A Technical Introduction to GPS for the Radio Amateur

R. Sean Anderson KR4YO

- SATNAV theory
- Signals, codes and services
- Errors and accuracy

Time-of-Arrival Ranging

- SATNAV positioning uses the same TOA ranging concept mariners used centuries ago to navigate by foghorns
- Mariners used maps and ships' clocks to measure range to a fog horn
- Mariners knew sound travels roughly a quarter-mile per second

Ye ol' map

2

Time-of-Arrival Example

Time-of-Arrival Example: Clock Bias

Determining Position With Global Positioning System

To Determine Position

Three things are needed to determine position

- A map showing precise location of each GPS satellite
- A signal from the GPS satellite to the receiver
- A clock to measure TOA of GPS signals at the receiver

Time source

A Map and a Time Source?

These are automatically downloaded to GPS receivers from the satellites during initialization (after turn-on; takes 12.5 min)

Time in the Global Positioning System

Universal time coordinated

-16 sec in navigation message

Navigation Message Format

Pseudorange to Satellites?

A GPS satellite and a user's receiver set will generate the same satellite unique PRN at the exact same time

The satellites continuously transmit their unique codes

10111100011001101001110001110001011110001100110011000111000111000

PRN 24: A short repeating PRN code sample

 The receiver set will compare the time of receipt of the satellites transmission of the code with the receiver's own generation

PRN Code Correlation

Pseudoranging From Global Positioning System

The difference between these codes

- Corresponds directly to the time delay necessary for the signal to reach the user's set
- Simple formula yields the distance from the satellite

Global Positioning System Pseudoranging Formula

Distance = time × speed

Distance = 68 ms × 300 000 000 m/s Time delay Speed-of-light

Range = time delay × speed-of-light

Position by Trilateration

- A distance measurement from just one satellite will determine a receiver's position somewhere on a sphere around that satellite
- The location of the satellite is known by the receiver set because the location is transmitted as part of the navigation message

D: Pseudorange from satellite to receiver

Surface-of-sphere: All possible solutions

Add a Second Satellite

Two satellite measurements will result in two spheres that will determine a location to somewhere on the intersecting circle

D

D: Pseudorange from satellite to receiver

Red ring: Intersection of two spheres

Add a Third Satellite

Solutions for first two satellites Remaining possible solutions Three satellite measurements will determine a location to two points on that circle; only one of which will be logical

D: Pseudorange from satellite to receiver

Trilateration Unavoidable Error Box

Add a Fourth Satellite

- Because receiver and satellite clocks are not perfect, time (t) becomes a variable in addition to the x, y and z values
- Four satellites are needed for the receiver to solve for the clock bias error

$$Position = \begin{bmatrix} GPS_1 x, y, z, t \\ GPS_2 x, y, z, t \\ GPS_3 x, y, z, t \\ GPS_4 x, y, z, t \end{bmatrix}$$

OPS Pseudorange Navigation Example - Peter H. Dana - 4/24/98

Satellite (SV) coordinates in ECEF XYZ from Ephemeris Parameters and SV Time

s∨x ₀ ≔15524471.175	s∨y ₀ :=-16649826.222	s∨z ₀ ≔13512272.387	SV 15
s∨x ₁ :=-2304058.534	svy ₁ :=-23287906.465	S∀z ₁ ≔11917038.105	8V 27
s∨x ₂ :=16680243.357	s∨y ₂ :=-3069625.561	s∨z ₂ ≔20378551.047	8V 31
s∨x ₃ :=-14799931.395	S∀y ₃ :=-21425358.24	SVz ₃ ≔6069947.224	8V 7

Satellite Pseudoranges in meters (from C/A code epochs in milliseconds)

P₀ := 89491.971 P₁ := 133930.500 P₂ := 283098.754 P₃ := 205961.742 Range + Receiver Clock Bias

Receiver Position Estimate in ECEF XYZ

 Rx := - 730000
 Ry := - 5440000
 Rz := 3230000

 For Each of 4 SVs
 i := 0...3

Ranges from Receiver Position Estimate to SVs (R) and Array of Observed - Predicted Ranges

$$\mathsf{R}_{i} := \sqrt{\left(\mathsf{SVx}_{i} - \mathsf{Rx}\right)^{2} + \left(\mathsf{SVy}_{i} - \mathsf{Ry}\right)^{2} + \left(\mathsf{SVz}_{i} - \mathsf{Rz}\right)^{2}} \qquad \mathsf{L}_{i} := \mathsf{mod}\left[\left(\mathsf{R}_{i}\right), 299792.458\right] - \mathsf{P}_{i}$$

