A 40M λ /4 Vertical with Elevated Radials

Easy to construct and raise by one person

Larry Banks, W1DYJ

First licensed: 1962 (KN1VFX)

W1DYJ since 1966 – Amateur Extra

10 Matthews Way Harpswell ME

33 Blueberry Hill Road Woburn MA

http://www.qsl.net/w1dyj/

Presented to YCCC, December 2014

Contents

- Background
- Original 40M Dipole
- Why a Vertical?
- The Design
- 40M Results
- 15M Results
- Appendix

Contents

Background

My Philosophy

Maine Location

DXCC WAS VUCC WAC

W1DYJ 💉 Larry Banks

Elevation Statistics for New England – 40M (From HFTA)

Page 6

40M Vertical

Contents

- Background
- Original 40M Dipole

Original 40M dipole

Simple Fan Dipole for 80, 40, 20

Using a corner of the house as the center point

(The numbers on the wires are for use with EZNEC.)

Original 40M dipole: Limitations: Azimuth

60 (Europe)	- 1.6 dBi		Flevation
90 (Africa)	- 2.4		
170 (S. America)	- 0.8		
210 (Oceana)	- 9.3	House	llaves
335 (Japan)	- 2.8		House
			Azimuth
			Azimuth

House

EZNEC Plots do not take into consideration the effect of being so near the house.

40M Vertical

Original 40M dipole: Limitations: Elevation

Contents

- Background
- Original 40M Dipole
- Why a Vertical?

Why a Vertical?

Towers? Higher Dipoles?

- Remembering the KISS principle and "Do It Myself" \rightarrow
- No Tall Trees → No High Dipoles

\rightarrow ¼ λ Vertical

- An easy to build resonant antenna with a low elevation angle
 - One person can build, erect, and test
 - All parts are transportable in/on my car
- Negatives
 - No gain or F/B Omnidirectional
 - Potentially noisy
- Radials? Where and How Many?

The other half of the dipole

Radial Choice

From the ARRL Antenna Book:

Practical Suggestions For Vertical Ground Systems

At least 16 radials should be used if at all possible. Experimental measurements and calculations show that with this number, the loss resistance decreases the antenna efficiency by 30% to 50% for a 0.25 wavelength vertical, depending on soil characteristics. *In general, a large number of radials (even though some or all of them must be short) is preferable to a few long radials for a vertical antenna mounted on the ground*. The conductor size is relatively unimportant as mentioned before: #12 to #22 copper wire is suitable.

- If you install only 16 radials they need not be very long 0.1 lambda is sufficient.
- If you have the wire, the space and the patience to lay down 120 radials (optimal configuration), they should be 0.4 lambda long. This radial system will gain about 3 dB over the 16-radial case.
- If you install 36 radials that are 0.15 lambda long, you will lose 1.5 dB (¼ s-unit) compared to the optimal configuration.

Radial Choice

From the ARRL Antenna Book:

Practical Suggestions For Vertical Ground Systems

At least 16 radials should be used if at all possible. Experimental measurements and calculations show that with this number, the loss resistance decreases the antenna efficiency by 30% to 50% for a 0.25 wavelength vertical, depending on soil characteristics. In general, a large number of radials (even though some or all of them must be short) is preferable to a few long radials for a vertical antenna mounted on the ground. The conductor size is relatively unimportant as mentioned before: #12 to #22 copper wire is suitable.

a. If you install only 16 radials they need not be very long - 0.1 lambda is sufficient.

b. If you have the wire, the space and the patience to lay down 120 radials (optimal configuration), they should be 0.4 lambda long. This radial system will gain about 3 dB over the 16-radial case.

c. If you install 36 radials that are 0.15 lambda long, you will lose 1.5 dB compared to optimal configuration.

From QST, March 2010, pp 30-33:

An Experimental Look at Ground Systems for HF Verticals (and references)

Rudy Severns, N6LF

...four elevated radials at a height of 48 inches are within 0.2 dB of 64 radials lying on the ground.

Radial Choice

From the ARRL Antenna Book:

Practical Suggestions For Vertical Ground Systems

At least 16 radials should be used if at all possible. Experimental measurements and calculations show that with this number, the loss resistance decreases the antenna efficiency by 30% to 50% for a 0.25 wavelength vertical, depending on soil characteristics. In general, a large number of radials (even though some or all of them must be short) is preferable to a few long radials for a vertical antenna mounted on the ground. The conductor size is relatively unimportant as mentioned before: #12 to #22 copper wire is suitable.

a. If you install only 16 radials they need not be very long - 0.1 lambda is sufficient.

b. If you have the wire, the space and the patience to lay down 120 radials (optimal configuration), they should be 0.4 lambda long. This radial system will gain about 3 dB over the 16-radial case.

c. If you install 36 radials that are 0.15 lambda long, you will lose 1.5 dB compared to optimal configuration.

