NVIS ANTENNA THEORY AND DESIGN

Introduction

A properly designed Near Vertical Incident Skywave (NVIS) antenna will have a
directivity pattern that will maximize transmission and reception at high angles while
rejecting low angle, long range noise. Further, this antenna must be tunable over at least
one octave of frequency to track the local Critical Frequency (CF).

The required directivity pattern is shown in Figure 1.
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Figure 1: Required NVIS Antenna Vertical Directivity Pattern

The vertical or elevation directivity pattern should have a beam width (-3dB) of
approximately 100° and the horizontal or azimuth directivity pattern should be omni-
directional. The three-dimensional pattern should look like a toy balloon with the filler at
the bottom.

NVIS Noise Reduction

As we have all noticed, the most prevalent noise is long-range lightning from
thunderstorm activity in the surrounding states. During summer evening nets, after D-
layer absorption has dropped, thunderstorms, several states away can disturb Texas Army
MARS nets. The “south-of-the-border” interference also falls into this category. There
is little we can do about local thunderstorm noise, but a properly designed NVIS antenna
can reduce the distant noise. An Australian scientist, C.J. Coleman, measured the noise
directivity at both Alice Springs, Australia and in South England (C.J. Coleman, The
Directionality Of Atmospheric Noise And Its Impact Upon An HF Receiving System, HF
Radio Systems and Techniques, Conference Publication No. 473 IEE 2000). The results
of this study are shown in Figures 2 and 3. The horizontal direction, azimuth, of the
noise is displayed around the circle with North being towards the top of the page. The
vertical angle, elevation, is depicted as the radial distance from the center with the center
of the circle being 90° or overhead. Each doted-line circle represents 30° of elevation.



10:00UT during March Rx locoled of 23.55 133.7E  SSN= 70

frequency =11.0MHz

™

Angulor Noise
Distribution

- 146dBW/Hz

mar kers at ~166d8W/Hz
30degree elevotion intervals

Figure 2: Vertical Angle of Arrival of Distant Noise — Alice Springs
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Figure 3: Vertical Angle of Arrival of Distant Noise — South England

Note that in both figures, the noise arrived at vertical angles of less than 30°. These
thunderstorms, just like ours, are more likely to occur at various long ranges than on top
of us. If we can achieve the directivity shown in Figure 1, we can achieve somewhere

from 5 to 15 dB of attenuation against distant noise. A more advanced antenna design
might do even better.



Generating the Correct Antenna Pattern — Optimum Height

The correct antenna pattern, shown in Figure 1, is surprisingly easy to generate. First
let’s look at the theory. Figure 4 shows a theoretical two-element yagi designed for 75m
(3.8 MHz). The antenna consists of a half-way dipole driven element and a passive
reflector. The reflecting element is 5% longer than the driven element and is located 0.15
wavelengths behind the driven element. This is a very standard 2-element Yagi design.
The resulting azimuth and elevation patterns can be seen in Figures 5 and 6.
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Figure 4: Theoretical 75m Yagi



Total Field EZMEC+

4 MHz
Azimuth Plat Cursar AT 0.0 deg.
Elesvation &ngle 0.0 deg. zain 4 62 dBi
Duter Ring 4 B2 dBi 0.0 dBmax

Slice Max Gain 4 B2 dBi @ A7 Angle = 0.0 deg.
FrontBack 6.7 dB

Beamwidth F20deq,; -53dB @ 324 .0, 36.0 deg.
Sidelobe Gain - -215 dBi@ A7 Angle = 1800 deg.
Fronmtf=idelobe  6.77 dB

Figure 5: Azimuth Pattern for 2-element Yagi



Total Field EZMEC+
3.8 MHz
Elervation Plot Curzar Eley 0.0 deg.
Azimuth Angle 0.0 deg. Gain 5.14 dbi
Outer Ring 5.14 dBi 0.0 dBmax

Slice Max Gain 6.4 dBi i@ Elev Angle = 0.0 deqg.
Front/Back 9599 dB

Beamwicth 13006 deg.; -3dB @ 294 .7, 65.3 dey.
Sidelobe Gain - -3.85 dBi @ Elev Angle =180.0 deg.
FromtfSidelobe 999 dB

