

Alan Wolke – W2AEW

ARRL NNJ Technical Coordinator

http://www.youtube.com/w2aew

What is a Smith Chart

- A graphical tool to plot and compute:
 - Complex impedance

Complex reflection coefficient

- VSWR
- Transmission line effects
- Matching networks
- ...and more
- Let's break it down....

Normalized Impedance

- Normalized Z = Actual Z / System Z₀
 - For $Z_0 = 50\Omega$, divide values by 50
- Example:

$$-Z = 37 + j55$$

$$-Z' = \frac{37}{50} + j\frac{55}{50}$$

$$-Z' = 0.74 + j1.10$$

This is what we plot on the chart

Makes it usable for any system Z₀

Z Regions on the Smith Chart

Key Values on the chart

Constant Resistance Circles

Constant Reactance 'Arcs'

Page 7

Plot a Complex Impedance

- Z = 25 + j40
- Divide by 50 to normalize...
- Z' = 0.5 + j0.8
- Find intersection of R'=0.5 circle and X'=0.8 arc

Adding Series Elements

- Add components to move around the Smith Chart
- Series L & C move along constant-R circles
 - Series L moves CW
 - Series C moves CCW

Page 9

What about Admittance?

 Admittance is handy when adding elements in parallel

Admittance:
$$Y = \frac{1}{Z}$$

Converting
 Impedance to
 Admittance is easy with Smith Chart

Conductance:
$$G = \frac{1}{R}^*$$

Susceptance:
$$B = \frac{1}{X}$$

* (when "real" component = 0)

Converting to Admittance

- Draw circle centered on Z₀ that crosses through Z point
- Bisect circle thru Z and Z_0
- Y is 180° away on circle

$$Z' = 1 + j1.1$$

 $Y' = 0.45 - j0.5$

Page 11

Admittance Curves

Admittance Curves are obtained by simply rotating the Smith Chart by 180°

Page 12 3/7/2019

Combination Charts

 Look carefully –
 Admittance curves are here!

Both **Z-only** and **combo** charts are available

Constant Conductance

Constant <u>Susceptance</u>

Page 13

Adding elements in parallel

- Adding parallel or shunt L & C moves along constant conductance circles
- Easiest to do with "combo" Smith Chart
 - Shunt L with $B'_L = j0.3$ is shown

Page 14

Quick tip – adding elements

 Adding inductors "eLevate" thru real axis

 Adding capacitors "Crash" down thru real axis

 Remember this when we design a matching circuit!

More Smith Chart Magic

 Radially Scaled Parameters

 Rotate vector to real axis, extend to radial scales:

- VSWR: 2.3:1

Return Loss: 8.10dB

– Reflection Coefficient:

Power: **0.155**

V or I: **0.39**

3/7/2019

VSWR and Transmission Lines

Constant VSWR circle

Impedance varies

VSWR stays same

- One trip around
 Smith chart is
 ½ wavelength
 - Impedance repeats
- Half-way around is
 1/4 wavelength:
 - Open transformed to Short

Short transformed to Open

VSWR and Transmission Lines

Impedance Matching: L-Network

- Add series/parallel inductor/capacitor to move Z_L to Z₀
- L-Network topology based on where Z_L is on the Smith Chart
- Sometimes more than one network topology works

L-Network Design Process

Pick a topology

Process:

 Add ser/par L/C to rotate to <u>unity</u> R <u>or</u> G circle

 Add ser/par L/C to rotate to Z₀

 Compute values from ΔX' and ΔB'

Example:

Series L, shunt C

L-Network Example: Step 1

- Freq = 432.1MHz
- $Z_L = 75 j60$
- Normalize...
- $Z'_L = 1.5 j1.2$
- Plot it —
- Pick a topology:

Page 21

L-Network Example: Step 2

Add Shunt L

Rotate on constantG until hit R'=1

- Added B'_L is 0.32+0.5=**j0.82**
- $-X'_{L}=j1.22$
- $-X_L=j61$
- $-L=X_L/(2*pi*F)$
- L=22.5nH

L-Network Example: Step 3

- Add Series C
 - Rotate on R'=1until hit Z₀
 - Added $X'_C = -j1.2$
 - $-X_C=-j60$
 - $C=1/(X_C*2*pi*F)$
 - C = 6.14pF

Page 23

Extra Credit: Z-only chart

Summary

- The Smith Chart is a highly useful tool:
 - Complex Impedance Transformations
 - Determining VSWR, RL, and much more
 - Transmission Line impedance transformations
 - Matching Network Design
 - ...and a lot more that we haven't touched on
- Check out SimSmith PC based tool
 - http://www.ae6ty.com/Smith Charts.html
 - http://www.w0qe.com/SimSmith.html