From QST, March 2010, pp 30-33:

An Experimental Look at Ground Systems for HF Verticals (and references)

Rudy Severns, N6LF

...four elevated radials at a height of 48 inches are within 0.2 dB of 64 radials lying on the ground.

Assume four elevated radials high enough to be safe: ~10 ft

Contents

- Background
- Original 40M Dipole
- Why a Vertical?
- The Design

EZNEC Modeling ~ Lots of Models!

- Simple Wires: 2 Radials @ 8'
- Simple Wires: V = R = 34.7'
- Simple Wires: V = R = 34.7' 2 Radials @ 8'
- Simple Wires: V = R = 34.7' Radials @ 8'
- Simple Wires: V = R = 34.7' Radials @ 10'

V = R = 34', 34.5', 34.7'

Radial H = 8' 10' 12'

Ground = Sandy, Average, Very Good

Number of Radials = 2, 4, 8

Number of Radials = 2, 4, 8

Al tubing @ 35'
4 radials @ 35' / 10'
7 Radials with & w/o insulation

Slide included in appendix

The First Design

DXCC WAS VUCC WAC

The First Design

Page 20

40M Vertical

October 2014

The First Design

Page 22

1/4" 6¾

3/8" 6 ¾ '

1/2" 41/2'

5/8" 21/2'

3/4" 21/2'

7/8" 21/2'

1" 2½'

1 1/8" 2½'

1 1/4" 2½'

1 3/8" 2½'

40M Vertical

October 2014

EZNEC Modeling ~ More Models!

Simple Wires: 2 Radials @ 8'	V = R = 34', 34.5', 34.7'	
Simple Wires: V = R = 34.7'	Radial H = 8' 10' 12'	
Simple Wires: V = R = 34.7'	2 Radials @ 8'	"Gnd" = Sandy, Avg, Very Good
Simple Wires: V = R = 34.7'	Radials @ 8' Number of	Radials = 2, 4, 8
Simple Wires: V = R = 34.7'	Radials @ 10'	Number of Radials = 2, 4, 8
Al tubing, first design	4 radials @ 35' / 10'	V = 34', 35.5', 35'
Al tubing, first design @ 35'	4 radials @ 35' / 10'	With / Without AI mast
Al tubing, first design @ 35'	4 radials @ 35' / 10'	Radials with & w/o insulation
New, Stronger Al tubing/ 4 radials @ 10'	R = 34', 33.5'	V = 35', 34.5' (4 cases)
New, Stronger Al tubing/ 4 radials @ 10'	/ 33.5'	V = 35' 6", 35', 35' 4"

New, Stronger AI tubing @ 35'4" / 4 radials @ 10' / 33.5' •

"Gnd" = Sandy, Avg, Very Good

Slide included in appendix

•

•

•

•

•

•

•

•

•

•

The Final Design

DXCC WAS VUCC WAC

The Final Design "One Person" Design

Contents

- Background
- Original 40M Dipole
- Why a Vertical?
- The Design
- 40M Results

EZNEC model – 40M λ /4 vertical

COMPARE ~ Old vs. New

40M

COMPARE ~ 40M Reality

Noise: Worse on 40M by ~1-1.5 S-units

Page 30

COMPARE ~ 40M Reality

See Appendix for data

COMPARE ~ 40M Reality

See Appendix for data

SWR Graph

Contents

- Background
- Original 40M Dipole
- Why a Vertical?
- The Design
- 40M Results
- 15M Results

