25 HP.  

B. The Mathematical Model of the Gearbox 
The gearbox is extremely simple. It consists of an input 

shaft, driven by the steam turbine, and an output shaft, which 
drives the generator. In between those two shafts is a cluster of 
gears that reduce the speed by 10:1 and linearly amplify the 
torque by 100:1, while losing 8% of the energy. The math 
model for the gearbox output is simply the math model of the 
steam turbine modified by the 10:1 ratio and by the efficiency 
factor, which may be easily adjusted to any value. Therefore, 
from the steam turbine operational parameters, we can see that 
the gearbox would deliver 325 foot-pounds of torque at a speed 
of 1200 RPM, if it were 100% efficient.  Fig. 2 shows a plot of 
the Torque in foot pounds (red) and the power output in 
horsepower (green) versus gearbox speed in RPM. 

 

Figure 2.  Gearbox power and torque versus speed. 



At the nominal efficiency of 92%, it delivers only 299 foot-
pounds of torque at 1200 RPM. 

In order to model the gearbox output characteristics, we 
assume that it simply translates the speed, torque and 
horsepower characteristics of the steam turbine into the 
appropriate values at the 1200 RPM operating point with the 
power output reduced by 8%. The result is that we can 
linearize the output torque characteristic of the gearbox to 
follow the relationship in (4) and (5). 

kC = 746 (watts/horsepower) * kN = 0.14204             (4) 

PGearbox = kC(TS * N – kT * N2)                    (5a) 

The gearbox power output (5) gives the same relationship 
as (1) and (3), except that now the stall torque is 598 foot-
pounds and the torque coefficient, kT, is 0.24916 foot-pounds 
per RPM over the linear range from about 900 RPM to about 
1500 RPM (our designated range of interest). Note that (4) is 
the definition of a new constant, kC, which combines the earlier 
conversion factor with a new factor to convert horsepower to 
watts. The gearbox output power in watts at the maximum 
power operating point can now be determined as follows: 

PGearbox = 0.14204 (598 * 1200 — 0.24916 * 12002)  

= 50965 watts                                  (5b) 

We express the power level in watts instead of horsepower 
because from this point forward all equations will express 
power in watts.  

C. The Mathematical Model of the DC Generator 
The math model for the DC generator combines a scale 

factor constant relating generated electromotive force (emf) to 
speed and a fixed armature resistance value of one ohm for I2 * 
R losses. If desired, this fixed value of “loss” resistance can be 
altered to include windage and friction losses. However, such 
losses are generally not as load dependent as are the copper 
losses. Our model provides only this one parameter for internal 
losses of the generator. The ratio of emf to speed is 0.83333 
volts per RPM as shown in (6). 
 

kG = 1000 volts / 1200 RPM = 0.83333                 (6) 

PGen = (kG * N)2 / Rtotal                                  (7) 

Rtotal = RL + Ri                                     (8) 

 Equation (7) gives the relationship between power 
generated by the generator, the emf constant, the generator 
shaft speed and the total circuit resistance Rtotal. These values 
result in a nominal, full power output of 1000 volts emf.  

Fig. 3 is a plot of the total power generated by the generator 
in watts as a function of load resistance. Note that this is total 
power generated – not total load power. The load power is 
total power generated less the loss in the one ohm internal 
resistance. 

Based on the full output power delivered to the generator 
from the gearbox, we can compute the nominal, full power 
load resistance based on (5b), (8) and Ohm’s law as follows: 

RL = (emf2 / PGearbox) – Ri  

        = (10002 / 50965 watts) – 1.0 = 18.62 ohms 

Under these conditions, the generator generates 50,965 
watts, of which 48,370 watts is delivered to the load and 
approximately 2590 watts is dissipated in internal losses (the 1 
ohm armature resistance). The math model provides for 
adjustment of the internal loss resistance to any desired value, 
which indirectly allows us to control the generator efficiency 
through a fictitious series loss resistance to account for friction, 
windage, copper losses, etc. This is an approximation, because 
in a real generator some losses, such as the armature copper 
losses are proportional to the load and others are not. Windage 
losses, for example, are essentially constant.  

 

 

Figure 3.  Total power generated (watts) as a function of the load. 

As stated previously, the math model does not provide for 
separation of generator losses into different categories. This is 
justified on the basis that we are studying the behavior of this 
system over a very limited range of operating conditions, and 
the sum total of all losses can be approximated over that small 
range as being dependent upon load current only. 

D. The Mathematical Model of the Overall System 
The overall math model converts all mechanical power 

delivered to the generator from the steam turbine/gearbox 
elements, PGearbox, into total power generated by the generator 
PGen as shown in (9), including generator internal losses. 

PGen = PGearbox                                            (9) 



In other words, all power generated by the generator is 
simply a conversion from the mechanical power delivered 
from the gearbox and turbine into useful electrical power and a 
heat loss due to load-dependent losses. Setting total generated 
power equal to mechanical power out of the gearbox, (9), 
allows us to combine (7) and (8) with (5), from which we 
obtain  10. 

N = TS*kC*(Ri+Rload) / (kG
2+kT*kC*(Ri+Rload))          (10) 

Before continuing, we should test our math model with 
some numerical values in order to see that it behaves 
rationally. To that end we solve for N using (10). 

)62.180.1(*14204.0*24916.0(
2

83333.0

)62.180.1(*14204.0*598

++

+
=N  

                       = 1200 RPM 

The solution for the speed as a function of total circuit 
resistance allows us to parametrically study the effect on 
output electrical power due to changes in the value of the load 
resistance, RL, which is about 95% of the total circuit 
resistance, Rtotal. That, in turn, provides us with the ability to 
demonstrate the apparent source impedance in a conjugately 
matched, power-limited system that is delivering maximum 
output power to the load. Fig. 4 is a plot of the speed in RPM 
versus load resistance in ohms.  

 

Figure 4.  Speed versus load resistance of the overall system. 

The nominal, full power operating point at 1200 RPM and 
18.6 ohms load resistance is consistent with Fig. 4. 

Note that had we chosen to include a gearbox efficiency 
parameter in the above equations, it would appear as a divisor 
of the kG

2 term. 

What exactly is meant by power-limited, and why is that 
important to our analysis? Also, what is meant by conjugate 
match, and is that important to our model? The next section is 
devoted to answering those questions. 

V. HOW THE MATH MODEL RELATES TO THE MAXIMUM 
POWER TRANSFER THEOREM 

The maximum power transfer theorem has at least three 
different areas of importance – the concept of the “conjugate 
match”; system efficiency; and a set of explicit and implicit 
constraints. The following subsections will address each of 
those areas individually. 

A. The Conjugate Match 
The concept of a “conjugate match” can be disposed of by 

reviewing electrical engineering theory. Two impedances that 
are complex conjugates of one another are two complex 
impedances that have equal real parts and equal but of opposite 
sign imaginary parts. For the case at hand, since we 
constrained our analysis to a DC circuit, the two complex 
impedances are simply two resistances which must be equal in 
order to be conjugately matched. If this analysis were to treat 
the more general AC case, the two impedances would be 
complex. In order to be complex conjugates, one impedance 
would be of the form a + jb and its complex conjugate would 
be a – jb. We will be concerned about the “apparent output 
impedance” of our generator in comparison with the load 
resistance under conditions of full power output. 