Figure 6: Elevation Pattern for 2-element Yagi
If this antenna were rotated 90° with the reflector toward the ground, the pattern would
begin to resemble the required NVIS pattern. If the reflector is replaced by real

(Sommerfeld-Norton, Average) ground and the 75m dipole placed at 0.15 wavelengths or
39 ft above the ground, the elevation plot of Figure 7 results.
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Total Field EZNEC+

3.75 MHz
Elevation Plot Cursor Eley 90.0 deg.
Azimuth &ngle 0.0 deg. Gain 6.21 dBi
Outer Ring £.21 dbi 0.0 cBmaz

Slice Max Gain - 65.21 oBi i@ Elev Angle = S0.0 deg.
Beamuwvidth 108.2 deg,; -3dB @ 359, 1441 deg.
Sidelobe Gain - = -100 dBi

FrontiSidelobe =100 dB

Figure 7: Elevation Pattern of a NVIS 75m Dipole

The azimuth plot is also almost perfectly circular as shown in Figure 8.

Tatal Field EZMEC+

375 MHz
Azimuth Plot Cursor 4z 0.0deg.
Elevvation Angle 500 deg. Gain 4 .89 dBi
Outer Ring 459 dBi 0.0 dBmax

Slice Max Gain - 459 dBi @ Az Angle = 0.0 deg.
Front/Sice 32dB

Beamuwvicth 154 6 deqg., -3dB @ 2527, 77 3 degy.
Sidelobe Gain 459 dBi @ Az Angle = 15000 deq.
Front/Sidelobe 0.0 dB

Figure 8: Azimuth Pattern NVIS 75m Dipole



Obviously, the ground is now acting as the reflector for this two element Yagi antenna. If
this same dipole were placed at 0.5 wavelengths or 131 ft. height, then the “two” element
Yagi has the classical DX elevation and azimuth patterns shown in Figures 9 and 10.

Total Field EZNEC+

3.75 MHz
Elewation Plot Cursor Eley 250 deqg.
Azimuth &ngle 0.0 deg. Gain 7.7 dBi
Outer Ring 7.7 dbi 0.0 dBmax

Slice Max Gain 7.7 oBi @ Elev Angle = 28.0 deg.
Beamwvidth 324 deg; -3dB @ 154, 458 dey.
Sidelabe Gain - 7.71 dBi @ Elev Angle = 152.0 deg.
FromtfSideloke 0.0 dB

Figure 9: Elevation Plot of 75m Dipole at %2 Wavelength Height

Tatal Field EZMEC+
375 MHz

Azimuth Plot Curzor Az 0.0 deg.

Elevation Angle  27.0 deg. Gain 7.7 dBi

Outer Ring 7.7 dBi 0.0 cBmax

Slice Max Gain 7.7 dBi i@ Az Angle = 0.0 dey.
Front/Sicle 1027 B

Beamyvidth 587 2 deq, -3dB @ 316.4, 436 deg.
Sidelobe Gain - 7.7 dBi @ Az Angle = 180.0 deg
FrontiSidelobe 0.0 dB

Figure 10: Elevation Plot 75m Dipole at %> Wavelength Height

As can be seen when comparing Figures 7 and 8 with Figures 9 and 10, the 75m dipole
goes from NVIS to DX by changing the height above ground from 0.15 to 0.5
wavelengths. Even the azimuth pattern becomes almost omni-directional as the antenna
is lowered. The optimum NVIS height above ground can be seen in Figures 11 and 12
courteous of L.B. Cebik, W4RNL.
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Figure 11: Gain and Elevation Plots of 75m NVIS dipole at VVarious Heights
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Figure 12: Gain and Azimuth Plots of 75m NVIS dipole at VVarious Heights



Note that the relative size of each plot, in different colors, represents the gain of the
antenna at different heights. As can be seen in Figures 11 and 12, heights of between 30
and 50 ft. or 0.1 to 0.2 wavelengths worked quite well. Another way to plot this data,
again courteous of L.B. Cebik WARNL, is shown in Figure 13. As can be seen, heights
from 0.1 to 0.3 wavelengths have the highest gain. This fact will be very important when
optimizing a NVIS antenna to work over a wide range of frequencies. The wavelength
heights can be translated into any frequency where NVIS antenna performance is needed.
For example moving all the way up to 40m (7.2 MHz), wavelengths of 0.1 to 0.3,
correspond to heights of 13.6 ft. to 41 ft. Note that 41 ft. would be an acceptable height
for the 75m (3.8 MHz) NVIS dipole at 0.16 wavelengths height! So, one height of 40 ft
would work from 3.75 MHz all the way to 7.2 MHz covering most all needed MARS
NVIS frequencies. Even KBN would be 0.13 wavelengths, still a useable height.
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Figure 13: Height Versus Gain of a 75m NVIS Dipole

