A 10m FM Antenna ...to fit into my attic...

A $\lambda / 4$ "T-Top" Vertical with Spiral Counterpoise

Larry Banks, W1DYJ
First licensed: 1962 (KN1VFX)

W1DYJ since 1966 - Amateur Extra
33 Blueberry Hill Road Woburn MA

Thanks to Greg Hebner, AG5FE, and his May 2022 QST article

Problem Statement

- Sunspots are increasing, 10 m is becoming more active
- As the MMRA TlaOS Net Manager I'd like to have 10 m FM capability. [The MMRA has 20+ repeaters from 10m to 900MHz covering Eastern MA.]
- I have a 6 m vertical in my attic for the MMRA 6m repeater.

Problem Statement

- Sunspots are increasing, 10m is becoming more active
- As the MMRA TlaOS Net Manager I'd like to have 10 m FM capability. [The MMRA has 20+ repeaters from 10 m to 900MHz covering Eastern MA.]
- I have a 6 m vertical in my attic for the MMRA 6m repeater.
- I decided to put a 10 m FM vertical in my attic without adding another coax run.
- Internal attic height is ${ }^{\sim} 5^{\prime}$
- 10m verticals are ~ 8+' with 16 ' diameter radials
- This also gave me an opportunity to learn about using coax as a matching network

Problem Statement

- Sunspots are increasing, 10m is becoming more active
- As the MMRA TlaOS Net Manager I'd like to have 10 m FM capability. [The MMRA has $\mathbf{~} \mathbf{2 0}$ repeaters from 10 m to 900MHz covering Eastern MA.]
- I have a 6 m vertical in my attic for the MMRA 6m repeater.
- I decided to put a 10 m FM vertical in my attic without adding another coax run.
- Internal attic height is $\sim 5^{\prime}$
- 10 m verticals are ~ 8+' with 16 ' diameter radials
- This also gave me an opportunity to learn about using coax as a matching network

Agenda

- Design of the Antenna
- BuILDING IT
- Results

Problem Statement

Agenda

- Design of the Antenna
- Building IT
- Results

Al Free

Any mistakes in this

 talk are strictly my own
Design of the Antenna

Start with the Fundamentals

- Vertical Dipole (29.58/29.68)
- Ground Plane Version
- Spiral Ground Plane [based upon AG5FE]
- Fitting it into my attic
- Matching it

Design of the Antenna: Vertical Dipole in Free Space [eznec]

Design of the Antenna: Vertical Dipole in Free Space [eznec]

Design of the Antenna: Vertical Dipole in Free Space [eznec]

SWR = $1.44 \quad[72 \Omega / 50 \Omega]$

Design of the Antenna: Vertical Dipole @ 30'

Free Space: SWR: 1.44 @ 29.7 Z=71.8-j1.8

Design of the Antenna

- Vertical Dipole
- Ground Plane Version
- No way I can fit this 16' tall into a 5' tall attic
- Spiral Ground Plane [based upon AG5FE]
- Fitting it into my attic
- Matching it

Design of the Antenna: Ground Plane \#1 @ 30'

2.12 dBi @ 0°
$2.6 \mathrm{dBi} @ 30^{\circ}$
$(x, y, z)=(0,0,38)$
50Ω feed

$(-8,0,30)$

$F_{\text {Lowest SWR }}$ a bit too high

Giround

Design of the Antenna: Ground Plane \#2 @ 30'

$\stackrel{\uparrow}{\overbrace{}^{r}} x$ 50Ω feed

30^{\prime}

$00<6(0) \square 0$

Design of the Antenna

- Vertical Dipole (29.58/29.68 \rightarrow 29.63 MHz.)
- Ground Plane Version
- Spiral Ground Plane
- A 16' long radial won't fit into my attic easily
- Fitting it into my attic
- Matching it

Design of the Antenna: SPIRAL Ground PLANE

Design of the Antenna: SpIRAL Ground Plane \#1 @ 30'

Design of the Antenna: SPIRAL Ground Plane \#2 @ 30'

The "Ground Plane" (X-Y plane)

Design of the Antenna

- Vertical Dipole (29.58/29.68 \rightarrow 29.63 MHz.)
- Ground Plane Version
- Spiral Ground Plane [based upon AG5FE]
- Fitting it into my attic
- At 10' tall it's too tall for my 5' tall attic...
- Matching it

Design of the Antenna: HOW TO FIT IT INTO MY ATtIC?

