* dB Simplified *

Demystitying Decibels (dB)!

Transceiver S-Meter

$$
\mathrm{S}-1=3 \mathrm{~dB}
$$

S-9
60 dB 'Over' S-9!
dB , decibel=one tenth of a BEL (Alexander Graham Bell-Inventor of Telephone)
Decibel is nothing more than an expression of the ratio between two signals. However, the 'Logarithms' of the ratios are used rather than the straight arithmetical ratios.
$\mathrm{dB}=10 \operatorname{LOG}\left(\mathrm{P}_{1} / \mathrm{P}_{2}\right)$
$\mathbf{1}$ 'S' (Strength) Unit: Smallest change that is easily noted by the average listener. S Meter calibration: $\mathbf{3} \mathbf{d B} / \mathbf{S}-\mathbf{u n i t}$
$\mathbf{5 0} \mathbf{~ m i c r o}$ Volt accross a 50 -ohm input impedance constitute a $\mathbf{S}-\mathbf{9}$ signal S-9:..an extremely strong signal 60 dB 'Over' S-9: Signal is one million times stronger than an extremely strong signal, i.e. 50 micro Volt $\times 1,000000=50$ Volts

Ratio	Factor	Power Decibels (dB)
$1: 1$	1	0.00
$2: 1$	2	3.01
$10: 1$	10	10.00
100:1	100	20.00
1000:1	1000	30.00
$10000: 1$	10000	40.00
$100000: 1$	100000	50.00
$1000000: 1$	100000	$\mathbf{6 0 . 0 0} \mathbf{~ d B}$

Finding dB without a calculator!

dB	Factor (X)		
10	10	Counting backwards from 10 by 2's	$\begin{aligned} & \text { John=100 W } \\ & \text { Alex= } \mathbf{~ W} \\ & \text { John is } 100 \\ & \text { times stronger } \\ & \text { than Alex. } \\ & \text { How many dB's } \\ & \text { stronger John } \\ & \text { would be? } \\ & \mathbf{1 0 x 5 \times 2 = 1 0 0} \\ & \mathbf{1 0 + 7 + 3 =} \\ & \mathbf{2 0} \mathbf{~ d B} \end{aligned}$
9	8		
8	6		
7	5	Counting backwards from 5 by 1's	
6	4		
5	3		
4	2.5	Counting backwards from 2.5 by 0.5 's	
3	2.0		
2	1.5		

Datasheet by Sandeep Baruah, VU2MUE

