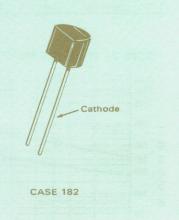
MV2201 MV2203 MV2209 MV2209

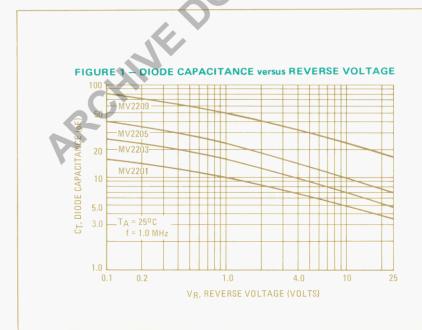
VVC ->-

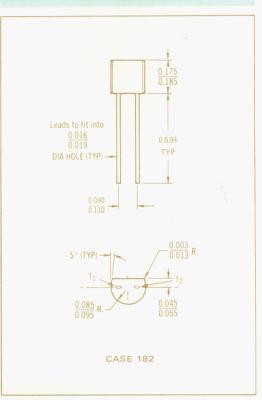
AFC SILICON EPICAP* DIODES

 \ldots . designed specifically for the high volume AFC applications of FM Radio and TV, utilizing the economical PLASTIC PACKAGE.

- Very High Q with Guaranteed Minimum Values
- Guaranteed Uniformity with Minimum and Maximum Tuning Ratio Limits, Assuring Fixed Design
- Nominal Capacitance Values 6.8 pF Thru 33 pF Providing Complete AFC Design Flexibility


VOLTAGE-VARIABLE CAPACITANCE DIODES


6.8-33 pF 25 VOLTS


MAY 1969 - DS 8532

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	25	Volts
Forward Current	1 _F	200	mA
Device Dissipation @ T _A = 25°C Derate above 25°C	PD	280 2.8	mW mW/ ^O C
Junction Temperature	TJ	+125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°С

^{*}Trademark of Motorola Inc.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic—All Types		Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 µAdc)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BVR	25		_	Vdc
Reverse Voltage Leakage Current $(V_R = 10 \text{ Vdc}, T_A = 25^{\circ}\text{C})$ $(V_R = 10 \text{ Vdc}, T_A = 85^{\circ}\text{C})$	P.S.	I _R			0.5 5.0	μAdc
Forward Voltage Drop $(I_F = 250 \mu \text{Adc})$		VF	_	0.65	_	Vdç
Series Inductance (f = 250 MHz, lead length≈1/16'')		LS		6.0	— ,	ηΗ
Case Capacitance (f = 1.0 MHz, lead length \approx 1/16")	5 2 # j	CC	_	0.18	- 4	pF

h	C _T , Diode Capacitance V _R = 4.0 Vdc, f = 1.0 MHz pF		Q, Figure of Merit VR = 4.0 Vdc, f = 50 MHz	TR, Tuning Ratio C1/C10 f = 1.0 MHz		
Device	Min	Max	Min	Min A	Max	
MV2201	5.5	8.0	300	1.9	2.3	
MV2203	8.5	11.5	200	2.0	2.4	
MV2205	13	<i>₹</i> . 17	200	2.1	2,5	
MV2209	29	37	150	2.1	2.5	

FIGURE 2 - FIGURE OF MERIT versus REVERSE VOLTAGE

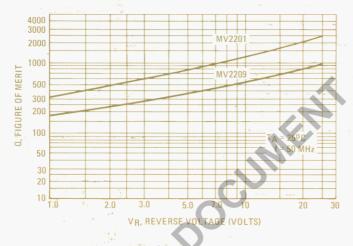
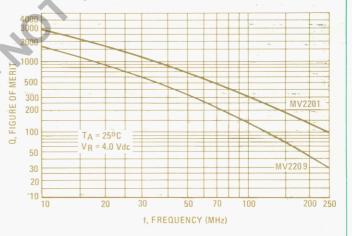
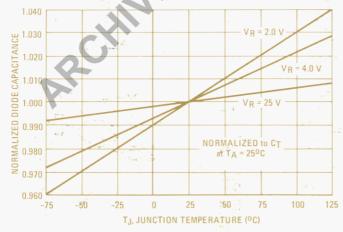




FIGURE 3 - FIGURE OF MERIT versus FREQUENCY

FIGURE 4 - NORMALIZED DIODE CAPACITANCE versus JUNCTION TEMPERATURE

NOTES ON TESTING AND SPECIFICATIONS

 L_S is measured on a package having a short instead of a die, using an impedance bridge (Boonton Radio Model 250A RX Meter).

CC is measured on a package without a die, using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

Q is calculated by taking the G and C readings of an admittance bridge, such as Boonton Electronics Model 33AS8, at the specified frequency and substituting in the following equation:

$$Q = \frac{2\pi fC}{G}$$

MOTOROLA Semiconductor Products Inc.