Design of the Antenna: HOW TO FIT IT INTO MY ATTIC?

wire

Design of the Antenna: "T-TOP" SpIRAL GP \#1 @ 30'

International Associati

Design of the Antenna: "T-TOP" SPIRAL GP \#2 @ 30'

Works! BUT -- $|\mathrm{Z}|=\sim 15 \Omega$ how do I match it???

Design of the Antenna: MATCHING IT: Some Theory

Quarter-wave impedance transformer

From Wikipedia, the free encyclopedia
A quarter-wave impedance transformer, often written as N4 impedance transformer, is a transmission line or waveguide used in electrical engineering of length one-quarter wavelength (λ), terminated with some known impedance. It presents at its input the dual of the impedance
 with which it is terminated.

It is a similar concept to a stub; but, whereas a stub is terminated in a short (or open) circuit and the length is chosen so as to produce the required impedance, the $N 4$ transformer is the other way around; it is a predetermined length and the termination is designed to produce the required impedance.

The relationship between the characteristic impedance, Z_{0}, input impedance, $Z_{\text {in }}$ and load impedance, Z_{L} is:
$\frac{Z_{\text {in }}}{Z_{0}}=\frac{Z_{0}}{Z_{L}}$

Design of the Antenna: "T-TOP" SPIRAL GP w/COAX

Was: $3.12 \mathrm{dBi} @ 30^{\circ}$

$3.12 \mathrm{dBi} @ 30^{\circ}$ 29.63 MHz

BUILDING IT - the Useful (and more Difficult) Stuff!

- The 10m "Vertical"
- Matching with the 6m GP
- Results

BuILDING IT

- The 10m "Vertical"
- Matching with the 6m GP
- Results

Concept

BuILDING IT

BuILDING IT

BuILDING IT

Building IT: Tested at 3' Above Ground - with two 50Ω Coaxs

The match with two $\lambda / 450 \Omega$ coaxes in parallel was terrible!

Forget the 25Ω coax!

Building IT: Tested at 3' Above Ground - with two 50Ω coaxs

The match with two $\lambda / 450 \Omega$ coaxes in parallel was terrible!

Forget the 25Ω coax!

"All Models are wrong. Some are useful."

British Statistician George Box, 1976

Building IT: Tested at 3' Above Ground - with one 50Ω coax

Frequency Scan: $25-35 \mathrm{MHz} \quad 29.58 \mathrm{MHz}$

T=Top = 8'
VSWR scale: 0-20 | |Zs| scale $=0-600$

T=Top = 5'
VSWR scale: 0-16 | |Zs| scale $=0-500$

T=Top = 7'
VSWR scale: 0-20 | |Zs| scale $=0-600$

T=Top = 4'
VSWR scale: 0-16 | |Zs| scale $=0-500$

Building IT: Results of 3' Above Ground

Building IT: Results of 3' Above Ground

Best match @ "T-Top" = 5'
$|Z s|=\sim 55 \Omega$

BuILDING IT

- The 10m Vertical
- Matching with the 6m GP
- I have a 6 m vertical in my attic
- I want to put the $\mathbf{1 0 m}$ FM vertical in my attic without adding another coax run.
- Results

My 6m GP in my attic

BuILDING IT

- The 10m Vertical
- Matching with the 6m GP
- Results

BuILDING IT

- The 10m Vertical
- Matching with the 6m GP
- Results

Gather Some Data

1. Measure the 6 m GP by itself
2. Position the unconnected 10 m GP and measure the 6 m GP by itself again

- Does the presence of the 10 m GP affect to 6 m GP?

