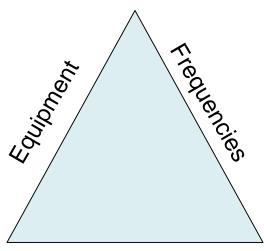


### DCS Technical Team and how you can help

"All bands all the time"


Deane Bouvier N5DQ, Staff 50 7/20/2015

Presentation at Tech Team web site: http://www.qsl.net/w6lmt/2015-07-20\_DCS\_TT4DCOs.pdf



### DCS Technical Team Scope

- Primary function of the DCS Technical Team
  - Hands-on support to CFMB
  - Recommend resolutions to day-to-day technical issues
  - First contact to recommend equipment and frequency resolutions for DCS operations



People

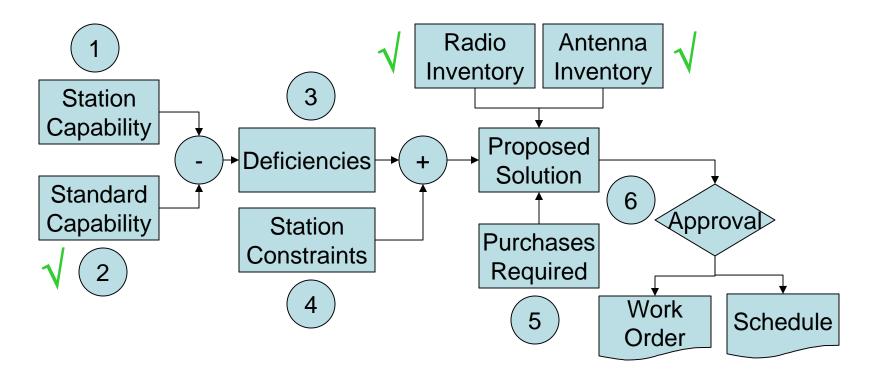
- What that means is
  - The Technical Team is responsible for guiding 2 of the 3 primary elements to provide disaster communications to LA County



### **Primary Tasks**

- Collect all current outstanding technical needs and issues for County-wide DCS operations and recommend solutions
  - Identify equipment and frequency issues in conjunction with DCOs
  - District capability should include the ability to communicate with contract/contract city radio organizations as well as the County
- Objective: Cover all bands from 1.8 to 450 MHz
  - Simultaneous operation on 2m, 220, 6m and 10m
  - Plus 70cm coverage to communicate with contact/contract cities
  - Support NVIS on HF
- Make maximum use of current equipment inventory
- Research, recommend and document equipment to CFMB for purchase when needed
- Maintain the full county DCS frequency matrix, and recommend changes as needed. Generate a new concise tactical frequency naming convention
- First priority equipment issues, second priority revise the frequency plan




### Who Are We?

- Most stations have a primary and an alternate Technical Team Member assigned
- Technical Team Members
  - Deane Bouvier <u>S-50</u> Lead
  - Eric Christensen <u>M-02</u>
  - Jim Glancy <u>N-01</u>
  - Norm Goodkin <u>K-04</u>
  - Steve loerger <u>F-01</u>
  - Keith Prebble <u>S-12</u>
  - Mark Stevenson K-220
  - Norm Thorn <u>T-219</u>
  - Dick Rath <u>S-3</u> CFMB
- Technical Team Members will contact the DCOs to work the equipment and frequency issues for their stations
- DCOs should contact their Technical Team Member directly if you see issues
  - If there is no primary member assigned contact your alternate