40M Vertical

Page 35

Original Fan Dipole @ 15M

October 2014

4 elevated radials @ 10' Very Good ground

EZNEC model – 40M λ /4 vertical

COMPARE ~ Old vs. New

15M

Total Field	1		EZNEC+	
* Primary 15Mtrace -	VGgnd - Elev		0 dB = 7.2 dBi	
		0 dB	20°	
Ē		-30.		
Eleva	tion ° Gair	n @ 60° A	zimuth (Europe)	
Eleva	tion ° Gain Dipole	n @ 60° A Vertical	zimuth (Europe)	
<u>Eleva</u> 90	tion ° Gair <u>Dipole</u> 6.7 dBi	n @ 60° A <u>Vertical</u> - 23.7	<u>zimuth (Europe)</u> Δ - 30.4 dB	
Eleva 90 20	tion [°] Gair <u>Dipole</u> 6.7 dBi 1.5	n @ 60° A <u>Vertical</u> - 23.7 - 0.44	<u>zimuth (Europe)</u> Δ - 30.4 dB - 1.9	
<u>Eleva</u> 90 20 15	tion [°] Gair <u>Dipole</u> 6.7 dBi 1.5 - 0.4	n @ 60° A <u>Vertical</u> - 23.7 - 0.44 - 2.78	<u>zimuth (Europe)</u> <u>∆</u> - 30.4 dB - 1.9 - 2.4	
<u>Eleva</u> 90 20 15 10	tion ° Gair Dipole 6.7 dBi 1.5 - 0.4 - 3.3	n @ 60° A <u>Vertical</u> - 23.7 - 0.44 - 2.78 - 4.84	<u>zimuth (Europe)</u> <u>∆</u> - 30.4 dB - 1.9 - 2.4 - 1.5	

Page 37

40M Vertical

October 2014

COMPARE ~ 15M Reality

Noise Worse on 40M by ~1-1.5 S-units Better on 15M by ~ 0.5-1.5 S-unit

40M Vertical

COMPARE ~ 15M Reality

COMPARE ~ Reality

See Appendix for data

SWR Graphs

SWR Graphs

40M Vertical

Page 43

Appendix

- Measured comparison data
- Plot Plan of Vertical
- EZNEC Models
- Results WPX Scores

http://www.qsl.net/w1dyj/

Appendix ~ Measured Comparison Data Example

Actually took about 50+ data points

Data	штс	Erog	Station	Location	peak S-meter *		peak S-meter * 15M 40M		Station Location		
Date	UIC	rieq	Station	LUCALION	Dipole	Vertical	Delta	dB (@ 5/)	dB (@ 5/)	Distance	Degrees
28-Apr	1541	7220	w2rox	ОН	8.5	6.5	-2		(10.00)	709	262
		7224	noise	-	2.5	4	1.5		7.50		
"	1605	7255	ka1se	СТ	8	7	-1		(5.00)	216	222
"	"	"	w1prk	СТ	9	8.5	-0.5		(2.50)	211	226
"	1826	7146	k2kri	MA	9	8	-1		(5.00)	141	217
"	"	"	wa1ayy	MA	10	8	-2		(10.00)	106	209
	1843	21275	7x3wpl	Algeria	4	5.5	1.5	7.50		3854	74
		21267.5	noise	-	3.5	3	-0.5	(2.50)			
"	2058	21280		FL	6	7	1		5.00	1270	228
	2100	21277	7x4rj	Algeria	4	6	2	10.00		3642	73
"	2106	7174	n2mun	NY	9	8	-1		(5.00)	275	220
29-Apr	235	7192	w1aw/2	NJ	9	8	-1		(5.00)	301	235
"	244	7158	m1den	England	8	9	1		5.00	3084	53
9-May	101	7190	w1aw/0	NE	8.5	9.5	1		5.00	1378	271
"	107	7185	n4jt	NY	12	11	-1		(5.00)	265	239
п	2011	21279	ha4xh	Hungary	5	8	3	15.00		4082	53
"	2129	21270	rn3dnm	Moscow	7.5	9.5	2	10.00		4460	37
	2130	2120	noise		4	2.5	-1.5	(7.50)			
п	2140	21325	om3tvm	Slovakia	3	5	2	10.00		4040	50
н	2208	21270	yv4kw	Venezuela	5	5	0	0.00		2483	173
10-May	35	7270	wa5lou	IN	7	9.5	2.5		12.50	867	257
	40	7215	noise		5	6	1		5.00		
н	47	7258	kd4jm	FL	9	9.5	0.5		2.50	1307	210
н	49	7258	ou5u	Denmark	8.5	9.5	1		5.00	3508	46

* peak S-meter: TS590 reading with AGC slow=8 | one S-unit = 5dB

above s9 => adjusted to represent dB | i.e. s9+10db = s11 / s9+20dB = s13

Appendix ~ **Plot Plan of Vertical**

Appendix ~ **EZNEC Modeling**

- Simple Wires: 2 Radials @ 8'
- Simple Wires: V = R = 34.7'
- Al tubing, first design
- Al tubing, first design @ 35'
- Al tubing, first design @ 35'