3. Disconnect the 6m GP, connect the 10 m GP, and measure the 10 m GP

- How does the 10m GP work in the attic?

4. Develop the matching scheme
5. Finally, connect them together and measure them

Building IT: Real Data: Sweep of the 6m Ground Plane by Itself

Scales:
 VSWR: 1-11
 |Zs|: 0-100

Measurements taken in the shack with ~60' of RG-8x between my SARK-110 and the antennas.

This is an example of the detailed scans for the four setups.

Building IT: Real Data: 6m GP @ 29 MHz

Building IT: Real Data: 6m GP @ 29 MHz

Conclusion: At 29 MHz, the presence of the 10m GP has little affect on the 6 m GP and has High |Z|

Building IT: Real Data: 6m GP @ 53 MHz

6 m GP @ 53 MHz by itself

BuIlding IT: Real Data: 6m GP @ 53 MHz

Conclusion: At 53 MHz , the presence of the 10 m GP does not affect the 6 m GP very much, and 6 m has decent SWR

Building It: Real Data: 10m GP @ 29 MHz

"OK" - not great. Could use adjusting. Moving from ground level to attic lowered resonant frequency $\sim 1+\mathbf{M H z}$.

But the 6 m GP is not affecting it much if at all, as the curves are similar.

Building IT: Real Data: 10m GP @ 29 MHz \& 53 MHz

Conclusion: The 10 m GP is not being effected by the 6 m GP very much.

Building IT: Real Data: 10м GP @ 10м \& 6m

Connect them and see what happens! But How???

Building IT: More Theory - $\lambda / 4$ and $\lambda / 2$ coax

A "special case" of the quarter-wave matching transformer: the "stub"

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{I}}(f)=\infty & \longrightarrow \mathrm{Z}_{\mathrm{L}}(f)=0 \text { "shorted" } \\
\mathrm{Z}_{\mathrm{I}}(f)=0 \longrightarrow \lambda \text { LENGTH OF COAX @ } f & \longrightarrow \lambda / 4 \text { LENGTH OF COAX @ } f
\end{aligned} \longrightarrow \mathrm{Z}_{\mathrm{L}}(f)=\infty \text { "open" }
$$

1/4 wave length of coax "inverts" the impedance \{assumes lossless coax!\}

Building IT: More Theory - $\lambda / 4$ and $\lambda / 2$ coax

A "special case" of the quarter-wave matching transformer: the "stub"

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{I}}(f)=\infty & \longrightarrow \mathrm{Z}_{\mathrm{L}}(f)=0 \text { "shorted" } \\
\mathrm{Z}_{\mathrm{I}}(f)=0 & \longrightarrow / 4 \text { LENGTH OF COAX @ } f
\end{aligned} \longrightarrow \lambda / 4 \text { LENGTH OF COAX @f } \longrightarrow \mathrm{Z}_{\mathrm{L}}(f)=\infty \text { "open" }
$$

1/4 wave length of coax "inverts" the impedance

$1 / 2$ wave length of coax repeats the impedance

Building IT: More Theory - $\lambda / 4$ and $\lambda / 2$ coax

A "special case" of the quarter-wave matching transformer: the "stub"

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{I}}(f)=\infty & \longrightarrow \lambda / 4 \text { LENGTH OF COAX } @ f \\
\mathrm{Z}_{\mathrm{I}}(f)=0 & \longrightarrow Z_{\mathrm{L}}(f)=0 \text { "shorted" } \\
& \longrightarrow / 4 \text { LENGTH OF COAX } @ f
\end{array}
$$

1/4 wave length of coax "inverts" the impedance

$1 / 2$ wave length of coax repeats the impedance
Field Day:

BUILDING IT: More Theory - $\lambda / 4$ and $\lambda / 2$ coax

A "special case" of the quarter-wave matching transformer: the "stub"