B. Efficiency Concerns 
We will model our system and analyze its behavior at the 

point of maximum power output, and we will be interested in 
confirming that the output impedance property of the system 
and the load on the system be conjugates of one another.  

Our interest should be heightened in view of the overall  
efficiency of the system, which we know is in the 
neighborhood of 0.92 * 0.95 or approximately 87.4%. Why 
should there be a concern about overall efficiency of the 
system? An efficiency of 87.4% is a good efficiency, is it not? 

Every EE student should recognize the problem. The 
classical interpretation of the MPTT and the Thévenin 
equivalent circuit model is that a circuit in which the source 
impedance and the load impedance are conjugates of one 
another dictates a maximum efficiency of 50%. If we claim 
that our system is conjugately matched and is also 87% 
efficient, there would be those who would argue that it is 
impossible. Nonetheless, we will demonstrate operation at the  
maximum available power output with a conjugate match 
between the load impedance and the apparent source 



impedance. The concerns about efficiency will be continued in 
Section V, subparagraph E. 

C. Explicit Constraints of the MPTT 
The two explicit constraints are those that together require 

that the load be varied while determining the point of 
maximum power transfer. 

1) While Varying the Load 
There is the explicit constraint in the MPTT that the 

maximum power will transfer to the receiving network “as the 
load impedance is varied”. Interpretations and applications of 
the MPTT often ignore this explicit constraint or fail to 
mention it. It is quite a different situation to design a source to 
drive a fixed load efficiently. That would require that the 
source resistance be kept as near zero as possible. 

2) Maximum Power Will Be Absorbed… 
“Maximum power” is the maximum power that the system 

is capable of – not the maximum power that it is capable of 
delivering efficiently and not the maximum power that it is 
capable of delivering without self destructing. In order to 
determine the maximum power that a system can deliver, one 
must know the power as a function of the load impedance and 
find its maximum. This arises directly from the constraint, 
“while varying the load”. The derivative of the power as a 
function of the load impedance must be set to zero and solved 
for that unique value of load impedance that will cause a 
maximum transfer of power. This is an explicit constraint in 
the MPTT. 

D. Implicit Constraints of the MPTT 
One has to ask, how could there be a “maximum power”, 

unless the power is somehow limited. If the power capability 
of a system were unlimited, then how could we define its 
“maximum” power? A “power-limited” system must be a 
system that has a well-defined maximum power output – a 
characteristic that is actually common to every system built by 
man. A system which is not power-limited would be a system 
that would continue to provide more and more power, 
indefinitely, no matter how much the load is increased.  

The reason that we call attention to the implied constraint 
that the system must be power-limited is that we intend to 
conduct an analysis at the point of maximum power output, 
and we want to emphasize that not only is it a practical 
consideration that the system be power-limited, but also that it 
must be operating at exactly the level to which it is power-
limited. That will become a crucial part of our understanding 
of that property of the system called the “apparent output 
impedance” or “apparent source impedance”.  

This would be a good time to review the maximum power 
transfer theorem and reflect on the words, “maximum power 
will be absorbed …”. The maximum power transfer theorem 
obviously applies only to systems that are both power-limited 

and operating at maximum power. The words cannot be 
interpreted any other way. 

For the purposes of this article and our analyses, we will be 
even more specific in our interpretation of both power-limited 
and maximum power. The term power-limited will be 
understood to mean the power is limited with respect to a 
varying load, and the term maximum power will be 
understood to mean the maximum with respect to a varying 
load. 

We conclude that the maximum power transfer theorem 
explicitly requires a power-limited system that is operating at 
its maximum available power. 

E. Introduction of the Non-dissipative Resistance 
If the source impedance and the load impedance are to be 

complex conjugates of one another, then according to the usual 
interpretation of Thévenin’s theorem, the efficiency cannot 
exceed 50%. The reason for the apparent contradiction 
between Thévenin’s theorem and the MPTT is that neither the 
MPTT nor Thévenin’s equivalent circuit explicitly recognizes 
that the power source can exhibit an “apparent” impedance that 
is much larger than the loss elements or physical source 
impedances of the system. Those theorems also did not 
envision an “apparent” impedance that does not convert energy 
into heat or consume the energy as would a conventional, 
physical impedance or loss element. The following extract 
gives us some historical insight into the conventional wisdom 
at the time Professor Jacobi introduced his theorem of 
maximum power transfer: 

Professor Moritz von Jacobi of St. Petersburg (1801-
1874) is probably often confused with his younger brother 
Carl, the eminent mathematician of Königsberg (1804-
1851)…… Jacobi quite correctly concluded that electric 
motors were uneconomic, considering the high price of zinc 
and the 50% loss of energy. The concept of energy was as 
yet somewhat hazy, and the fact that mechanical work out 
was equal to the electrical work done against a counter-
emf was unknown, at the time. However, it was adopted as 
a maxim that the internal resistance equaled the load 
resistance for maximum power……If R' = 0, there is no 
external power. If R' =∞,  there is also no power, since I = 
0. Therefore, for some intermediate value of R' there must 
be a maximum power. Calculus gives the result easily, but 
a little reasoning also shows that maximum power is 
attained when R' = R (imagine interchanging R and R'). 
Hence the theorem: Maximum power is transferred when 
the internal resistance of the source equals the resistance 
of the load. We should carefully note the condition that is 
seldom added: When the external resistance can be varied, 
and the internal resistance is constant. ……When Edison 
was designing his lighting system in 1880, the received 
wisdom was to make the armature resistance equal to the 
resistance of the load. Either he, or Upton, his 
mathematical advisor, saw that this was quite incorrect. 



The Z dynamos and the Jumbos were made with very low 
armature resistance, and at one step he obtained 
efficiencies of 90%. He was ridiculed in the technical press 
by American "experts" who proved conclusively that he 
could not have done what he in fact did. Edison's inefficient 
field structures increased the weight of the dynamos, but 
did not affect their electrical efficiency. [2] 

The wording of the MPTT is very explicit about the load 
resistance being varied. Dynamo designers were working the 
other way around. They were assuming a specific load and 
trying to design the generator for an “optimum” source 
resistance. They took the wisdom of the day literally. They 
assumed that 50% would be the ultimate efficiency, but Edison 
(or Upton) figured it out. What no one was familiar with is the 
concept of dynamic, non-dissipative source impedance. 
Unfortunately, many people to this day are equally confused. 
We will demonstrate the existence of dynamic, non-dissipative 
resistance as part of our analysis of the system. 

VI. MEASURING THE “APPARENT SOURCE IMPEDANCE” 
If we wanted to model the problem of measuring the 

“apparent source impedance”, we would undoubtedly start 
with either a Thévenin equivalent circuit or a Norton 
equivalent circuit. The two types are interchangeable and the 
analyst can choose whichever is more convenient. We will 
look at both methods. Unfortunately, the Thévenin equivalent 
circuit, as fundamental  as it is in circuit analysis, is the very 
reason for the general lack of understanding of the “apparent 
source impedance” and its relationship to the MPTT. We will 
explain why after reviewing the relevant equations. 