Generating the Correct Antenna Pattern — Optimum Length

A horizontal dipole that is significantly longer than one-half a wavelength will have an
azimuth pattern that departs from omni-directional as shown in Figure 14. For brevity, I
have switched to a 3-dimensional plot for the following discussion. The azimuth plot is
in the X-Y or horizontal plane. You can see a significant departure from a spherical
pattern to that of an elongated ellipsoid (watermelon) shape.
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Figure 14: 75m NVIS Dipole Pattern at 40m

While this is still a useable NVIS pattern at twice its design frequency, attaching a 40m
dipole to the driven point will significantly improve this pattern as shown in Figures 15

and 16. Antenna height is still 39 ft.
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Figure 15: Cross-Dipole Antenna Pattern at 40m
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Figure 16: Cross-Dipole Antenna Pattern at 75m

A similar effect can be achieved by raising the apex of the 75m dipole to 50 ft and
slopping the legs down at 45°, creating the familiar 75m inverted-V antenna. This will
result in good NVIS patterns, shown in Figures 17 and 18, at frequencies between 3.75
MHz and 7.2 MHz but with a penalty of about 3 dB loss in gain at both frequencies when
compared to the cross dipoles of Figure 15.
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Figure 17: 75m Inverted-V NVIS Antenna at 3.75 MHz

Figure 18: 75m Inverted-V NVIS Antenna at 7.2 MHz

The examples section of this document will discuss other solutions to the problem of
maintaining proper NVIS directivity patterns over an octave of frequency.

Special Cases

A reflecting “element” below the driven element is essential to generate the NVIS
directivity pattern. While in most cases the earth can provide the required reflector,
special cases, like very deep, dry sand, or a very high antenna mounting location, may
require that an actual reflecting wire be provided as shown in Figure 19.
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Figure 19: NVIS Configuration for Special Cases of Low Earth Conductivity

Vehicle Whip Antennas

The vertically polarized vehicle whip antenna is not optimum for NVIS operation. The
idealized vehicle whip antenna and accompanying vertical directivity patterns can be
seen in Figures 20 through 22.

Height = 1.8 m (6 ft)
Figure 20: Vehicle HF Whip Antenna with Current Distribution
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EINEC

T -

38 MHz
Elewstion Plat Curzor Eley  28.0 deg.
Azimuth &ngle 0.0 deg. Gain 0.92 dBi
Duter Ring 0.92d6i 0.0 dBmax

Slice Max Gain - 0.92 dBi @ Elev Angle = 28.0 deg.
Beamvvicth 47 7 deqg., -3dB @ 5.9, 56.6 deg.
Sidelobe Gain - 0.92 dBi @ Elev Angle = 152.0 deg
Frort/Sidelobe 0.0 dB

Figure 21: Elevation Pattern of Vehicle Whip at 75m (3.8 MHz)

EZNEC
S 0dB-..
7 MHz
Elevation Plot Cursor Eley 290 deg.
Azimuth Angle 0.0 degy Gain 0.29 dBi
Cuter Ring 0.29dBi 0.0 cBmax

Slice Max Gain - 0.29 dBi @ Elev Angle = 29.0 deg
Beamyvicth 47 6 deq,; -3dB @ 9.8, 57 4 deg.
Sidelobe Gain - 0.29 dBi @ Elev Angle =151.0 degy
Frort/Sidelobe 0.0 dB

Figure 22: Elevation Pattern of Vehicle Whip at 40m (7 MHz)

These directivity patterns are certainly idealized and we know from experience that HF
vertical antennas seem to perform better than expected! The military suggests moving a
vertical HF antenna more horizontal for NVIS operation as shown in Figure 23.
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Figure 23: Improved NVIS Performance of a HF Vertical Whip Antenna

Other options for mobile HF NVIS operation include using vertically oriented loop
antennas as shown in Figures 24 and 25.
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Figure 24: Commercial (South Midlands Communications Ltd) NVIS Loop
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Figure 25: Home-brew HF Mobile NVIS Loop Antenna

Antenna Impedance Match

Once you have designed a NVIS antenna that can produce proper directivity patterns over
the necessary MARS frequency range (3.3 MHz to 7.4 MHz) the task is only one-half
complete. This wide-band antenna system must also provide a useable impedance (50 Q)
over this frequency range so it will accept RF power from the transmitter. Standing wave
plots (SWR) for both the 75m dipole and the cross-dipole antennas are shown in Figures
26 and 27.