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{I}}(f)=\infty \longrightarrow \lambda / 4 \text { LENGTH OF COAX @ } f & \longrightarrow Z_{L}(f)=0 \text { "shorted" } \\
\mathrm{Z}_{\mathrm{I}}(f)=0 \longrightarrow \lambda / 4 \text { LENGTH OF COAX @ } f & \longrightarrow Z_{L}(f)=\infty \text { "open" }
\end{array}
$$

1/4 wave length of coax "inverts" the impedance

$1 / 2$ wave length of coax repeats the impedance

Field Day: a shorted $\lambda / 4$ stub @80m is open @80m but @ 40 m it is a $\lambda / 2$ stub and shorted
 and therefore shorts the $2^{\text {nd }}$
harmonic

Building IT: Matching Them

Conclusion I: Connect them so that at 10 m the 6 m GP retains it's high impedance. Conclusion II: The presence of the 6 m GP does not affect the 10 m GP very much.

Building IT: Matching Them

Conclusion I: Connect them so that at 10 m the 6 m GP retains it's high impedance. Conclusion II: The presence of the 6 m GP does not affect the 10 m GP very much.

> Use a $1 / 2$ wave section @ 10m between the 10 m \& 6 m GPs, which should repeat the high impedance @10m of the 6m GP

Building IT: Matching Them

Let's model this.

Building IT: Modeling the two GPs when connected 10м GP @ 10m

By Itself

Modeled @ 30' \& 29.3 MHz

Building It: Modeling the two GPs when connected

6m GP @ 6M

By Itself

Modeled @ 30' \& 53.5 MHz

When

connected

Building IT: Modeling the two GPs when connected

@ 10m Antenna Current @ 6m

BuILDING IT

- The 10m Vertical
- Matching with the 6m GP
- Results

Building It: Real Data: Results

RESULTS "There's no meters like 10 meters"

First station activated - and heard faintly: DB0PM - Housham Germany

Date	Time (local)	SFI *	Freq	PL	Station	Location
13 Oct 22	$8: 00$	141	$29.58 / 68$	131.8	DB0PM	Housham, Germany
10 Jan 23	$11: 21$	191	$29.56 / 66$	na	W5DFW	Richardson TX
12 Dec 23	$16: 10$	126	$29.58 / 68$	100	WA5AIR	Houston TX

* Solar Flux Index: a better index than sunspots

More or less: SFI > 150 is good
More or less: SSN ~ SFI * 0.75
Thank You

Appendix

Building IT: Real Data: Results 27 - 54 MHz Scan

Combined Graph: 10 m \& 6m: |Zs| \& VSWR
With 60^{\prime} of

RG8X
---- |Zs|-6m alone
|Zs|-6m w/10m

- - - |Zs|-10m
w/6m
$-\longrightarrow \left\lvert\, \begin{gathered}|Z s|-6 m \& \\ 10 \mathrm{~m} \text { together }\end{gathered}\right.$
10m together
alone
VSWR -6m w/10m
- VSWR -10m w/6m

VSWR - 6 m \&
10m together

CHECK - Model 6m from 10m Position

Check - Model Both from 10m Position

Abstract

A 10m FM Antenna to fit into my Attic

In my role as the MMRA TlaOS Net Manager, I should be able to monitor all of our repeaters. I didn't have 10m FM capability.

I have a homebrew 6 m FM ground plane in my attic to monitor the MMRA 6 m repeater. I decided to put a 10 m FM antenna in my attic without adding another coax run. The attic height is ${ }^{\sim} 5^{\prime}$ and a 10 m ground plane is at least $\mathbf{8}^{\prime}$ tall with ${ }^{\sim} 16^{\prime}$ diameter radials, so I had to shorten both the height and the length of the radials.

And how do I feed it in parallel with the 6m GP? This gave me an opportunity to learn about using coax as a matching network. This is the story.