A. The Thévenin Equivalent Circuit 
The Thévenin equivalent circuit is a constant emf source 

(such as an ideal battery), and an internal source impedance 
and a load impedance, all in series. What we want to do is to 
simulate the indirect measurement of the internal source 
impedance of our system by means of our math model and its 
Thévenin equivalent circuit. It is presumed that for one reason 
or another, we cannot use an ohmmeter or external source of 
power to measure the internal source impedance directly. The 
simplest approach would be to short the output and measure 
iSC, and to open the output and measure EOC. The internal 
source impedance is then found from EOC  / iSC. For many 
systems such an approach would be dangerous. A preferred 
approach is to measure the current flow in two different, 
accurately known load resistances and apply that information 
to determine the internal source impedance by means of the 
well-known relationship (11). 

RSource = (i2*R2 – i1*R1) / (i1 – i2)                    (11) 

The advantages of this method are that it is not intrusive, 
and the measurements can be made at or near the normal 
operating point, thereby avoiding dangerous excursions beyond 
the normal operating region. 

B. The Norton Equivalent Circuit 
The Norton equivalent circuit is a constant current source, a 

shunt source conductance and a shunt load conductance. 
Again, the problem is to indirectly measure the internal source 
impedance envisioned as a Norton equivalent circuit, and 
again, we cannot measure the internal source impedance 
directly. The simplest approach to measuring the internal 
source impedance is to disconnect the load and measure the 
open circuit voltage EOC and to short the output and measure 
the iSC, and again, the internal source impedance is found from 
EOC / iSC. Once more, for our system and its math model it is 
better to measure the voltage across two different, accurately 
known load resistances, one after the other, and apply that 
information to determine the internal source impedance using 
(11). Note that the same equation applies, regardless of 
whether you envision it as the Thévenin or the Norton 
equivalent circuit.  

C. The Issue of Linearity 
Unfortunately, our system equation for speed as a function 

of load resistance (10) is not linear over the range 0 to infinity 
ohms. Whereas the Thévenin theorem assumes a constant emf, 
as from a battery, in our system the emf is dependent upon the 
load, because the load affects the turbine’s equilibrium speed, 
which in turn affects the generated voltage.  

We will proceed with measurements as if our system were 
enclosed in a black box and will determine the effect on the 
parameters of the system as a result of load changes, even 
though we cannot directly relate the results to the traditional 
interpretation of the Thévenin theorem and the Thévenin 
equivalent circuit, although it should be noted that the equation 
is quite linear over the limited range of interest around the full 
load operating point, as can be seen in Fig. 4. 

D. Measuring in the Abstract 
We will substitute values into (10) for two separate values 

of load resistance, RL. One of the two load resistances will be 
that of the nominal full power load, and the other resistance 
will be for a 5% higher value than the nominal.  

There will be two values for the speed N in RPM using  
(10), which gives the speed as a function of the resistive load. 
For each value of N we will calculate the corresponding emf 
generated by the generator using the coefficient kG.  

Knowing the voltage for each case and the total circuit 
resistance for each case (load resistance + 1 ohm loss 
resistance), we calculate a current flow for each, based on 
conventional circuit theory and the reasonable assumption that 
the solution will be an “apparent” source resistance, based 
upon the “black box” behavior.  

The following table of data represents the two data points 
needed. (Remember that the data for the first point is simply 
the theoretical, full power operating point already calculated 
for the system.) The second point is another theoretical point 



using a load resistor 5% higher than the first resistor. The new 
speed, emf and current flow then follow directly from the 
equations in our math model and Ohm’s law. 

 

TABLE I.  LOAD DATA 

 Rload N emf I 

Nominal load resistance 18.62 1200 1000 50.96 

5% Higher load resistance 19.55 1228 1023 49.78 

 

Inserting the above values into (11): 

ohmsSOURCER 6.20
78.4996.50

62.1896.5055.19*78.49
=

−

∗−
=  

We have used (11) to calculate a source resistance based on 
a Thévenin equivalent circuit, even though we acknowledge 
that the conditions for the Thévenin theorem have not been 
met, for the simple reason that (11) is still an appropriate 
equation for determination of an “apparent” source resistance 
of a “black box” system. 

The 20.6 ohms apparent source resistance will be obtained 
for any reasonable change in load resistance and demonstrates 
clearly that the apparent total source impedance is 20.6 ohms. 
Note that this value is inconsistent with the known 1.0 ohm 
internal resistance in our math model. It is also inconsistent 
with the known efficiency of the system (87.4%). We have 
encountered what appears to be a resistance of approximately 
20.6 – 1 = 19.6 ohms, which we know does not exist as a 
physical, dissipative resistor in our system model.  

As indicated in Section V, subparagraph D, this is an 
example in which the Thévenin equivalent circuit and the 
MPTT seem to disagree. How can the system be conjugately 
matched and also exhibit characteristics of 87% efficiency? 
The answer lies in the fact that neither the MPTT nor the 
Thévenin equivalent circuit models provide for a dynamic, 
non-dissipative resistance. In other words the source 
impedance “appears” to be a resistor that would dissipate 
several thousand watts, but in fact is not physically present as a 
resistor and does not dissipate any energy. Obviously, we need 
additional understanding of the true nature of the “apparent 
source impedance” that we have just measured in the abstract.  

The problem lies in the fact that neither the MPTT nor the 
Thévenin (or Norton) equivalent circuit model can explicitly 
account for anything beyond a very simple circuit or network 
consisting of pure circuit elements, such as resistors, 
capacitors, and inductors. 

In our math model, we were able to model the physical 
behavior of the prime-mover, which is a separate and 
independent sub-system, capable of modifying its operating 

point as the load changes. Our model incorporates both power-
limiting and an operating point of maximum power output. 
Those two characteristics model a behavior that cannot be 
modeled or predicted using the Thévenin equivalent circuit, 
and that is why we indicated in Section V that dependency on 
the Thévenin equivalent circuit is the root problem. 

VII. ADDITIONAL INTERPRETATION OF THE RESULTS 
Calculating the “apparent source impedance” from (11) 

gave a result of 20.6 ohms. One might expect that looking back 
into the generator, one would see the internal resistance of 1 
ohm as the source impedance. That’s the value in our math 
model and that’s the value one would expect to measure based 
on a Thévenin equivalent circuit model. It fits our traditional 
concept of “source resistance”.  

What other insight can we get from our measurement in the 
abstract? 

