Design	Build	Measure	Model	Conclusions

Building and Analyzing a Resonant Feedline Dipole

Bill Mitchell and Jack Burris

UC Berkeley Amateur Radio Club

April 11, 2014

Design	Build	Measure	Model	Conclusions
Outline				

Design Build Measure Model Conclusions

Design Requirements

Highly portable

- Summits on the Air
- Backpacking
- Field Day
- Easy field deployment (few tie points)
- No tuner required
- Simple to build (no machining, etc.)
- Works on 40 m band (7.1 MHz)
- <\$125; less is better</p>

Design	Build	Measure	Model	Conclusions
Dipole				

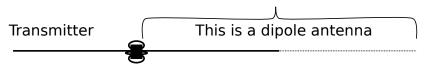
- Simple, portable antenna
- Fed in the center
- Need three tie points (a lot!)

Build

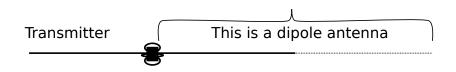
Measure

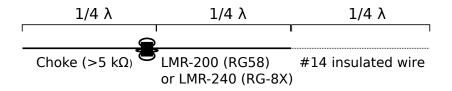
Mode

Conclusions


Dipole

Resonant Feedline Dipole


- James Taylor, W2OZH, Aug. 1991 QST
- Use shield of coax as radiating element
- Choke at $\lambda/4$ to block RF
- Monoband resonant: no tuner
- Easy to deploy—one or two tie points


Resonant Feedline Dipole

- N5ESE made a few of these antennas; poor performance
 - Measurements incorrect?
 - Bad deployment?
 - Choke insufficient?
- Revisit, make some modifications on W2OZH design

- N5ESE made a few of these antennas; poor performance
 - Measurements incorrect?
 - Bad deployment?
 - Choke insufficient?
- Revisit, make some modifications on W2OZH design

Design	Build	Measure	Model	Conclusions
Outline				

Design	Build	Measure	Model	Conclusions
Materials				

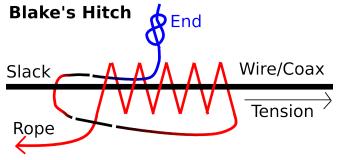
Necessary Materials

- Coax: 70' LMR-240 (overkill; LMR-200 better)
- Wire: 35' #12 insulated wire (overkill; #14 better)
- BNC male connector
- #31 Big Clamp-on ferrite (part 0431177081)
- Heat-shrink tubing
- Brightly-colored tape or other marker
- Total cost as built: \$105

Design	Build	Measure	Model	Conclusions
Materials				

Tools

- Measuring tape
- Pliers with wire cutters
- Coaxial cable stripper
- Soldering iron
- Crimp tool for BNC connector
- Hot air gun or hair dryer


Accessories

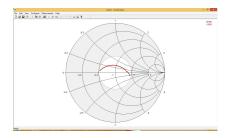
- Two 50'-100' ropes for hoisting
- Cord spool for storage
- Antenna-launching device (slingshot, etc.)

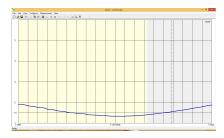
Design	Build	Measure	Model	Conclusions
Assembly				

- Place heat shrink tubing onto coax
- Attach BNC connector to end
- Heat shrink connection
- Strip shield from 4" (10 cm) of other end of coax
- Remove dielectric from 3" (7.5 cm) of stripped coax
- Measure 29.45' (8.98 m) toward BNC connector from where shield begins; mark this spot with tape
- Strip 3" (7.5 cm) of wire
- Join wire to center of coax, crimp, heat shrink
- Put toroid on near side of tape mark; pass 8 turns of coax (from near side) through toroid and clamp

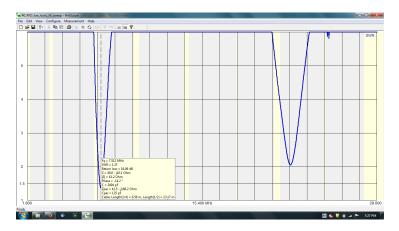
- Attach one rope to end of wire
- Attach other rope just on radiating side of toroid
- Alternate: use Gripping Sailor's Hitch
- As built, should handle 500 W (plenty for portable)
- With larger choke can handle 1.5 kW

Design	Build	Measure	Model	Conclusions
Outline				



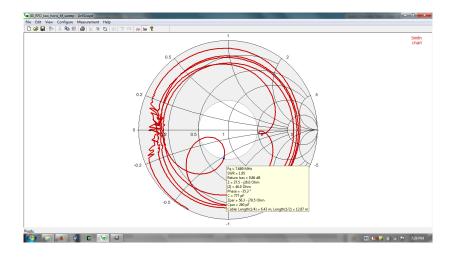


- As built, without adjustments
 - Vertically polarized
 - Testing only 1 m away from side of a tall concrete building
 - Closer to building increases SWR and moves minimum to higher freq.