16



SWR>100

80 m Dipole

|||||||||||||||||||||||||||

INF

Freq MHz

]
=]
=
[=]
[}
— LN
T
[h)
[&]
.
=
[ )
A
£
fad]
Em
md
[ ]
T w
=+ =
[}
ooo—
+ 4
WD_H_S
Dnﬁ._un.
I Bl v
F~ n = O
-
=
[14]
]
o
mw =
g R

Figure 26: SWR Plot of 75m NVIS Dipole
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Cross-Dipoles
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Figure 27: SWR Plot of Cross-Dipole NVIS Antenna

Also shown on each of these two plots is the typical 3:1 SWR internal auto-tuner limit of

today’s modern HF transceivers. Note that the typical required SWR tuning range for

MARS frequencies can be greater than 100:1 for an 75m dipole and even for the cross-

dipole antenna, as high as 30:1. To follow is an incomplete list of possible solutions to

this problem:

A. Separate Tuned Wires For Each Frequency — A “fan-dipole” antenna with

separate resonant > wavelength wires for each frequency can be constructed.
This will require extensive measurement and trimming since there will be
interaction between the separate dipoles. If this antenna is moved for portable
operation, it will need to be retuned. To cover all Texas Army MARS NVIS
frequencies, some 8§ dipoles will need to be parallel connected and tuned. Some
reduction in number might be possible for frequencies close together.

B. Terminated Folded Wide-Band Dipole (B&W series) — Several companies

make special wide-band folded dipoles with a termination load resistor and
matching transformer as shown in Figure 28.
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Figure 28: Terminated Folded Wide-Band Dipole Performance

These type of antennas have SWR that vary only about 2:1 over frequency ranges
from 2 to 30 MHz. The problem is that they are considerably less efficient that
the same length dipole (Doublet) as shown in Figure 28. The difference in gain
(5-6 dB) translates into an efficiency difference of about 75% when compared to
a dipole of the same length.

C. Tuner Located at the Rig — The high SWR at most frequencies can cause
significant losses in the transmission line if it is not extremely low loss. Figure 29
shows the additional loss in dB due to high SWR on a transmission line. For
example, given that RG-8U has a loss of 0.55 dB/100 ft, then a SWR of 20 at the
load would add an additional 2.5 dB for a total of 3.05 dB or one-half power. The
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losses for SWR values of 100 would leave very little signal at the antenna. At this
same frequency, the losses for 450 Q ladder-line is not measurable.
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Figure 29: Additional Transmission Line Loss Due to High SWR

Figure 30 shows a typical arrangement for minimizing losses when a tuner

is use at the rig location. Low loss 450 Q Ladder-Line is used for the

majority of the transmission line run. Near the entrance to the shack, a 4:1

balun and a short length of low-loss coax (RG-8 or Belden 9913 for example) are
used to complete the connection between the antenna and the antenna tuner. If
proper high-voltage bulkhead feed-throughs are available, the ladder-line can be
connected directly to the antenna tuner, eliminating the losses in the balun and
coaxial cable.
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450 O Antenna

ladder-line
(100 ft)

4:1 Balun

Coax (low-loss)

Tuner ﬁ Transceiver

LDG-AT 200 Pro MFJ — 949E

Figure 30: Wiring Arrangement For A Tuner Located At Rig

The antenna tuner must be able to handle 100 watts (or your actual power) at
SWR ratios of at least 20:1. The impedance matching for a wide range antenna
tuner is typically stated as 6 to 1000 Q.