A. Looking at the Data Itself 
Forgetting about the measured source resistance for a 

moment, what do we see from a simple inspection of the data 
itself? The above table of results indicates that the nominal, full 
power load resistor is 18.62 ohms, and that under those 
conditions the generator speed is 1200 RPM, the generated emf 
is 1000 volts and the current flow is 50.96 amps (50960 watts 
of electrical power generated, including the generator’s internal 
losses). Likewise, the table shows clearly that when the load 
resistor is increased in value by 5%, the system operating point 
changes to a speed of 1228 RPM and correspondingly 
generates an emf of 1023 volts with a current flow of 49.78 
amps  (50924 watts of electrical power generated, including the 
generator’s internal losses – slightly less power than above). 
Let’s work back through the system and see if we can develop 
some insight as to why we get this result. First, is it reasonable 
that changing the load resistance upwards should have the 
effect of increasing the speed of the prime-mover? The 
immediate effect that one would expect from increasing a load 
resistance would be that the current in the load would drop by a 
similar percentage – i.e., about 5%. (We actually see a drop of 
only 2.3%).  

We would also expect to see a reduction in generated 
electrical power (it reduced by approximately 0.06%). We 
would also expect the steam turbine speed to increase, since its 
shaft is connected through the gearbox to the generator. Let’s 
look again at why the speed increased. A smaller electrical 
load on the generator means the driving shaft has less reaction 
torque – i.e., the reduced electrical load reduces the back 
torque upon the gearbox, and that allows the shaft speed to 
accelerate. In other words, the lighter load on the generator 
immediately causes an imbalance between the applied torque 
provided from the gearbox and the reaction or back torque 
produced by the work being done (mechanical energy being 
converted to electrical energy). The exact same effect occurs 



between the gear box and the turbine, since all three 
components are rigidly connected together. It is reasonable to 
expect an electrical load change to reflect the force imbalance 
directly back to the gearbox and thence back to the turbine.  

In summary, a reduced electrical load on the generator 
causes a force imbalance in the directly connected drive shafts 
of the system. That imbalance causes all three components to 
accelerate to a new, higher equilibrium speed, 2.5% higher 
than the original speed. As a direct consequence of the torque 
and horsepower curves of the turbine, the shaft speed 
automatically reaches a new equilibrium between driving 
torque and reaction torque. Why was the resulting speed 
change only 2.25%, when the load resistance change causing 
these reactions was 5%? Is this readjustment of the 
torque/horsepower operating point of the power-limited prime 
mover in some way responsible for the “apparent” source 
impedance? 

B. Operating Point Considerations 
Is this result consistent with such parameters as the torque 

coefficient – i.e., the slope of the torque curve for the generator 
or the gearbox? The system was operating at the full power 
point of the torque/horsepower curves. Suddenly, the reactive 
torque from the generator is reduced, and it now requires a 
smaller driving torque to maintain a given speed. The result is 
that the operating point moves to the right in the 
torque/horsepower curves (Fig. 1), instead of to the left, 
because that is the only region consistent with a lighter load 
requiring less torque and higher speed. The new operating 
point is consistent with a smaller electrical load caused by a 
higher load impedance.  

As pointed out above, the operating point on the 
horsepower curve shifts to the right. Of course, that has to 
happen if the speed has increased, but is the new operating 
horsepower level consistent with a lighter load? The original 
operating point was at the maximum possible horsepower – 
full power. A speed change to either the right or the left from 
the point of maximum power output in Fig. 2 is a point of less 
power output from the prime mover (steam turbine and 
gearbox). 

C. Why Did the Speed Change Only 2.5%? 
The remaining question is, why is the new operating point 

only 2.25% higher in speed when the load has decreased by 
5%? Actually, we were getting ahead of ourselves when we 
thought that a load resistance increase of 5% would result in a 
load current drop of 5%. We see that it actually dropped by 
only 2.3% (from 50.96 to 49.78 amperes). Why is it that even 
though we thought we were changing the load by 5%, the 
system reacted by finding a new equilibrium operating point 
0.0625% lower in power instead of 0.25% lower in power? 
Therein lies the secret to an understanding of “apparent source 
impedance”. 

In a simple circuit with a fixed emf and a source impedance 
equal to the load impedance, a 5% increase in the load 
resistance would decrease the current in the load by only 2.5%. 
Our system behaves as if it were conjugately matched!  How is 
that possible, since the known internal loss resistance of the 
system is only 1 ohm – not the 20.6 ohms that we are 
measuring? We have encountered a non-dissipative, 
“apparent” source resistance that is created by the inherent  
action/reaction characteristics of a power-limited system.  

D. The Non-Dissipative, Apparent Source Resistance 
In spite of the fact that this numerical analysis has clearly 

shown that our system is conjugately matched and is obeying 
the Maximum Power Transfer Theorem, it is difficult to grasp 
that it is also operating at approximately 87.4% efficiency 
(92% gearbox efficiency, and 95% generator efficiency) and 
also has an “apparent source impedance” equal to the load 
impedance.   

If there is any one single issue that is the crux of this 
phenomenon, it is the fact that the prime-mover is power-
limited and operating at its maximum available power 
output. Those characteristics, which in this case are the direct 
result of its power curve having a single maximum and a fall 
off of power at either side of that maximum,  cause our system 
to react to load variations in such a way as to produce the same 
effect as a simple constant emf and conjugate matched circuit. 
The power limited system operating at its maximum power 
output reacts in a way that a passive circuit element or passive 
network cannot react. It is inherently able to automatically 
adjusts its power output to a lower value whenever the load 
impedance deviates from the conjugate match condition. The 
effect of that change is that the system creates a response 
exactly as if there were a conjugate impedance match.  

As our analysis continues, we will demonstrate that the 
power-limited system, operating in a maximum power output 
condition will exhibit an apparent source impedance, which 
automatically provides a conjugate match to a load accepting 
that power output. What else can be said about the value of that 
apparent source impedance? Is the particular load that can be 
matched determined by the system or will the system match 
any load presented to it? The system is incapable of matching 
all loads, because the maximum power transfer theorem is 
fundamentally tied to the concept of a power-limited source. It 
is only when the maximum available power is being delivered 
that the system automatically provides the conjugate match. 
This is not to say that there is only one possible value of source 
impedance for the system. It is dependent upon the system 
parameters, such as the prime mover’s torque/horsepower 
curves and the speed/voltage characteristic of the generator.  
However, once those characteristics have been established and 
the power available to the primer mover is determined, the 
apparent output impedance is determined. 



VIII. THE DERIVATIVE ANALYSIS 
Consider a simple series DC circuit consisting of an emf, a 

source resistance and a load resistance. Let a small positive 
change in the normalized load resistance be recorded as ∆R / 
Rand let the resulting change in normalized current be 
recorded as ∆I / I. The ratio ∆I*R / ∆R*I should equal –0.5 
when there is a conjugate match. That is, the increase in 
resistance should cause a reduction of current – thus, the 
negative sign. For example, with 10 volt source voltage, 5 ohm 
source resistance and 5 ohm load resistance and a 1% increase 
in load resistance, the normalized load resistance change of 1% 
and the normalized current change of -0.5% would give a ratio 
of  –0.5 

This is the logical consequence of the fact that exactly half 
of the total circuit resistance has changed by the percentage 
100 * ∆R/R. If the entire circuit resistance had been changed by 
100 * ∆R/R percent, then the current would also change by the 
same percentage, and ∆I / ∆R would equal –1.0.  