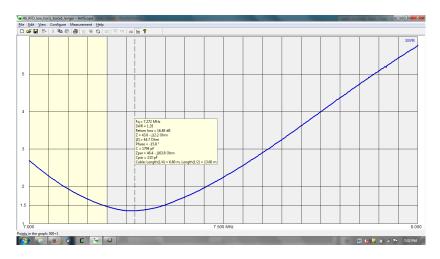


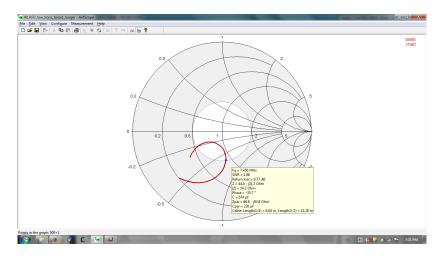
Design	Build	Measure	Model	Conclusions
A+ M/6R	R Station			

- Vertically polarized
- Choke 15' above ground
- \bullet Weird SWR: many peaks/dips within 7.000–7.300 MHz
- SWR not consistent from analysis to analysis
- Realization: 20 kW AM broadcast station just across mudflat


Design	Build	Measure	Model	Conclusions
At W6B	B Station			

- Horizontally polarized
- 10-20' above ground


Design	Build	Measure	Model	Conclusions
Δ+ W/6RI	R Station			


Design	Build	Measure	Model	Conclusions
At W6BI	3 Station			

• Antenna too short; move toroid to lengthen

Design	Build	Measure	Model	Conclusions
At W6BI	3 Station			

• Antenna too short; move toroid to lengthen

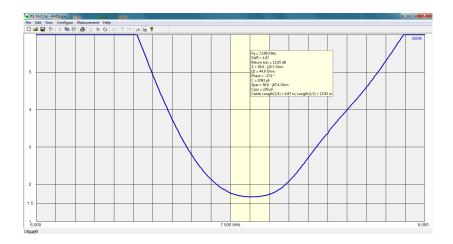
Design Build Measure Model Conclusions
What's Going On?

• Lots of RFI

- KKSF 910 KHz
- 20 kW AM station
- 1.5 km away over mudflats
- Vertically polarized
- Horizontal polarization helped
- RF choke near analyzer made big improvement
- No wonder the verticals at W6BB have had weird SWR!
 - Triband vertical worked horizontally
 - Tilted up, antenna went haywire

Design	Build	Measure	Model	Conclusions
At K6JE	B Station			

- Horizontally polarized
- Slung over two 20' branches (M)
- Avoiding other antennas as much as possible
- Very wet ground
- No broadcast interference
- Adjustments
 - Tension of antenna
 - Height of toroid choke
 - Location of center with respect to branches
 - Direction of nearby 3-element yagi
- Not adjusting toroid location or other antenna hardware!