|    | <b>Stations</b> | Primary | Alternate | DMA |
|----|-----------------|---------|-----------|-----|
| 2  | <u>ELA</u>      |         | N-01      | E-N |
| 3  | <u>SLA</u>      | S-50    | T-219     | G   |
| 4  | NWK             |         | N-01      | E-N |
| 5  | <u>TEM</u>      | S-12    | M-02      | D   |
| 6  | SCT             | F-01    | K-04      | В   |
| 7  | ALT             | M-02    | S-12      | С   |
| 8  | <u>SDM</u>      | S-12    | M-02      | D   |
| 9  | WHD             | K-220*  |           | A   |
| 11 | LAN             | F-01    | K-04      | В   |
| 12 | CVS             | M-02    | S-12      | С   |
| 13 | LKD             | N-01    |           | E-S |
| 14 | IDT             | S-12    | M-02      | D   |
| 15 | PRV             |         | N-01      | E-N |
| 16 | CAS             | N-01    |           | E-S |
| 17 | <u>LMT</u>      | S-50    | T-219     | G   |
| 18 | AVA             | T-219   | S-50      | F   |
| 21 | CEN             |         | N-01      | E-N |
| 22 | <u>LHS</u>      | K-04    | K-220     | В   |
| 23 | CER             | N-01    |           | E-S |
| 26 | PLM             | F-01    | K-04      | В   |
| 27 | <u>MDR</u>      | K-220*  |           | A   |
| 28 | CPT             | N-01    |           | E-S |
| 29 | <u>WAL</u>      | S-12    | M-02      | D   |
| 95 | AERO            | N-01    | T-219     | CW  |
|    | EOB             | T-219   | S-50      | CW  |
|    | SCC             | T-219   | S-50      | CW  |



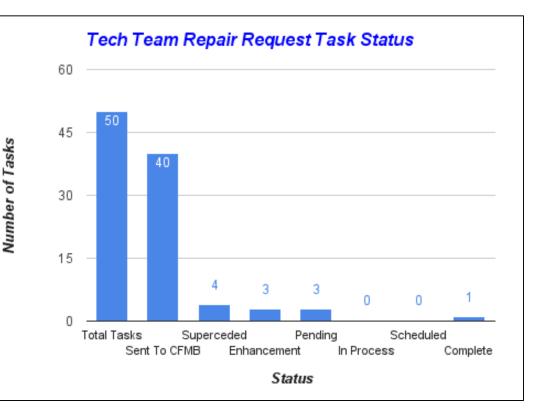
### Process to Develop Solutions to Radio and Antenna Deficiencies