To continue with our analysis using the derivative, we take 
the derivative of the load current, I, in our system with respect 
to the load resistance RL. If our system is to give the 
appearance of being conjugately matched, this should result in 
–0.5 when properly normalized with the nominal values, RL0 
and I0.  

 Equation (12b), below, is the equation for the derivative of 
current with respect to the load resistance RL. The equation for 
current (12a) was obtained by multiplying the speed from (10) 
by the factor kG / Rtotal, which is the conversion from speed to 
current at a given power level. Note also that in taking the 
derivative with respect to RL, the 1 ohm constant internal loss 
term disappears from the Rtotal term, leaving only RL. 
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We then apply a normalization factor as follows: 
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The normalization factor normalizes the amperes per ohm 
derivative to a dimensionless derivative. We now compute a 
numerical value for the derivative using the same system 
coefficients and parameters used in the preceding sections. 
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                   = – 0.474                                          (14) 

The small discrepancy between the predicted value of –
0.500 and our value of –0.474 is due to the one ohm of loss 
resistance that we incorporated in the generator for realism. 
When we examine the following plot, we will see that the 
conjugate match exists when the load resistance is about 20.4 
ohms, which is more consistent with our measurement in the 
abstract in Section VI, subparagraph C. 

Fig. 5 is a plot of the normalized derivative of the current 
plotted versus the load resistance. It is consistent with (14) and 
shows that a conjugate match actually exists at about 20.4 
ohms load resistance. 

 

 

Figure 5.  Normalized derivative of current versus load resistance. 

If all equation are re-computed, starting with (8), using zero 
internal resistance for the generator, we obtain a nominal, full 
power load resistance of 19.62 ohms instead of 18.62 ohms, 
and when we calculate the normalized derivative of current 
with respect to load resistance plotted versus the load 
resistance, we obtain the results shown in Fig. 6, which show 
that a conjugate match exists at a load impedance of 19.62 
ohms. 



 

Figure 6.  Modified for internal resistance of generator = 0. 

IX. SUMMARY OF THE ANALYSIS OF THE STEAM TURBINE, 
ELECTRICAL GENERATOR SYSTEM 

Let us again review the relationships that have been 
demonstrated in this system. First we conducted a numerical 
analysis of the system which ultimately determined that the 
system exhibits the phenomenon of an “apparent source 
impedance” that creates a conjugate match with the load  in 
concert with the Maximum Power Transfer Theorem.  

Second, we conducted an informal trace of cause and effect 
through the system in which the action of a disturbance of the 
load resistance causes a series of actions and reactions 
throughout the system that ultimately re-position the operating 
point of all elements of the system. The reactions are simply 
the result of an acceleration or deceleration of the rotational 
masses due to an imbalance of forces that persists until the 
forces return to equilibrium at a new operating point. In other 
words, the physical laws of action and reaction take over and 
force the system to reach equilibrium at a new operating point. 

Third, we conducted an analysis using the derivative of the 
current with respect to the load resistance, which shows in yet 
another, independent way that the system is conjugately 
matched while maintaining the high efficiency expected of this 
system. The derivative method allows us to close the loop 
mathematically, so that we get a closed form solution to the 
question as to where the new operating point converges after 
the load change. 

Fourth, we can say with confidence that the steam turbine 
and gearbox are insensitive to the internal workings of the 
electrical generator – the generator causes the same effect on 
the prime-mover/gearbox as would a friction brake insofar as 
loading is concerned. If a friction brake load were to be 

perturbed around the nominal operating load point, the 
behavior would be the same. That is, a 5% increase in the 
friction load would cause a shift of the operating point to a new 
operating speed 2.5% lower than the nominal full power 
operating point (and vice versa)– demonstrating that it is 
conjugately matched and yet operating at much higher than 
50% efficiency. That is because the mechanical system is 
insensitive to the fact that the generator is converting the 
energy to electrical energy – the generator is just a mechanical 
load on the gearbox. The “apparent source impedance” concept 
is not limited to electrical circuits – it also manifests itself in 
mechanical systems, as will be demonstrated in Section X. 

In summary, we recognize that the MPTT requires that the 
system be power-limited and be operating at its maximum 
power level in order to exhibit the characteristics of a 
conjugate match. We also claim that the theorem is reciprocal. 
That is, if the system is known to be conjugately matched, then 
we can conclude that it will demonstrate the characteristics of a 
power-limited system operating at its maximum available 
power output. 

It should be apparent that the MPTT with its included 
concept of a conjugate match between source and load is not 
restricted to radio transmission lines and antennas, or even to 
electrical circuits. The MPTT should apply to any system in 
which there is energy flowing, without regard to the form of 
energy or the conversions between different forms of energy 
that may take place in the overall path of energy flow. 

Our analysis has revealed an explanation for the 
contradictions that seem to exist between our MPTT-based 
system model and the Thévenin equivalent circuit of a matched 
load. Our explanation of these contradictions is based on the 
ability of the power-limited system operating at its 
maximum power output to adjust its power output to a 
lower value, without incurring or imposing any additional 
losses, whenever the load impedance deviates from the 
conjugate match condition. The system has created a 
response exactly as if there were a source impedance 
conjugately matching the load impedance. Conversely, a 
simple Thévenin or Norton equivalent circuit is incapable of 
such action and cannot exceed 50% efficiency.  

Our analysis has suggested a mechanism described as a 
non-dissipative source resistance or apparent source 
impedance that is a unique feature of the power-limited 
system operating at its maximum available output power level. 
Conversely, such a mechanism is not recognized in the Norton 
or Thévenin equivalent circuits. At the time those theorems and 
the MPTT were developed there was no recognition of a 
dynamic or apparent source impedance that did not dissipate 
energy. The following section will continue with the further 
development of that concept and will demonstrate that the 
apparent source impedance is also a constant value for a given 
system that can be determined from that system’s attributes. 



X. ANALYSIS OF AN ALL-MECHANICAL, CONJUGATELY 
MATCHED SYSTEM 

For this analysis we will remove the electric generator of 
the previous analysis and install in its place a viscous damper 
load. The objective of this analysis is to extend the concept of 
the “apparent source impedance” to an all-mechanical system 
in order to demonstrate that it is applicable to purely 
mechanical systems as well as to electric, electro-mechanical, 
or electronic circuits. 

A viscous damper load or rotational damper/dashpot is the 
mechanical analog of the electrical load resistance that we used 
to load the system in the previous sections. Other devices 
would do equally well. For example, the “prony brake” is an 
adjustable friction load for rotational systems. Other examples 
might include a ship’s propeller, a ceiling fan, or a hoist that is 
continuously lifting a specified weight at a specified number of 
feet per second. 

A. The Viscous Damper 
The viscous damper, which is the mechanical analog of 

electrical conductance, is given the symbol B. If we define B as 
shown in (15), then it will have the units of foot-pound-
minutes. Later, we will introduce another term, the inverse of 
B, and we will refer to it as “mechanical resistance”. 

