AD5X

The 43-Foot Vertical

Phil Salas - AD5X ad5x@arrl.net

Why a vertical?
Ground Losses and Antenna Efficiency
-Why a 43-foot vertical?
SWR-related coax and unun losses

- Matching Networks for 160- and 80-meters

Why Use a Vertical?

Advantages

- Generally are inexpensive
- Relatively unobtrusive
- Self-Supporting
- Easy to ground mount
- Low angle of radiation
- Good DX performance
- Omni-directional (no rotator needed!)
\rightarrow Disadvantages
- Omnidirectional (no gain or F/B)
- Needs a good radial system for best performance

AD5X Ground Loss \& Antenna Efficiency

Radiation Resistance (Rr) is the "resistance" of the antenna such that the antenna will radiate all power delivered into this resistance.
-Ground loss (Rg) is antenna efficiency-robbing loss resistance that looks like a voltage-divider to your transmitter output.

\rightarrow Antenna Efficiency (\%) = $100 \times \mathrm{Rr} /(\mathrm{Rg}+\mathrm{Rr})$

Efficiency Calculation

A $1 / 4$-wave vertical has a radiation resistance of 36 ohms.
Assume 10 ohms of ground loss

- This is a much better ground than most hams have
- Your SWR = 1.09:1
- $\mathrm{Rr}+\mathrm{Rg}=36+10=46$ ohms
- $\mathrm{SWR}=50 / 46=1.09$
- Your antenna efficiency is 78\%
- If you have a 100 watt transmitter, you will radiate 78 watts

How about an electrically short antenna?

- A Hustler 6BTV 80/40/30/20/15/10 meter vertical is 24 feet tall.
On 80 meters, it is only 0.092 wavelength long.
- Rr decreases as 1 /length².
-So Rr is approximately 5 ohms.
-With 10 ohms ground loss, the efficiency is 33%
- Assumes no inductor losses
- Now your 100 watt transmit signal results in only 33 watts being radiated.

AD5X Electrically short antenna (Cont)?

- A Butternut HF-9VX with TBR-160 160M loading coil is 26 feet tall.
- On 160 meters, it is only 0.051 wavelength long.

Rr decreases as $1 /$ length 2.
So Rr is approximately 1.5 ohms.
-With 10 ohms ground loss, the efficiency is 13%

- Assumes no inductor/loading coil/matching losses
- Now your 100 watt transmit signal results in only 13 watts being radiated.

AD5X $=$ The 43-foot Vertical Antenna

- Advantages
- Still can be self-supporting
- Still moderately unobtrusive
- 3X higher radiation resistance than the typical trap or loaded vertical.
- And no trap or loading coil losses to worry about
- Modest compromise SWR from 60-10 meters when fed with a 1:4 unun.
- My worst case SWR is 5:1 on 20 meters
- Results in negligible SWR-related cable and unun losses.

43-Foot Antenna Efficiency

The Hustler 6BTV on 40 meters

- The 24 -foot Hustler is 0.188 wavelengths long
- Hustler $\mathrm{Rr}=20$ ohms
- Efficiency $=67 \%$ (assumes $\mathrm{Rg}=10 \Omega$ \& no coil losses)
- The 43-foot vertical on 40 meters
- Antenna is 0.34 wavelengths long
- $\mathrm{Rr}=65$ ohms
- Efficiency $=87 \%$ (with $\mathrm{Rg}=10 \Omega$ \& there are no coils)

AD5X
 43-foot Antenna Disadvantages?

-Can be moderately expensive

- But you can build your own (remember - we live close to Texas Towers!)
-Really doesn't work well on 160- and 80-meters without base matching
- Regardless of what the 43-foot antenna vendors say

With $\mathrm{Rg}=10 \Omega$,

- 160 Meter SWR = 324:1
- 80 Meter SWR = 41:1

Matching \& Coax Losses

43-foot antenna vendors say the antennas can be matched from 16010 meters with your in-shack tuner. However, there can be a problem using the antenna on 160- and 80-meters.