- V = R = 34', 34.5', 34.7' Radial H = 8' 10' 12' 2 Radials @ 8' "Gnd" = Sandy, Avg, Very Good Radials @ 8' Number of Radials = 2, 4, 8 *Radials* @ 10' *Number of Radials* = 2, 4, 8
- 4 radials @ 35' / 10'
 V = 34', 35.5', 35'

 '
 4 radials @ 35' / 10'
 With / Without AI mast

 '
 4 radials @ 35' / 10'
 Radials with & w/o insulation
- New, Stronger Al tubing/ 4 radials @ 10' R = 34', 33.5'
- New, Stronger Al tubing/ 4 radials @ 10' / 33.5'
- New, Stronger AI tubing @ 35'4" / 4 radials @ 10' / 33.5'

Slide included in appendix

V = 35', 34.5' (4 cases) V = 35' 6", 35', 35' 4" *"Gnd" = Sandy, Avg, Very Good*

Simple Wires: V = R = 34.7' Radials @ 10' Number of Radials = 2, 4, 8

40M Vertical

Al pole, "thin" design @ 35'4 radials @ 35' 10' Al Steel mast →Connected / not connected

40M Vertical

New, Stronger AI pole @ 35'4" / 4 radials @ 10' / 33.5' Ground = Sandy, Average, Very Good

		Gr	ound Type: Real / High Accuracy:	SWR _{min} 40 (50 Ω)	2:1	GAIN max	GAIN @ 5°	SWR _{min} 15 (50 Ω)	2:1	GAIN _{max}	GAIN @ 5°
Ve	ry Good: pastoral	, rich, cen	tral US (0.0303 S/m, 20 Diel Const)	1.23:1 @ 7.01 Z=61.21-j1.13Ω	<6.9-7.22	-0.88dBi / 20°	-4.23 dBi	2.82:1 @ 21.17 Z=140.7-j5.101Ω	>2:1	3.57 dBi @ 40°	-7.99 dBi
	Average: pastoral, heavy clay (0.005, 13)		1.15:1 @ 7.02 Z=57.52+j1.499Ω	<6.9-7.23	-2.63dBi / 20°	-8.17 dBi	2.72:1 @ 21.16 Z=135.7-j5.908Ω	>2:1	3.03 dBi @ 40°	-6.66 dBi	
			Sandy, dry (0.002, 10)	1.11:1 @ 7.02 Z=55.39-j1.165Ω	<6.9-7.23	-2.77dBi / 25°	-9.01 dBi	2.69:1 @ 21.16 Z=134.1-j5.648Ω	>2:1	2.83 dBi @ 40°	-6.34 dBi

Results

March CQ WPX SSB Contest

	YEAR	Location	Score	Antenna	US	NA	WORLD
SOLP 40M Unassisted	2012	Harpswell	37026	Dipole @ 18'	2 nd	3 rd	41 st
	2013	Woburn	61472	Dipole @ 20'	1 st	3 rd	36 th
	2014	Harpswell	76986	Vertical	4 th	6 th	17 th
Overlay							
SOLP 40M Tribander/	2012	Harpswell	37026	Dipole @ 18'	1 st	2 nd	5 th
	2013	Woburn	61472	Dipole @ 20'	1 st	2 nd	10 th
VVIIC5	2014	Harpswell	76986	Vertical	1 st	2 nd	4 th

Results

March CQ WPX SSB Contest

	YEAR	Location	Score	Antenna	US	NA	WORLD
SOLP 40M Unassisted	2012	Harpswell	37026	Dipole @ 18'	2 nd of 13	3 rd of 16	41 st of 91
	2013	Woburn	61472	Dipole @ 20'	1 st of 12	3 rd of 18	36 th of 96
	2014	Harpswell	76986	Vertical	4 th of 11	6 th of 15	17 th of 65
Overlay							
SOLP 40M Tribander/	2012	Harpswell	37026	Dipole @ 18'	1 st of 3	2 nd of 4	5 th of 11
	2013	Woburn	61472	Dipole @ 20'	1 st of 4	2 nd of 6	10 th of 18
VVIIC5	2014	Harpswell	76986	Vertical	1 st of 2	2 nd of 4	4 th of 11

Thanks

http://www.qsl.net/w1dyj/

Thanks to the following Tower Talkians for suggestions: K1TTT KZ1W N2WN K3ND KK4CPS WA4JQS N6RK K9YC XE2K/AD6D