B = T / N                                                   (15) 

B. What Happens as the Viscous Damper Load Changes? 
Our next objective is to determine how the system will 

behave when the friction load is varied around the nominal 
operating point. We should be able to determine that the 
system behaves as a conjugately matched system. I.e., the 
friction load should be a conjugate match to the “apparent 
source impedance”. 

Following the same logic as was used in the derivative 
analysis, we consider what happens if the load increases 
(increase the value of B). The expected effect would be for the 
reaction torque or back torque of the viscous damper to 
increase, causing the output speed to decelerate until an 
equilibrium is reached.  The situation we are describing here is 
analogous to putting on the brakes of an automobile. The 
addition of brake resistance causes a back torque or reaction 
torque that immediately slows the rotation of the braking 
wheels. I.e., the back torque exceeds the driving torque 
resulting in a deceleration of the rotational speed. 

We already know from our analysis with the DC generator 
than when the load is decreased, the resulting decrease of back 
torque is reflected back into the gearbox and ultimately back 
into the steam turbine causing an immediate acceleration, and 
the system settles to a new operating point at a higher speed 
and at a lower power output. The question at hand is - what is 
the new operating point and how big is the percentage change 

in delivered load torque in relation to the percentage change in 
the viscous damper value B? 

C. Power from the Gearbox and Power Dissipated in the 
Load – Choosing a Load Value 
The equation for the output horsepower being absorbed in a 

viscous damper load attached to the gearbox at full power 
output is shown in (16) (combining  (3) and (15)). The 
difference between this expression and the expression in  (3) is 
only that  (16) is a function of speed and the damper 
coefficient, whereas  (3) gave horsepower as a function of the 
speed and torque produced in the prime-mover. Equation (15) 
has allowed us to eliminate the torque term from the equation. 
Think of the power in (16) as the power “consumed” or 
“absorbed” in the load and expressed as a function of the load 
device itself, whereas the power developed by the prime mover 
is a function of its torque-speed curve and is the power 
developed by delivering a given torque at a given speed.  

                 P = kN * N2 * B                                        (16) 

If the units for B, the rotational damper value, are chosen to 
be in pound-feet-minutes, and if the power is expressed in 
horsepower, then the value of B needed to dissipate the 
nominal full power output of the system is as shown in (17) 
(remembering that the full power operating point was 68.31 
HP at 1200 RPM). 

 

    B = 68.31 HP / ((1200 RPM)2 * 0.0001904) 

= 0.24916 foot-pound-minutes                              (17) 

In one sense, this damper coefficient might result in 
confusion, because it is numerically the same value as the 
torque coefficient of the prime mover. This is the coincidental 
result of making the torque curves linear. A more complex 
torque curve for either the primer-mover or the viscous damper 
is possible, so what if we were to use some other value for B?  

The constant, kN, is the same conversion factor between 
speed in RPM, torque in foot-pounds and power in units of 
horsepower, as was defined in (2).  

We might also take notice at this time that the torque 
coefficient in our math model for the turbine and gearbox is 
also analogous to electric conductance, since torque is the 
“through” variable (the analog of current) and rotational speed 
is the “across” variable (the analog of voltage). In that case the 
“mechanical” conductance analog is a source conductance 
instead of a load conductance. 

The electrical power developed at the output of the gearbox 
at full power was shown in (5). We now modify that equation 
to give the power in horsepower as shown in (18). 

PGearbox = kN (TS * N –kT * N2)                              (18) 



This gives us an equation for the HP developed at the 
output of the gearbox as a function of speed - the same as (5) 
except for the watts per horsepower conversion factor. The 
stall torque and the torque coefficient, kT, are as developed in 
the previous analysis – namely, 598 foot pounds and 0.24916 
foot-pounds per RPM, respectively. 

D. The Two Power Curves 
It would be helpful at this point to examine the two 

expressions for power, (16) and (18) versus speed. The 
horsepower output developed by the gearbox (green) and the 
horsepower absorbed by the viscous damper load (red) are 
plotted versus N (RPM) in Fig. 7. 

In the same way that we set the generator’s generated 
power equal to the power output of the gearbox, we now set 
the viscous damper’s dissipated power ( 16) equal to the power 
output of the gearbox, (18). The full power operating point at 
1200 RPM is clearly indicated in Fig. 7 as the intersection of 
the two power curves. 

  

 

Figure 7.  Horsepower versus speed. 

E. System Speed as a Function of the Viscous Load 
After re-arranging to solve for the speed, we obtain (19), 

which is an expression for the system speed as a function of the 
viscous damper value, B. 

N = TS / (kT + B)                                    (19) 

Remembering that kT is 0.24916 from our math model of 
the gearbox, and also noting that our viscous damper value is 
0.24916 from (17), we can check our equations by computing 
the nominal full power speed as shown in  (20). 

598 / (0.24916 + 0.24916) = 1200 RPM                 (20) 

The result of 1200 RPM validates our equations to this 
point and shows that at the nominal full power output of the 
system, everything is in balance. That is, the horsepower 
generated at the gearbox output is absorbed by the viscous 
damper load. The system is in equilibrium (shaft speed is 
constant) at this operating point. We can also see the 
expression for speed in RPM versus damper coefficient, (19), 
plotted in Fig. 8. 

 

 

Figure 8.  Speed versus damping coefficient. 

F. Torque as a Function of Viscous Load Coefficient (B) - 
(Analogous to Current as a function of Load Conductance) 
It will be helpful for us to have an expression for the torque 

as a function of the viscous damper coefficient. Combining  (1) 
with  (19) to eliminate the shaft speed, N, we have an equation 
for Torque as shown in  (21). 
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The torque versus viscous damper value is plotted in Fig. 9. 
The nominal, full power torque of 299 foot-pounds occurs at 
the nominal value of 0.24916 for the viscous damper.  

All that remains is to take the derivative of the output 
torque with respect to B in order to find out whether or not the 
system is conjugately matched. However, in order to better 
visualize the parallels between this all-mechanical system and 
the turbo-electric system we will use the reciprocal of B. 

 



 

Figure 9.  Torque versus value of viscous damper. 

G. Torque as a Function of Mechanical Resistance 
(Analogous to Current as a function of Load Resistance)  
We will call our new term “mechanical resistance” and 

give it the symbol Rm.  Equation (22) is just (21) re-written 
with 1 / Rm instead of B.  

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

+
−=

)/1(

11
**

m
RTkTk

STTkT                    (22) 

Fig. 10 is a plot of T versus Rm. Remember that our 
nominal value of B is 0.24916. Therefore, the nominal value of 
the mechanical resistance will be approximately 4.0135. As 
can be seen in Fig. 10, when Rm = 4.0135 the torque is 299 
foot-pounds, which is the nominal full power torque.  

The shape of the curve in Fig. 10 is worth noting. It has a 
shape similar to the curve of current versus load resistance in a 
Thévenin equivalent circuit (See Fig. 18 in Section XII - 
Appendix B). That is, the torque (or current) at short circuit 
load (runaway speed) starts out at the stall torque (short circuit 
current) and reduces rapidly as the impedance increases. 