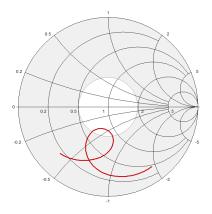

Build

Measure

Model

Conclusions

At K6JEB Station: First Try

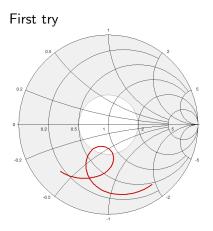

Build

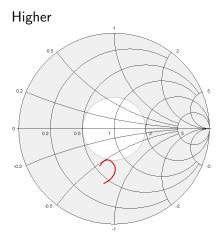
Measure

Mod

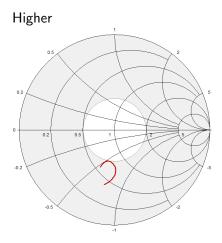
Conclusions

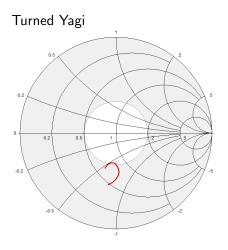
At K6JEB Station: First Try



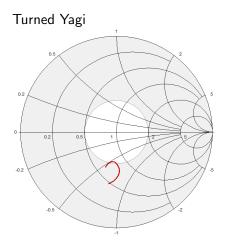

At K6JEB Station: Higher

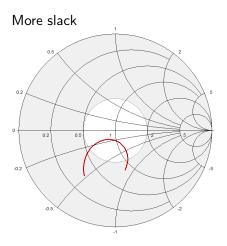
rfd_higher - An				-	_	 	-				_	 	_	and the second	and Anna 1	d X
le <u>E</u> dit ⊻iew																
) 📽 🖬 🗗	S 📭 🗉	5 8 M	· 및 Q 12		M 🖻 🖇											
5							SW Ret [Z] Ph C : Zp Cn	= 7.101 MHz R = 2.06 um loss = 9.20 37.5 - j29.5 O 47.7 Ohm sse = -38.2 * :759 pF sr = 60.7 - j77.; sr = 289 pF sle: Length(1/-	hm 2 Ohm	enativ(1/2)	12.02 m					SWR
4								sie: Length(L/-	() = 0.97 m, 1	engin(172)	= 1535 m					
3																
,												_				
2	-					 		+		_						
.5																
16.800								7.15	0 MHz							7.5
dv.																


At K6JEB Station: Higher



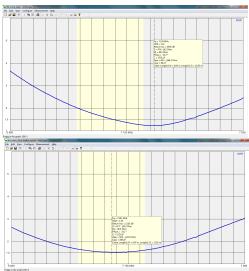
Design Build Measure Model Conclusions


At K6JEB Station: Turned Yagi



Design	Build		Measure	Model	Conclusions
		N A			

At K6JEB Station: More Slack

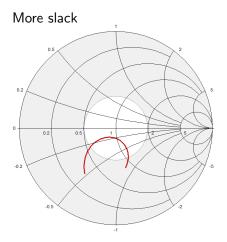

Build

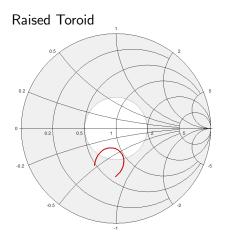
Measure

Model

Conclusions

At K6JEB Station: Raised Toroid

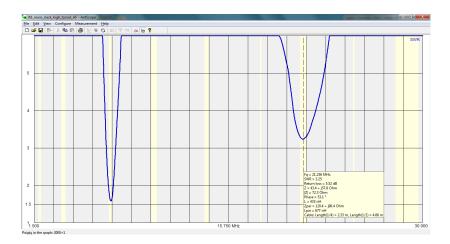



More slack:

Raised Toroid:

Design	Build		Measure		Model	Conclusions
		D '	1 -	1.1		

At K6JEB Station: Raised Toroid

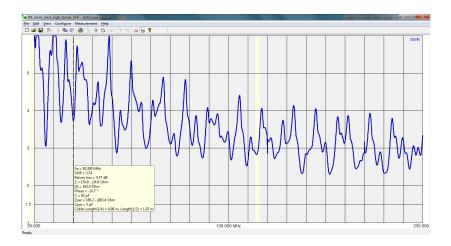

Build

Measure

Model

Conclusions

At K6JEB Station: HF Spectrum


Build

Measure

Mode

Conclusions

At K6JEB Station: VHF Spectrum

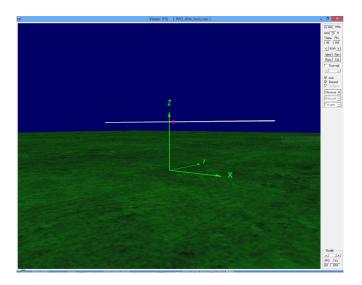
Design Build Measure Model Conclusions
At K6JEB Station

- Subjective measurements
 - Receive quality similar to vertical with 64 radials
 - $\bullet~59$ report on SSB to and from W1AW/7 in Oregon (100 W)
 - $\bullet\,$ Worked W1AW/1 in Vermont with 400 W CW

Design	Build	Measure	Model	Conclusions
Outline				

Design	Build	Measure	Model	Conclusions
Modeling				

- Model for 40 m dipole
- Model higher harmonics, but move toroid
 - 20 m
 - 15 m
 - 10 m
- Model using EZNEC or nec2c