Compute Directional Derivatives for XYZ and Time

$$Dx_{i} := \frac{S \lor x_{i} - Rx}{R_{i}} \qquad Dy_{i} := \frac{S \lor y_{i} - Ry}{R_{i}} \qquad Dz_{i} := \frac{S \lor z_{i} - Rz}{R_{i}} \qquad Dt_{i} := -1$$

Solve for Correction to Receiver Position Estimate

A :=	D×0	Dy ₀	Dz ₀	Pto		[-3186.496]
	Dx ₁	Dy ₁	Dz ₁	Dt ₁		-3791.932
	Dx_2	D_{y_2}	Dz_2	Dt_2	dR -= (A ·A) ·A ·L dR =	1193.286
	D×3	Dy ₃	Dz ₃	Dt ₃		[12345.997]

Apply Corrections to Receiver XYZ and Compute Receiver Clock Bias Estimate

 $Rx := Rx + dR_0$ $Ry := Ry + dR_1$ $Rz := Rz + dR_2$ Time := dR_3 Rx = -733186.496Ry = -5443791.932Rz = 3231193.286Time = 12345.997

Some Need to See the Math

Some Need to Hear This in English

Because the receiver and satellites clocks are not precise, a fourth satellite is needed to further refine positioning to result in a relatively accurate position

Reducing Error Box Size

Factor Analysis

Without the time factor analysis

With the time factor analysis

Overview

SATNAV theory
Signals, codes and services
Errors and accuracy

Global Positioning System Signals

- GPS for civilians broadcasts over one center frequency
 - L1: 1575.42 MHz, P-code and C/A code
- Additional frequencies for mil/gov't use
 - L2: 1227.60 MHz, P-code only
 - L3: 1381.05 MHz, NUDET only
- C/A code = course acquisition code
- P-code = precision code

Global Positioning System Signals-in-Space

Global Positioning System Signal Spectrum

Each GPS satellite broadcasts continuously on two center frequencies, called L₁ and L₂

Global Positioning System Ranging Codes

C/A code (repeats every ms)

- Short PRN sequence: 1023 bits
- Narrow bandwidth: ±1.046 MHz
- Repeats every ms
- Fast, direct acquisition
- Easy to detect / jam
- On L₁
- Assists in acquiring the P-code

P-code (repeats every week)

- Long PRN sequence:
 6.2 trillion bits
- Broad bandwidth: ±10.46 MHz
- Repeats every week
- Slow, direct acquisition
- Harder to detect / jam
- On L_1 and L_2
- Encryptable to form Y-code

Users Access to Signals and Codes

- Civilian / commercial receivers use only C/A on L₁
- Authorized receivers use both L_1 and L_2
- Using both frequencies reduces error
 - Allows dynamic modeling of the ionospheric delays
 - If only one frequency is used, the receiver set must use an ionospheric model in the navigation message

Because the travel distance of L₂ is greater than L₁, the TOA is slightly longer. Two-frequency receivers can, therefore, model ionospheric error

Two Global Positioning System Services

Precise positioning service

- Can decrypt Y-code
- P-code based
- PPS 95% 3-D position error: 3.76 m (95%) in 2004
- PPS 95% NAV user time transfer error: 8.1 ns (95%) in 2004

Standard positioning service

- Actual error based on current DoD policy
- Cannot decrypt Y-code or remove SA error
- C/A code based
- SPS position / timing accuracy not currently tracked
 - GPSOC position accuracy estimate: ~5 m
 - Represents GPSOC estimate of PPS + 30% to 40%

Overview

SATNAV theory
Signals, codes and services
Errors and accuracy

Errors and Accuracy

- URE
- DOP
- Calculating GPS accuracy

GPS Blk IIA satellite

User Range Error Defined

- Error in satellite to receiver range measurement
- URE relates a single satellite to the receiver
 - Four satellite solution = four distinct URE
 - Constantly changing with time
- Six factors: Majority of error can be corrected
 - Uncontrolled: Built-in corrections (models)
 - Controlled: Periodic satellite uploads (ephemeris and clock)

Sources of Error

Representative per satellite error		
budget (contractually allowed)	SPS	PPS
— Satellite clock error (∆c)	2.1	2.1
— Ephemeris error (∆p)	<19.6	8.2
— Ionosphere (∆i)	4.5	4.5
— Troposphere (∆t)	3.9	3.9
— Receiver noise (∆r)	2.9	2.9
— Multipath (∆m)	2.4	2.4