 

Figure 10.  Torque versus mechanical resistance, Rm. 

As we approach the point of conjugate match, the rate of 
change of torque (current) with respect to load impedance is 
reduced. As we go past the conjugate match point and continue 
to increase the load impedance, torque is still decreasing but at 
yet a slower rate of change with respect to load changes. The 
torque continues to reduce until at high impedances the torque 
(current) has become asymptotic to the runaway (zero) torque 
(zero current) value. Remember that the Thévenin equivalent 
circuit in our model is a fixed source impedance and a varying 
load impedance. The fact that these two curves have almost 
identical shape suggests that our all-mechanical system has a 
constant, non-zero source impedance or output impedance just 
as in the Thévenin equivalent circuit.  

This prompts us to take a closer look at (22), which is re-
arranged here as (22a). 

)/1(

/

mRTk
mRST

T
+

=                                (22a) 

 Equation (22a) is of the same form as the equation for load 
current as a function of load resistance in a Thévenin 
equivalent circuit. Therefore, our system can be characterized 
as having a constant, non-zero source impedance just like the 
Thévenin equivalent circuit. Is this true of all power-limited 
systems? Our system is representative of all power-limited 
systems operating at their maximum power level, and for all 
practical purposes, all systems are power-limited systems. 
Systems that are not operating at their maximum available 
power level, however, would be excluded. 



H.  Another Derivative Analysis 
Taking the derivative of (22) yields (23). Note that we have 

also normalized the derivative using the nominal, full load 
values of B0 (0.24916) and T0 (299 foot-pounds). (1/Bo 
normalizes Rm). 
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Fig. 11 is the normalized derivative of Torque with respect 
to Rm, the mechanical resistance, plotted against Rm. 

The resulting normalized derivative is  –0.5 at the nominal, 
full power operating point of Rm=4.0135 which establishes that 
the mechanical system is conjugately matched (review the 
Derivative Analysis in Section VIII). Note also that the 
normalized derivative of –0.5 is unique to the conjugate match 
condition. 

 

Figure 11.  Normalized derivative of torque with respect to Rm versus Rm. 

I. Summary of the Analysis of an All-Mechanical, 
Conjugately Matched System 
In summary, we have analyzed the mechanical model and 

have concluded that the power-limited system, consisting of a 
viscous damper load and a prime-mover/gearbox, is 
conjugately matched when operating at full power and only 
when operating at full power. Note also that in this all-
mechanical model the efficiency of the overall system is 92%. 
The viscous damper is merely a “dummy load” representing 
the useful work that would be done in a more practical load, 
such as a well pump, a hoist, a ship’s propulsion system, etc. 
We should now be able to accept that the “apparent source 

impedance” concept applies to the all-mechanical system 
equally as well as it did to the electro-mechanical system.  

1) What About Losses and System Efficiency? 
There is no known loss mechanism in the turbine-gearbox 

portion of the system that would account for the “apparent 
source impedance” which is easily measured by perturbing the 
load parameter, Rm, and measuring the system response. The 
only losses are the 8% efficiency reduction introduced 
artificially in the gearbox.  Clearly, the “apparent source 
impedance” does not dissipate energy. It is only a 
manifestation of the action/reaction or automatic adjustment of 
the system operating point to accommodate a different load – 
just as was the case in the analysis of the turbine generator 
system. 

2) Is the Prime-Mover/Gearbox the Same in the Two 
Analyses? 

Can we say that the prime-mover/gearbox portion of the 
system is the same in our two analyses? Yes, they were 
purposely kept exactly the same. Can we say that the prime-
mover/gearbox portion of the system presents the same 
apparent source impedance in the two analyses? Yes – nothing 
has changed in that part of the system.  

3) Was It Necessary that the Load Torque Characteristic 
(B) Match the Prime-Mover/Gearbox Torque Characteristic 
(kT)? 

In this model it was noted that the torque-speed 
characteristic of the prime-mover/gearbox subsystem has a 
torque coefficient, kT, which is equal to the load torque 
characteristic, B, at the conjugate match point. That is, the ratio 
of a percent change in torque to a corresponding percent 
change in speed is the same in both the prime mover and in the 
load device. Is this is a coincidence brought about by virtue of 
the fact that both components of the system were given linear 
torque-speed curves? Since the horsepower curves must 
intersect at the full power operating point, and since the torque 
and speed must be equal at the full power operating point, are 
the torque coefficients also required to be the same? It is not 
unreasonable for them to have the same torque coefficients, but 
is it a pre-requisite to obtaining a conjugate match at full power 
output?  

4) Is the Source or Output Impedance of the Prime-
Mover/Gearbox a Constant(kT)? 

In the case at hand, the all-mechanical system consisting of 
a prime-mover/gearbox, has an output impedance that is the 
inverse of the ratio of change in torque to change in speed, 
which is the inverse of the dynamic torque coefficient, kT. That 
is, the mechanical impedance, Rm, is the impedance that must 
be matched by the load for a conjugate match to exist and for 
maximum power output. This was established by the derivative 
analysis in Section X, subparagraph H. 

In Section X, subparagraph G, we showed that the torque 
versus load impedance curve for the complete system has the 



same shape as a Norton equivalent circuit in which the output 
conductance is constant and the load conductance varies. Can 
we say that the apparent output impedance or source 
impedance of the prime-mover/gearbox portion of the system 
is a constant for a given power-limited system? If yes, then that 
strongly suggests that power-limited systems, whether they are 
all-mechanical, all electrical, or electro-mechanical, have an 
apparent source impedance or output impedance that is 
constant and measurable.  

Our conclusion is based first on the shape of the curve and 
the analysis in Section X, subparagraph G, which showed that 
the Torque as a function of Rm, (22a), is exactly the same as 
that  for the electrical analog Norton equivalent circuit. Our 
conclusion is also based on the derivative analysis in Section 
X, subparagraph H, which demonstrated that a conjugate 
match occurs at one and only one condition – the condition 
where the normalized derivative of torque with respect to load 
resistance is – 0.50 at the nominal, full power output operating 
point. The conclusion is that the output impedance of a power-
limited system is constant, finite and measurable, and it is 
further concluded that this is a fundamental and unique 
attribute of a power-limited system. 

In summary, we have demonstrated that the concept of a 
non-dissipative source impedance is also relevant for an all-
mechanical system and is therefore not unique to electrical or 
electronic systems. We have also postulated that the output 
impedance of power-limited systems (mechanical, electrical, or 
electro-mechanical) is a constant that must have a conjugate 
match with the load impedance in order to realize a maximum 
transfer of power. 

XI. APPENDIX A - PRIME MOVER CHARACTERISTICS 
Three major categories of prime movers will be discussed – 

Steam Turbines, Internal Combustion Engines and Hydraulic 
Turbines. 

A. Steam Turbines 
Steam Turbines are classified either as impulse class or as 

reaction class. In either class of turbine superheated steam 
under high pressure is introduced into the turbine cylinder so as 
to allow the steam to expand and impart its energy velocity to 
the turbine blades. See Fig. 12, which is a multi-cylinder or 
compound turbine [3] being used as the prime-mover for two 
electrical generators.  