D. Tuner At The Antenna — The method favored by the military and marine antenna
designers is to place an auto-tuner at the antenna as shown in Figure 31. These
tuners can typically tune an antenna as short as 8 ft from 3.5 MHz to 30 MHz.
They require about 1 ampere at 13.5 VDC to provide power to the
microcomputer located within the housing. The SGC and MFJ antenna tuners
need only this DC power and about 10 watts of RF to allow the auto-tuner to
match the antenna to the 50 Q coaxial cable. DC can be transmitted up the
coaxial cable and separated at the top and bottom using coaxial line isolators,
available from both companies. The ICOM AH4 has both a coaxial cable and a 4
wire control cable and is designed to only operate with compatible ICOM HF
transceivers (Ham and Marine). The three auto-tuners shown are water-tight but
their plastic housing must be shaded from the Texas sun. In addition, the
sensitive electronics must be protected from EMP (Electromagnetic Pulse)
damage from nearby lightning strikes. I am presently using a high-voltage relay,
energized from the microcomputer DC line, to disconnect and short the tuner to
ground when not in use. A schematic of this protective circuit can be seen in
Figure 32.
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Auto-tuner with
Coaxial line isolator

SGC-SG-230

MFJ-926 Coax
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isolator

Transceiver

ICOM AH-4

Figure 31: Tuner At The Antenna

Long-Wire Antenna
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\A 4

RF+DC Input Cﬁgx(i:al v ¢

—»{ Line PolyPhaser S$G-230 Auto- outl 220K 1W
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1
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1
1
1
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T
1

Isolator | .
> RF input
. P

Counterpoise
1” gnd braid

220K 1W

1N2007 & % g

1
.005 uF

PolyPhaser - 1S-B50LU-CO (DC blocking) 600VDC
Relay — Gigavac G41C232 (5KV SPDT) 1” gnd braid
coil - 12VDC at 200 mA

To GrotYnd Rods
Figure 32: Auto-Tuner Lightning Protection Circuitry

22



An antenna mounted auto-tuner used for temporary portable operation does not
need sun shielding as shown in Figures 33 and 34.

Mast: 35 ft.—__

b

Coax — RGS8/U

T~

DC Coaxial
Line Isolator

DC power
RF%-‘ y

«——Lexan Plate

67 ft

Auto-tuner wit
DC Coaxial Line
Isolator

SG-230 $500.
RF power - 200 watts max.
Tune 8 ft wire 3.5 to 30 MHz
Waterproof

Figure 33: Auto-Tuner for Portable Operation
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Figure 34: Portable Auto-Tuner Photograph
This same type of tuner, mounted in a protective housing, is in operation at

permanent locations at Texas State Guard, building 32 Camp Mabry, Figure 35,
TSA San Antonio, Figure 36 and my personal QTH, figure 37.
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UHF/VHF Vertical

Antenna Mount Side Arm Mount

Insulator
NVIS Dipole

/ 70 ft

Auto-Tuner

50 ft tower
next to 20 ft metal
roofed building

Ground Level

Ground Rod
8 ft. depth —|

Concrete Filled hole
Depth — 3 ft.

Figure 35: Auto-Tuned Dipole at TxSG Building 32, Camp Mabry
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Auto-Tuner

Figure 36: TSA, San Antonio, Auto-Tuned Antenna
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Figure 37: Auto-Tuned Long Wire at Home QTH (CC&R Restrictions)

All of these auto-tuners are identical in general wiring, with two connected
to drive unbalanced antennas (vertical whip and long-wire) and one connected to

drive a balanced dipole. The internal wiring can be seen in Figure 38. Complete
construction details are available upon request.
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Tuner Output —  NMEA fiberglass

box
Tuner Box
Output S$G-230 Tuner
HV Relay
PolyPhaser
Coaxial Line
Isolator
Counterpoise
RF+DC Input
Figure 38: Internal View of Fix Location Auto-Tuner
Conclusions

The directivity pattern of a NVIS antenna should optimize transmission and reception
from the ionosphere at high angles while rejecting distant, low angle noise. The
accepted range definition of 400 to 500 miles for NVIS operations, will result in
requiring an elevation beam width of approximately 100 ° and an omni-directional
azimuth pattern. Significant frequency agility is required, since NVIS operating
frequencies must be below the local critical frequency but as high as possible to
minimizing D-layer absorption losses. Maintaining proper antenna directivity and
impedance matching over an octave of frequency requires special considerations. Single
or multiple dipoles at heights in the vicinity of 40 to 50 feet and feed with low loss
transmission line can achieve the requirements for effective NVIS antenna performance.
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APPENDIX
Examples of Texas Army MARS Member Antennas

The following section will discuss different approaches taken by several Texas Army
MARS members in achieving reasonable NVIS directivity patterns and wide-bandwidth
performance. Many members of Texas Army MARS have achieved similar results and
these individual antenna systems are being discussed only because they represent three
different general approaches to achieving acceptable NVIS antenna performance.