 Proposed Solution documented on the Tech Team repair form for CFMB approval



### **Repair Request Form**

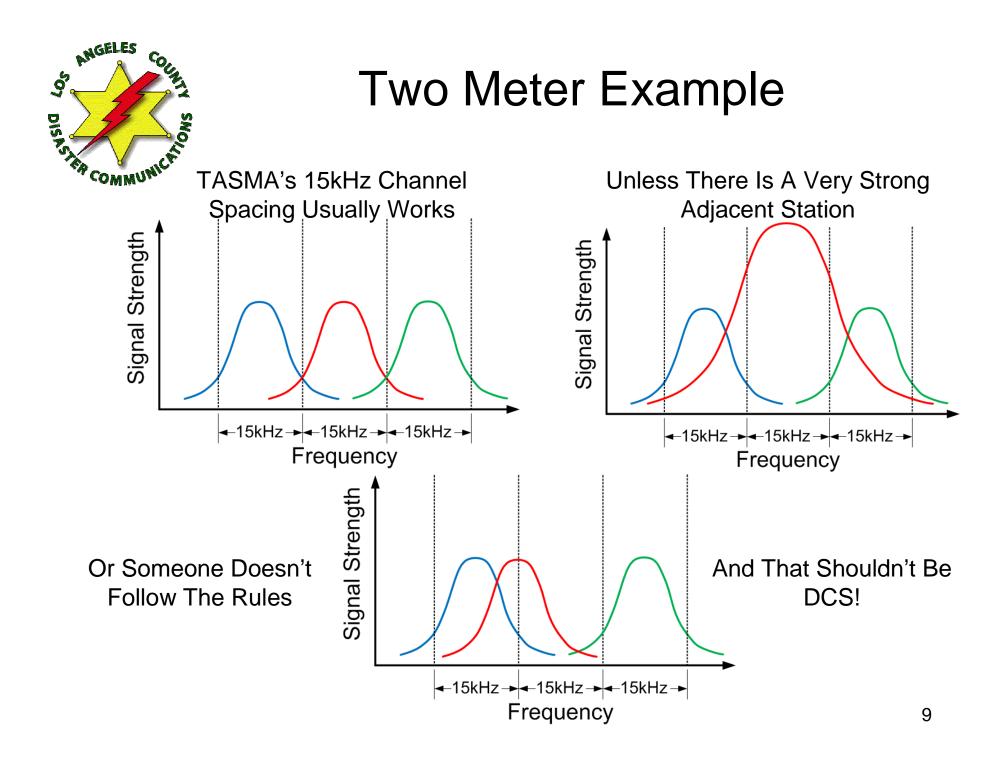

- Form documents problems and recommended solutions
- Concurrence from DCOs – no surprises
- Completed forms submitted to CFMB for approval and posted on the web site
- CFMB prioritizes
  tasks with ISD

|    | DCS Technical Team<br>Repair/Installation Request | S COMMUNI |
|----|---------------------------------------------------|-----------|
| 1. | Location(s)                                       | Control # |
|    |                                                   |           |
| 2. | Statement of the Problem(s)                       | I         |
|    | A.                                                |           |
| 3. | Recommended Solution(s)                           |           |
|    | A.                                                |           |
| 4. | Concurrences                                      | Date      |
| 4. | Technical Team Contact                            |           |
| 4. | D00                                               |           |
| 4. | DCO<br>Technical Ops Officer                      |           |



### **Repair Request Status**

- Tech Team members have evaluated most stations and prepared Repair Requests were needed
- Individual problems are tracked in case there are issues with particular parts of the request
- 50 tasks generated, 40 in the queue, 1 completed
- More expected to be scheduled shortly
- "New" 145.300 Tait repeater on Mt. Disappointment




 Contact your Tech Team member regarding the specifics for your particular station



## **Frequency Planning**

- Plans should conform with the recognized band plans
  - Once the current usage is compiled, identify non-conformances and recommend solutions
  - Then adopt standard naming conventions so that we all know where to find each other
- Ultimate goal to develop standard "code plugs" for the equipment in use
- There are no clear frequencies so smart geographic separation with tone squelch will be required for frequency reuse
  - These are standard techniques in commercial frequency coordination
  - 2 meters will probably be the toughest





### 2011 Frequency Plan 2m Issues

| COM COM | MUNICH | Offset         | PL    | Comment     | Conflicts                                                      |    |
|---------|--------|----------------|-------|-------------|----------------------------------------------------------------|----|
| 2       | ELA    | 146.520        |       |             | National Simplex, not advised                                  |    |
| 3       | SLA    | 145.610        |       | No members  | * 5/10 kHz off channel                                         |    |
| 4       | NWK    | 145.500        |       |             | * 10 kHz off channel                                           |    |
| 5       | TEM    | 146.445 🔨      |       |             |                                                                |    |
| 6       | SCT    | 146.790 -0.600 | 123.0 | New 147.555 | * "New" is 5 kHz from 2 DSTAR repeater outputs                 |    |
| 7       | ALT    | pending        |       | No members  |                                                                |    |
| 8       | SDM    | 147.570        |       |             | * DSTAR repeater output                                        |    |
| 9       | WHD    | 145.580        |       |             | * 5/10 kHz off channel                                         |    |
| 11      | LAN    | 145.200        |       |             | * Repeater output                                              |    |
| 12      | CVS    | 145.540 🔨      |       |             |                                                                |    |
| 13      | LKD    | 146.460        |       |             | Fixed simplex aux stations (internet links, remote base, etc.) |    |
| 14      | IDT    | 144.300        |       |             | * 10 kHz off channel                                           |    |
| 15      | PRV    | 145.500        |       |             | * 10 kHz off channel                                           |    |
| 16      | CAS    | 146.145 +0.600 | 156.7 | K6CHE/R     |                                                                |    |
| 17      | LMT    | 145.585 🔨      | 156.7 |             |                                                                |    |
| 18      | AVA    | 147.555        |       |             | * 5 kHz from 2 DSTAR repeater outputs                          |    |
| 21      | CEN    | 147.510 🔨      |       |             |                                                                |    |
| 22      | LHS    | 147.510 🔨      |       | Updated     | Was 147.555                                                    |    |
| 23      | CER    | pending        |       |             |                                                                |    |
| 26      | PLM    | 145.200        |       |             | * Repeater output                                              |    |
| 27      | MDR    | 145.610        |       |             | * 5/10 kHz off channel                                         |    |
| 28      | CPT    |                |       | No Members  |                                                                |    |
| 29      | WAL    | 147.570        |       |             | * DSTAR repeater output                                        | 10 |
| 95      | AERO   | 146.745        |       |             | * K6CHE Long Beach repeater input                              |    |