In this particular steam turbine example, 1200 p.s.i. steam 
is first introduced to the upper, high pressure element, which 
delivers approximately 25% of the total generating capacity of 
the 50,000 kW system. The high pressure element operates at 
3600 RPM. Steam from the high pressure element is then led 
to the low pressure turbine element, which operates at 1800 
RPM and drives its own generator.  

 

Figure 12.  Multi-cylinder or compound turbine 

For a given steam generating capability, the steam turbine 
prime-mover is power-limited. The limiting factor is primarily 
steam pressure. If the steam turbine and generator system are 
overloaded, the steam pressure at the input to the High 
Pressure turbine element decreases and reduces the shaft 
horsepower being developed by the system.  

The source of steam is typically a firebox with its own 
limitations, such as the rate at which steam can be generated, 
based on a fuel consumption rate, the temperature of feed 
water, the back pressure from the load, etc. Even if the steam 
generating unit had the ability to generate considerably higher 
steam rates, given time to increase the fuel burning rate, the 
time it takes to increase its fuel rate and actually deliver higher 
rates of steam is typically much too long for it to be able to 
respond to the fluctuations of the turbo-electric unit.  

 So, for all practical purposes, the steam temperature, 
pressure and rate of flow are all limited. As a result, a typical 
steam turbine and electrical generator system operate in a 
power-limited mode with a horsepower versus speed curve that 
has a single maximum, such as the example shown in Fig. 13 
(The red curve is the power in HP and the green curve is the 
torque in foot-pounds).  

Note that Fig. 13 is not the characteristic curve of the above 
pictured steam turbine generator set. Instead, it is a set of 
curves for a hypothetical steam turbine prime-mover.  

B. Internal Combustion Engines 
Internal combustion engines, such as gasoline and diesel 

engines, are found in a variety of applications from powering 
model airplanes all the way up to several thousand horsepower 
diesels used in diesel-generator sets. The internal combustion 
engine is inevitably power-limited for several reasons. First is 
the fuel delivery system. Depending on the type of fuel 
delivery system, both fuel delivery and air breathing 
capabilities are either individually limited or limited as a fuel-
air mixture. When the throttling device is wide open, the fuel 
delivery system will max out such as to create a single 



maximum in the horsepower versus speed curve. See Fig. 14, 
[4], for the torque and horsepower curves versus speed for a 
typical automobile engine. 

 

Figure 13.  Torque and Horsepower versus speed for  a  typical steam turbine. 

 

Figure 14.  Torque and horsepower versus speed for automotive engine. 

The torque curve is curve B and the horsepower curve is 
curve C. The horsepower curve has only one maximum, and in 
this example it is just over 70 horsepower and about 73 foot-
pounds of torque at 5000 RPM. The torque curve has a shallow 
slope of about 0.01444 ft-pounds per RPM in the vicinity of 

the maximum power output point. As the load increases (as in 
going uphill), engine speed decreases and the operating point 
seeks a new equilibrium at a lower speed, higher torque and 
lower horsepower.  Conversely, as the load on the engine 
decreases (as in going downhill), the engine speed increases 
while the torque and horsepower decrease. This power-limited 
behavior is common to all internal combustion engines. 

C. Hydraulic Turbines 
The hydraulic turbine has many characteristics in common 

with other prime-movers.  Fig. 15 shows curves of constant 
efficiency plotted against speed in RPM (solid curves). The 
dashed curves are curves of constant gate opening (throttle) 
plotted against speed and discharge in cubic feet per second. 
The curve of highest efficiency is of interest to us, because it 
shows us the nominal speed of the nominal full power output 
of the device normalized to a 1 foot head as 106 RPM. A real 
hydraulic turbine will normally operate at a head of dozens of 
feet, but it is convenient for designers to work with the data 
normalized to a 1 foot head.  

Fig. 16 shows the torque versus speed curves of the same 
hydraulic turbine as in Fig. 15. If we use the 106 RPM nominal 
full power speed with the torque curve for the fully open gate, 
we see that the full power torque is approximately 1.07 pounds 
with a lever arm of 63 inches or 5.25 feet. Using that point as 
the full power operating point and making a graphical 
measurement of the slope of the torque curve at that point, we 
can approximate the torque  for this device and from that the 
horsepower as a function of speed. The slope of the torque 
curve is found graphically to be 0.105 foot pound per RPM. If 
we linearize the torque curve in the vicinity of the full power 
operating point we see an intercept with the ordinate at a stall 
torque of approximately 22.15 foot pounds.  

 

Figure 15.  Characteristic curves of hydraulic turbine. 



 

 

Figure 16.  Torque versus speed for hydraulic turbine. 

The torque  is as follows: 

                        T = TS – kT * N 

The power curve is found from the relationship 

           P = kN * T * N = kN * (TS – kT * N * N) 

where kN is the conversion factor for converting foot pounds 
per RPM to Horsepower. Fig. 17 is a plot of the hydraulic 
turbine horsepower (HP) as a function of the speed N in RPM 
and based on a stall torque of 22.15 foot pounds and a torque 
coefficient of 0.105 foot pounds per RPM. Although we are 
showing the horsepower curve over the entire speed range, it is 
only valid for the region within 15-20% of the nominal full 
power operating speed of 106 RPM. That is the range in which 
we are interested. Within that range of operation it is clear that 
the hydraulic turbine is power limited, just as with all other 
practical prime-movers.  

In normal operation, if the turbine is overloaded, its speed 
immediately decreases to find a new equilibrium point at a 
lower speed and lower power output and higher torque. 
Actually, that process would continue right to the stall point. 
Conversely, if the load on the turbine is decreased the speed 
immediately increases to find a new equilibrium point at a 
lower torque and a lower power level. This behavior is 
consistent with the behavior of the other prime-movers that we 
have described. 

 

Figure 17.  Typical hydraulic turbine horsepower versus speed. 

Note that it has a single maximum of output power, which 
is at approximately 106 RPM. 

XII. APPENDIX B –THE EQUATIONS OF LOAD CURRENT AS A 
FUNCTION OF LOAD RESISTANCE 

This appendix will derive the equation for the load current 
as a function of the load resistance in a Thévenin equivalent 
circuit. 

Consider a series circuit consisting of an emf, E, a source 
resistance RS and load resistance RL. The current flowing in the 
circuit will be as shown in (24).  

I = E / (RS + RL)                                   (24)          

We define the Thévenin short circuit current ISC = E / RS 
and the source conductance BS = 1 / RS. Re-arranging (24) to 
use the short circuit current and the source conductance, we 
obtain  (25). 

I = (ISC / RL) / (BS + (1 / RL))                              (25) 

Fig. 18 is a plot of the load current, I, against the load 
resistance RL for a short circuit current of 50 amps and a source 
conductance of 0.25 mhos. 

 

 

 

 

 

 

 



 

 

 

Figure 18.  Load current versus load resistance  
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