Single Inverted-V with Rig-Located Tuner - AAR6LN
This antenna system and its modeled SWR are shown in Figure A-1. Since this study
was completed, this antenna has also demonstrated good performance on KAH.

EZNEC+
Z
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”_,-” 1 A |NF e ———————————— |
" \\ —_— e ———————
",
1 \\
N \ e
h,
2 =
\ S E=
b " 1
\\\ Sl —
\ CEB
Inverted-V, 56° slope =
Leg length — 70 ft. ==
Apex height — 55 ft. =
Leg end height — 16 ft. (&2
Fed with 100 ft of 450Q :
Ladder line, 4:1 balun, 11 =k
RG-213U to tuner. 1
3 Freg MHz 10
Freg 3.38 MHz Source # 1
SWR 111 0 50 ohms
z 5499 5t -2.75 deg.

=54 .92 -] 2637 ohms
Refl Coeff  0.05321 &t -26.74 deg.

= 004732 - j 0.02394
Retloss 255dB

Figure A-1: NVIS Antenna of AAR6LN

Antenna directivity patterns for a number of frequencies can be seen in Figures A-2
through A-5.
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EZMEC+

Total Field

EZNEC+

Elevation Plot

Azimuth Angle 0.0 deg
Cuter Ring 453 dBi

Slice Max Gain 453 dBi @ Elev Angle = 900 degy
Beamvvicth 106 2 deg,; -3dB @ 36.9, 1431 deg.
Sidelobe Gain < -100 dEi

FrontiSidelobe =100 dB

Cursor Eley 500 deg

Gain

313 dBi
-1.4 dBmax

3.227 MHz

Total Field

Azimuth Plot
Elewvation Angle
Cuter Ring

Slice Max Gain
Frort/Side
Beamuvicth
Sidelobe Gain
Front/Sidelobe

Figure A-2: AARGLN Antenna Patterns at 3.227 MHz
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313 dBi 0.0 dBmax
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1.37 dB
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0.0dB
0 5B EZNEC+
4.0224 MHZ
Cursor Az 0.0 deg.
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3.84 dBi @ Az Angle = 0.0 degy.
1.862dB

?
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Figure A-3: AARGLN Antenna Patterns at 4.0224 MHz
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Total Field EZNEC+

5.401 MHz

Elevation Flat Cursor Elev 90,0 dedl.
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Figure A-4: AARGLN Antenna Patterns at 5.401 MHz
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Figure A-5: AARGLN Antenna Patterns at 7.405 MHz

Analysis — The high performance of this station in the Texas Army MARS network is
well known. The average height of the single dipole is 35.5 ft, an ideal height for
NVIS performance from 3 to 7 MHz. The length of the dipole legs are ideal for
frequencies to 5 MHz, but as can be seen in Figure A-5, a little long for 7.4 MHz.

The overall high gain of this antenna can compensate for the less than ideal horizontal
directivity at 7 MHz. Note that the 6 dB variation in directivity at 7.4 MHz only
amounts to 1 S-Unit. The use of ladder-line and minimal coax cable minimizes
transmission line losses, allowing almost all the transmitter power to reach the
antenna.

Multiple or “Fan” dipoles - AAR6BB/BC

This antenna system is shown in Figure A-6. It is driven with low-loss coaxial cable
leading to a rig located tuner.
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EZNEC+

Center Height = 25 ft.
Lengths:
Wires 1 & 2 = 65 ft.
Wires 3 & 4 = 46 ft.
Wires 6 & 7 = 33 ft.

End Heights:
Wire 1 =125 ft
Wire 2 = 11 ft.
Wire 3 = 6.25 ft.
Wire 4 = 6.25 ft.
Wire 6 = 7 ft.
Wire 7 = 6.67 ft.