### **Other Significant Issues**

| 10m | Input (MHz) | Output (MHz) |       |
|-----|-------------|--------------|-------|
|     | 29.52       | 29.62        |       |
|     | 29.54       | 29.64        | 29.63 |
|     | 29.56       | 29.66        |       |
|     | 29.58       | 29.68        |       |

| Simplex (MHz) | Notes            |
|---------------|------------------|
| 29.50         | SCRRBA Plan Only |
| 29.60         | National Simplex |

### 29.50 is our only choice

- 6m 50.62
  - Lowest FM simplex is 51.50
    MHz, let's start with that

Digital (Packet) Calling

- There are others

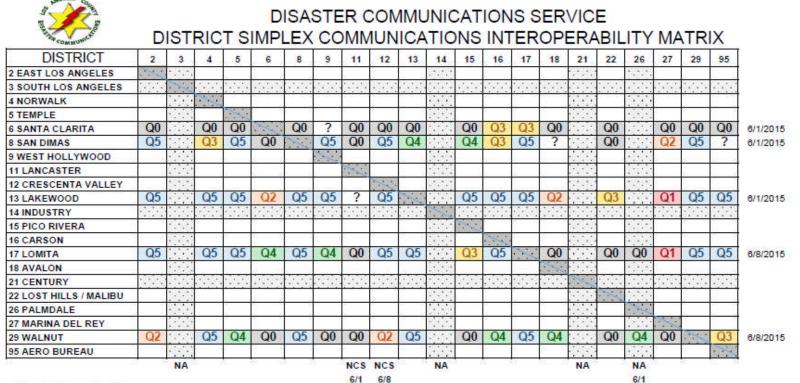
Do Districts need 6m simplex?


- 220 MHz
  - 2011 Plan still had assignments below 222 MHz
  - Only 9 simplex channels

222.120 - 222.140 223.400 - 223.520

How many 220 simplex channels are really needed?

- 440 MHz
  - 2011 Plan had nothing on 440; no county repeater
  - Only 3 5 simplex channels


If your contract/contact cities are on 440 you need it



- Each Tech Team Member builds tentative frequency plan for each assigned station
- Start with 2m and then apply to the other bands
- Tech Team as a whole assembles the County-wide plan and resolves conflicts
- Each band to eventually have the standard code plug to be deployed



### **Interoperability Matrix**



147.870

| QO    | Frequency:                          |
|-------|-------------------------------------|
| Q1    |                                     |
| Q2    |                                     |
| Q3    |                                     |
| Q4    |                                     |
| Q5    |                                     |
| Blank |                                     |
| NA    |                                     |
|       | Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Blank |

