Some Thoughts on a 75/80m Fan Dipole

Joe, WB9SBD, asked on the Ham-Antennas email reflector an interesting question concerning a 75/80m 2-wire fan-dipole: What would happen if the lower wire connected $1 / 2$ way along the top wire, instead of connecting at the center feed point?
I didn't know and thought it was an interesting question to investigate via modeling. (I used EZNEC+ 6.0)

Larry Banks, W1DYJ
First licensed: 1962 (KN1VFX)

> W1DYJ since 1966 - Amateur Extra
> 33 Blueberry Hill Road Woburn MA

Note: if you build an antenna with these dimensions, your results will be different. This is an "ideal" model and does not take into consideration your specific environmental situation.

Page 6 The above model at various heights
Page 7 Moving the 75m wires out half way, and the answer!

Some Thoughts on a 75/80m Fan Dipole Discussion

The Question: What would happen if the lower wire connected $1 / 2$ way along the top wire, instead of connecting at the center feed point?

Page 3 The basic 80 m dipole: 1 wire, 11 segments, at various heights I started with the standard 11-segment EZNEC dipole, resonant at 3.56 MHz in free space, and modeled it at $\sim \lambda / 2, \sim \lambda / 4$, and $\sim \lambda / 8$ to show what happens at those heights.
Page 4 The same dipole with 5 wires, redesigned to accept the "fan" wire, modeled to ensure it is the same as the basic dipole
I remodeled the dipole of page 3 , but broken into 5 wires with $1 / 2$ ' segments, just to convince myself that this model was the same as the basic model of page 3 , again at different heights.
Page 5 Adding the 75m wires and searching for the a good length I then added the 75m "fan" wires and searched for a good 75m frequency in free space.
Page 6 The above model at various heights
I then modeled this "fan dipole" at $\sim \lambda / 2, \sim \lambda / 4$, and $\sim \lambda / 8$ to show what happens at those heights. As expected, the results are similar to page 4.
Page 7 Moving the 75 m wires out half way, and the answer!
Moving the connection point for the "fan" wires out half way changes the antenna back to a simple 80 m dipole.

Basic 80m Dipole~at various heights

Basic 80m Dipole ~ multi-wire version: to prepare for fan design

Five \#12 wires, $1 / 2$ ' segments, 134.5^{\prime} long [33.75’]
[67.25’]

Free Space

$7.7 \mathrm{dBi} / 30^{\circ} @ 3.6 \mathrm{MHz}$
Basic version was 7.69 dBi

$\sim \lambda / 4\left(66^{\prime}\right)$

$\sim \lambda / 8$ (32')

The fact that the differences are in the $3^{\text {rd }}$ digit suggests that this model is equivalent to the basic - 1 wire 11 segment - version.

75/80m Fan Dipole \sim free space swr with variale 75 m dipole lengths

FILE: 75-80m-dipole_9-wires_v1.ez
W8/W9 = 59'/118 segments
[ends = $0 / \pm 61 \frac{1}{4}$ / z-0.5]

Note that the close spacing of these two frequencies create an interesting phase issue in between the two frequencies, indicated by the very high SWR.

75/80m Fan Dipole \sim using version II at various heights

75/80m Fan Dipole \sim Moving ${ }^{2 r d}$ wire half way out

FILE: 75-80m-dipole_9-wires_half-way.ez

1:15:1 @ 3.1 MHz

With W2/W3 = 30'/62 segments, and other wires the same length. Overall lengths of the two wires are $64 \frac{1}{4}$ ' and $601 / 4$.

1:13:1 @ 3.24 MHz

With W2/W3 = $25^{\prime} / 50$ segments, and other wires the same length. Overall lengths of the two wires are $591 / 4$ ' and $551 / 4$ '.

1:11:1 @ 3.52 MHz

Moving the connection point out half way essentially eliminates the effect of the "fan". I am assuming it just makes the outer portion appear thicker, and therefore shorter.