Note: Wire 5 is a modeling
trick to tie all wires to
source.

Figure A-6: Fan Dipole Configuration
The antenna consists of three dipoles connected to a common driven point. The

antenna systems exhibits multiple resonances based on the length of each dipole as
seen in Figure A-7.
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Figure A-7: SWR Plot for the Fan Dipole
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Note that in between resonant frequencies, the SWR is still very high requiring wide-

bandwidth tuning techniques previously discussed. The strength of this design is that

the directivity patterns at different frequencies maintain almost ideal shape. Figure
A-8 through A-11 shows the azimuth and elevation patterns for this antenna at

different frequencies.
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Figure A-8: Fan Dipole Antenna Patterns for 3.227 MHz
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Figure A-9: Fan Dipole Antenna Patterns for 4.0224 MHz
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A-10: Fan Dipole Antenna Patterns for 5.401 MHz
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A-11: Fan Dipole Antenna Patterns for 7.72 MHz
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Analysis — This antenna system produces excellent NVIS patterns over almost two
octaves of frequency. The impedance of each dipole is such that only around its
resonance does it absorb and radiate power, therefore controlling the directivity
pattern. The first two frequencies, 3 MHz and 4 MHz use the longest dipole. The 5
MHz frequency uses the middle length dipole and the 7.7 MHz frequency uses the
shortest dipole. A significant amount of modeling was used to optimize the
dimensions of this antenna. This antenna was not designed to be resonant at each
MARS frequency, but rather to provide optimum directivity patterns with a minimum
number of dipoles. The efficiency of this antenna system would be increased by
increasing the apex height to approximately 55 ft. as was done in the single dipole
example (AARGLN).

Long-Wire Stealth Antenna - AAR6UK
The long-wire antenna and its SWR Plot are shown in Figure A-12.

EZNEC+

Long-Wire, slope 3.3°
Wire 1 — 105 ft.
Wire 2 — 21 ft.
End height — 15 ft. 3 Freq Mz 10
Auto-tuner at junction R 5
Of wires. L e sagems

Refl Coeff 02481 at -19.04 deg

Wire 2 grounded at bottom . :2022%5.]0.05029
end. '

Figure A-12: Long-Wire NVIS Stealth Antenna

The antenna consists of a single long-wire (wire 1) connected to an auto-tuner, shown
in Figure 37, and a grounded counterpoise (wire 2). Even using AWG #14 copper
wire, this antenna is almost invisible from the side street next to the house (50 ft.).
Observe that this wire is below the minimum recommended height of 0.1
wavelengths for frequencies below 5 MHz, yet performs adequately even down to
KAH. Figures A-13 through A-16 show the azimuth and elevation patterns for this
long-wire antenna.
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A-14: Long-Wire Antenna Patterns at 4.0224 MHz
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A-15: Long-Wire Antenna Patterns at 5.401 MHz
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Figure A-16:

Long-Wire Antenna Patterns at 7.405 MHz
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Analysis — This long-wire antenna performs well at frequencies at and below 5 MHz.
But, the wire is some 0.79 wavelengths long at 7.4 MHz, generating significant
directivity even close to the ground. Shortening the wire to 0.5 wavelengths or 66 ft.,
would result in a more useable NVIS pattern at 7.4 MHz at the expense of lower gain for
the lower frequencies. Figure A-17 shows the azimuth and elevation patterns for the 66 ft
long-wire antenna. The gain of this 66 ft. long-wire at 5.4 MHz is reduced by 0.8 dB, and
2 dB at 4.02 MHz and 3.227 MHz when compared to the 105 ft. version. When the
sunspot cycle improves, moving the critical frequency variance up to 4 to 8 MHz, I will
shorten the long-wire to 66 ft. to optimize performance at these higher frequencies.
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Figure A-17: Long-Wire Antenna Patterns at 7.4 MHz When Shortened to 66 ft.

Example Conclusions

All three of these antennas have shown themselves to be good performers on Texas Army
MARS nets. The inverted-V performs best due to its optimum height and careful detail
to minimize feed-line losses. The fan-dipole antenna would perform even better if raised
in height and feed with a lower-loss transmission line system (auto-tuner or ladder line).
Finally, the long-wire antenna demonstrates that a low, stealthy single wire antenna can
perform well, if transmission line losses are minimized.
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