Where frequency agile radios are missing, matrix symmetry can be used



### Help Us Help You

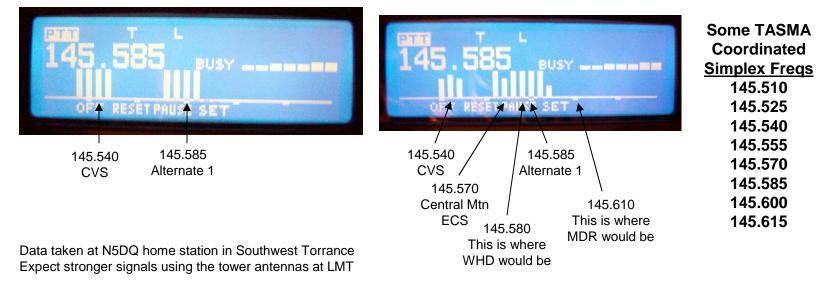
- Work with your Tech Team Member on equipment and frequency issues
- If there is no primary Tech Team member assigned, nominate a technically qualified member from your district
- If you need to find a new simplex frequency, start listening
  - Consider geographic and frequency separation
- Listen to 29.50 and 51.50 from your areas
- Identify if you need a local 6m or 220 simplex frequency
- Collect simplex interoperability data on Mondays to identify frequency sharing opportunities due by 8/12
  - Your Tech Team Member can provide you the spreadsheet
  - Send him the compiled spreadsheet



### **Backup Material**

- Bandwidth Considerations
- Empirical Data
- Frequency Sharing Considerations




### Bandwidth Considerations & Carson's Rule

- In practice, strong FM signals whose carriers are closer than 20 kHz present a problem
- Why? The approximate occupied bandwidth of an FM signal from Carson's rule is at least 16kHz {16K0F3E}
  - $CBR = 2(\Delta f + fm)$ 
    - where  $\Delta f$  is the peak frequency deviation, and *fm* is the highest audio frequency modulated
  - $\pm$  5 kHz peak deviation, and a maximum audio frequency of 3 kHz, requires an approximate bandwidth 2(5+3) = 16 kHz
    - Any modulated signal has an *infinite* number of sidebands, but 98% of the power is within the bandwidth defined by Carson's rule
    - Setting the arbitrary definition of occupied bandwidth at 98% still means that the 2% of the power outside the band is **only about 17 dB** less than the energy inside  $10 \log \left(\frac{0.02}{0.98}\right)$
- Also Carson's rule does not apply well to digital signals



# LMT Alternate 1 Spectrum ~1940 Monday, 24 October 2011

- Here are some spectrum shots when operating
- Granularity of display is 5 kHz steps
- Neither MDR or WHD seemed to be operating that night
- San Bernardino ECS has a net from the Running Springs area on 145.570. They can be heard very well.
- Strong signals 15 kHz apart would work only with decent geographic separation
- Smaller spacing between TASMA channels is really asking for trouble





### **Frequency Sharing Considerations**

- Frequency and geographic separation are required for success
- Consider radio line of sight when sharing frequencies
- The formula is great but better to use empirical data collected by the simplex interoperability exercise
- We will also use tone squelch on simplex
- Our DCS plan will be self consistent, compliant with the coordination entity band plans and considerate of other groups who use the band

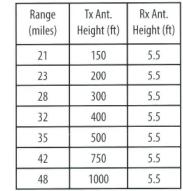
Line-of-Sight Formulas

### Visual Line-of-Sight

Approximate distance in miles =  $1.33 \times \sqrt{\text{(height in feet)}}$ 

### Radio Line-of-Sight

 $D = \sqrt{(2Hr)} + \sqrt{(2Ht)}$ 


Where:

D = approximate distance (range) to radio horizon in miles

Hr = height of receive antenna in feet

Ht = height of transmit antenna in feet

| Range<br>(miles) | Tx Ant.<br>Height (ft) | Rx Ant.<br>Height (ft) |
|------------------|------------------------|------------------------|
| 8                | 10                     | 5.5                    |
| 10               | 20                     | 5.5                    |
| 11               | 30                     | 5.5                    |
| 12               | 40                     | 5.5                    |
| 13               | 50                     | 5.5                    |
| 16               | 75                     | 5.5                    |
| 17               | 100                    | 5.5                    |



- 68 -