- One vendor says to use 150 feet of RG-213 for best all-band operation of their 43-foot antenna (so you can tune from the tuner in your shack). Another says to ADD 150 feet to your cable run.
- On 160 meters, SWR-related coax cable loss is 10.7 dB , plus 6.4 dB ground loss. Total loss $\sim 17 \mathrm{~dB}$.
- TX = 100W results in 2 -watts radiated
- On 80 meters, SWR-related coax cable loss is 4.7 dB , plus 3 dB ground loss. Total loss $\sim 8 \mathrm{~dB}$.
- TX $=100$ watts results in 16 -watts radiated
- Added to this will be additional excess unun loss due to the severe mismatch, plus losses in your antenna tuner.

Minimize Coax Losses

\checkmark Use LMR-400 (I use ½-inch Andrew Heliax)
Length should be that necessary for your antenna system
\checkmark Assume 60-feet of LMR-400 (the length from my shack to my 43-foot vertical).

- Worst-case SWR on 60-10 meters is on 20 meters where SWR = 5:1.
- SWR-related cable loss is only 0.39 dB , plus 0.27 dB matched cable loss $=0.66 \mathrm{~dB}$ total cable loss.
- With 150 feet of RG-213, the SWR-related cable loss would be 1 dB , plus 0.8 dB matched cable loss $=1.8 \mathrm{~dB}$ total cable loss.

Matching \& Coax Losses

-But it is very difficult to match the 43-foot vertical on 160- and 80-meters from your shack if you use low-loss LMR-400 (or 1/2-inch Heliax)!! The mismatch is too great for most manual- or autoantenna tuners.
The right thing to do is to properly match the antenna directly at the base on 160- and 80meters.
-This virtually eliminates SWR-related coax and unun losses, reduces antenna tuner losses, and makes matching from the shack very easy.

AD5X First A Word About RF Voltages

- An electrically short antenna has high capacitive reactance. This WILL cause high RF voltages across a matching network.
-Example: Assume 1500 watts and a perfect inductor ground system $(\mathrm{Rg}=0)$ on 160 meters. In this case all power is delivered to Rr. From Ohm's Law:
$I=\sqrt{ }(1500 / 3)=22.4 \mathrm{amps} \mathrm{rms}$
$|Z|=\sqrt{ }\left(3^{2}+600^{2}\right)=600$
So, Vrms $=22.4 \times 600=13,440$
and Vpk $=19,007$ volts

RF Voltages (Cont.)

- Example: Assume 1500 watts and $\mathrm{Rg}=10$ ohms on 160 meters. So all power is delivered into Rr+Rg. From Ohm's Law:
$I=\sqrt{ }(1500 / 13)=10.74 \mathrm{amps} \mathrm{rms}$
$|Z|=\sqrt{ }\left(13^{2}+600^{2}\right)=600.1$
So, Vrms $=10.74 \times 600.1=6,445$
And Vpk $=9,115$ volts

My Case: 600 watt amplifier (ALS-600).

$$
\begin{gathered}
I=\sqrt{ }(600 / 13)=6.8 \mathrm{amps} \mathrm{rms} \\
\text { So, Vrms }=6.8 \times 600.1=4,081 \\
\text { Vpk }=5,770 \text { volts }
\end{gathered}
$$

RF Voltages (Cont.)

\checkmark Use relays with high breakdown voltage

- Contact-to-contact
- Contact-to-coil

P Put contacts in series to increase breakdown voltage

- Two relays:
- Array Solutions RF-10 DPDT Relay good for about 500 watts
- 1.7 KV peak contact-to-contact breakdown voltage
- 3.1 KV peak contact-to-coil breakdown voltage
- Array Solutions RF-3PDT-15 3PDT Relay good for full legal limit if properly applied.
- 3.1KV peak contact-to-contact breakdown voltage
- 5.3 KV peak contact-to-coil breakdown voltage

160- \& 80-Meter Matching

- Three matching units were built
- The first uses a large T400A-2 toroid
- Must be manually inserted and 160/80 Meters selected with straps
- The second uses the T400A-2 toroid with relays for remote switching
- Remotely switchable for 160-, 80-, or 60-10 Meters
-The third uses an air-core inductor and relays
- OK OK - so I like to keep tinkering!!
- But this is the best solution (lower inductor losses)

Toroid Matching Solution

- Fits into a $6 \times 6 \times 4$ " electrical box from Lowes

160/80 Meter Impedance Matching Network

RF In

Richardson, Texas

AD5X \#

How well does it work?