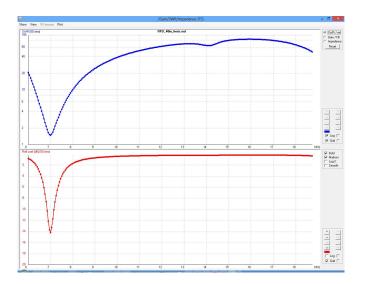

Build

Measure

Model

Conclusions

Model: 40 m Horizontal Dipole

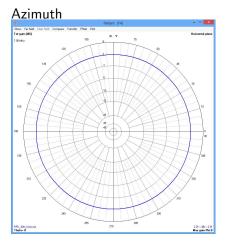

Build

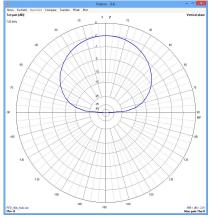
Measure

Model

Conclusions

Model: 40 m Horizontal Dipole

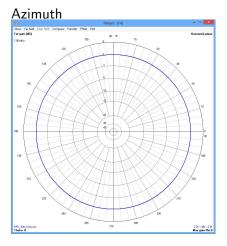

Build

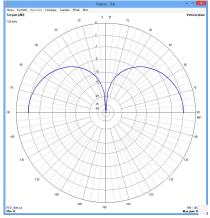

Measure

Model

Conclusions

Model: 40 m Horizontal Dipole

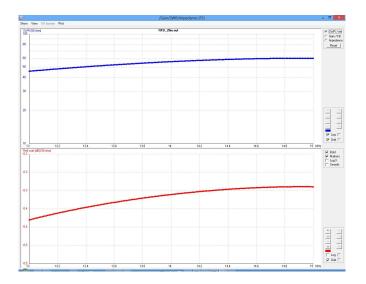

Build


Measure

Model

Conclusions

Model: 40 m Vertical Dipole

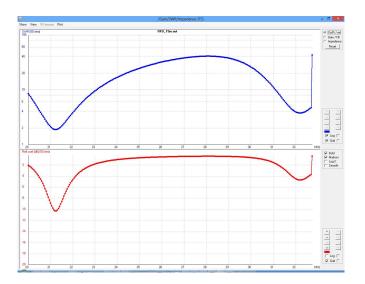

Build

Measure

Model

Conclusions

Model: 20 m Vertical Dipole

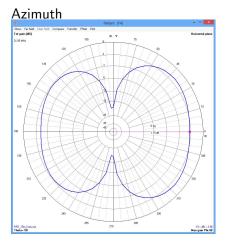

Build

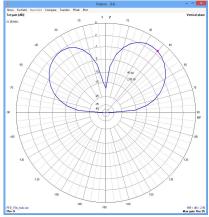
Measure

Model

Conclusions

Model: 15 m Vertical Dipole

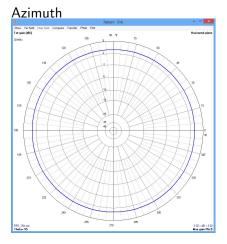

Build

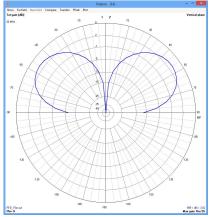

Measure

Model

Conclusions

Model: 15 m Horizontal Dipole


Build


Measure

Model

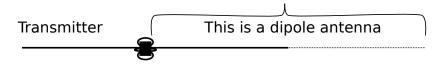
Conclusions

Model: 15 m Vertical Dipole

Design Build Measure Model Conclusions
Modeling Summary

- Works with <2:1 SWR for all of 40 m band
- Terrible for 20 m, 15 m not very good (choke wrong)
- Move toroid for 2:1 SWR on 15 m
 - Toroid goes 3.01 m (9.84') from center of dipole
 - Use 5 turns of coax in choke (c.f. K9YC's RFI handbook)
 - Radiation pattern will be weird
 - Run less power at the higher SWR

Design	Build	Measure	Model	Conclusions
Outline				



Design	Build	Measure	Model	Conclusions
Conclusions				

- Resonant Feedline Dipole works as designed
- Simple build
- 15 m works with 2:1 SWR if you move the toroid
- Can handle power up to 400–500 W (less on 15 m)
- Small design changes for a lighter QRP antenna
- Deployment is very important to antenna SWR
- Antenna analyzer is really useful

Design	Build	Measure	Model	Conclusions
Further	Reading			

• RFI and Toroid Handbook, Jim Brown (K9YC)

ъ

- James Taylor (W2OZH) "RFD-1 and RFD-2: Resonant Feed-Line Dipoles" *QST*, Aug. 1991, p. 24
- N5ESE's Look at the RFD, Monty Northrup (N5ESE)
- Revisiting the Resonant Feedline Dipole, Mike Boatright (KO4WX)
- The Ashley Book of Knots, Clifford Ashley, 1944

Design	Build	Measure	Model	Conclusions
Acknowle	doments			

• Jim Brown, K9YC

 \mathbf{c}

- Anita Flynn, KI6LO
- EBARC, W6CUS

Design	Build	Measure	Model	Conclusions

Building and Analyzing a Resonant Feedline Dipole

Bill Mitchell and Jack Burris

UC Berkeley Amateur Radio Club

April 11, 2014