AD5X \#2: Switchable Matching Solution

Fits in $8 \times 8 \times 4$ " electrical box from Lowes/Home Depot.

Toroid-based 160/80 Meter Impedance Matching Network

AD5X \#2: Switchable Matching Solution

AD5X \#3: Switchable Matching Solution

Fits in $8 \times 8 \times 4$ " electrical box from Lowes/Home

Figure 6: 160/80 Meter Impedance Matching Network

AD5X \#3 Switchable Matching Solution

Richardson, Texas

Phil Salas - AD5X

AD5X
 Which Solution Is For You?

Richardson, Texas

If you run high power, the air-core inductor solution gives the lowest losses (Inductor $Q>400$). However, toroid dissipation is not an issue at lower powers as toroid heating increases as I^{2}. Example:

1500 watts: Toroid dissipates ~ 500 watts 750 watts: Toroid dissipates ~ 120 watts.

Build your own 43-Foot Vertical

- Aluminum Tubing from Texas Towers:
- 2 "ODx0.12"x6' = \$33.00
- 1.750"ODx0.062x6' = \$16.80
- 1.625"ODx0.062x6" = \$15.30
- 1.500 "ODx0.062x6' $=\$ 13.50$
- 1.375"ODx0.062x6' = \$12.30
- 1.250 "ODx0.062x6' $=\$ 11.10$
- 1.000 "ODx0.062x6' $=\$ 9.00$
- 0.875"ODx0.062x6' = \$8.40
- 0.750"ODx0.062x6' = \$7.80
- 0.625 "ODx0.062x6' $=\$ 7.20$

Total = \$127.40 + Tax

+ 9 SS hose clamps.
Probably around $\$ 160$ total

AD5X Build Your Own Base Mount

Base mount (Cont.)

- Base mount doesn't need to be tilt-over
- And it doesn't need to support the antenna if you can use your house or a fence for support.
- My solution:

Figure 1: Alternative House or Fence Support

Build Your Own Unun

12 bi-filar turns \#16 teflon insulated wire on two FT240-61 toroids

- Excellent wire substitute: McMaster 9634T701 2-cond HV wire ($\$ 3 / \mathrm{ft}$). This is 20 KV -rated wire.

\rightarrow Purchase MFJ-1965 (\$200)
- 64-ft telescoping aluminum mast with slotted tubing and hose clamps
- Telescope down to 43-ft. Good tubing overlap = very robust antenna.
- Purchase MFJ-1900 Base Mount (\$70)
- Purchase MFJ-10989D Balun (\$30)
- Mount in Lowe's electrical junction box.
\checkmark Of course, now you're approaching the cost of a ready-togo 43-foot commercially-available vertical
\checkmark Or consider a mix of purchases and home build assemblies

Summary

The more metal in the air, the better the antenna

- Radiation resistance increases as the square of the length change.
- Increased radiation resistance improves antenna efficiency over real ground.
\rightarrow A 43-foot antenna is very good for 60-10 meters
- A 43-foot antenna needs base matching to provide good results on 160- and 80-meters.
- Detailed matching network details at www.ad5x.com
- MFJ Enterprises
- 404-0669 coil, 10-10989D unun
- Array Solutions
- RF-10, RF-3PDT-15 relays
- Texas Towers
- Aluminum tubing
- AutoZone
- Stainless-steel muffler/hose clamps
- Lowes/Home Depot
- Junction boxes, wire, hardware, Teflon ${ }^{\text {TM }}$ or glass tape, fencepost clamps, copper pipe, PVC adapters
- CWS Bytemark
- FT240-61, FT400A-2 toroids