All units are meters, statistically at 95% probability

Satellite Clock Error

Error in pseudorange caused by difference (error) between true time and clock time

Accurate Satellite Clocks

- Uses cesium and rubidium oscillators
- Stability of approximately 1 part in 1×10^{-13} per day
- Equates to clock error of 8.6×10^{-9} second per day
- Equates to range error of 2.5 meters per day
- Error grows slowly over time

Satellite Clock Corrections

- Correction: Periodic satellite clock uploads
 - Satellite operations crews at MCS
 - Typically performed once a day
 - Can be increased based on requirements
- Error contribution: Approximately 2 m to 4 m

Ephemeris Error

Error in pseudorange caused by difference (error) between true and predicted positions

Ephemeris Error Corrections

- Correction: Periodic satellite ephemeris uploads
 - Satellite operations crews at MCS
 - Typically performed once a day
 - Can be increased based on requirements
- Error contribution: Approximately 2 m to 3 m

Ionospheric Error

- Greatest natural source of GPS error
- Error in pseudorange due to signal delay (error) caused by interaction with free electrons in the ionosphere

UNCLASSIFIED

lonosphere

Ionospheric Error Delays

- Delay directly proportional to electron density
 - Fluctuates: Hourly, daily and monthly cycles
 - Impacted by solar activity (flares or solar max)
 - Typically relatively stable in temperate zones
 - Considerable flux in polar and equatorial zones
- Delay due to signal path: Low-elevation satellites have longer path through ionosphere

Ionospheric Error Corrections

- SPS correction: lonosphere modeling
 - Very computationally complex models
 - Standard GPS receivers: Only 50% correction
 - State-of-the-art models: Only 75% correction
 - Error contribution: 2 m to 4 m
- PPS correction: Modeling and dual-frequency real-time modeling
 - Delay inversely proportional to signal frequency
 - Error contribution: 1 m to 2 m

Tropospheric Error

- Error in pseudorange due to signal delay (error) caused by refraction through the troposphere
- Correction: Simple model 90% correction
- Error contribution: Approximately 1 m

Tropospheric delay.

UNCLASSIFIED

Troposphere

 Δt

Multipath Error

Error in pseudorange due to increased time lag (error) caused by reflected signal
 Correction: Masking angle and antenna design
 Error contribution: < 1.5 m

Receiver Error

- Error in pseudorange due to receiver itself (error) caused by microprocessor and antenna design
- Current technology has reduced to a minimum
- Correction: None
- Error contribution: Approximately 0.5 m

Six User Range Error Factors

Two atmospheric errors: 1. lonospheric error (∠i) 2. Tropospheric error (∠t)

Two satellite errors: 1. Clock error (⊿c) 2. Ephemeris error (⊿p)

> Two receiver errors: 1. Multipath (⊿m) 2. Receiver noise (⊿r

Errors and Accuracy

– URE
– DOP
– Calculating GPS accuracy

GPS Blk IIR Satellite

Dilution-of-Precision Defined

 Error due to geometric relationship of the satellites and receiver (unitless measure) - Simple 2-D example for overlapping areas of error: Position **Optimal geometry Poor geometry** uncertainty (DOP URE

Dilution-of-Precision Defined in 3-D

3-D example (four satellites): Much more complicated

Dilution-of-Precision Factors

- HDOP: Satellite geometric effect on horizontal or latitude-longitude errors
- VDOP: Satellite geometric effect on vertical or altitude errors
- PDOP: Satellite geometric effect on combined vertical and horizontal (3-D) errors
- TDOP: Geometric effect on time error
- GDOP: Satellite geometric effect on combined vertical, horizontal and time error

How Dilution-of-Precision Is Used

- Unitless figure of merit: Low is good; high is bad
- GPS receivers continually optimize DOP
 - Calculates for all possible satellite combinations
 - Picks best combination for navigation solution
- DOP prediction software
- Can bad DOP be corrected?
 - No; strictly a function of satellite geometry
 - More satellites typically = better DOP

Dilution-of-Precision Characteristics

- Minimum of four satellites required for accurate PVT solution
- Optimal four satellite geometry: Three satellites on horizon (equally spaced in azimuth) and one overhead
- More satellites increases the opportunity for good DOP

Errors and Accuracy

- URE
- DOP
- Calculating GPS accuracy

GPS Blk IIF satellite

Calculating Accuracy

- All measurements have errors, no matter how exact the measuring device or perfect the operator
- Take multiple measurements of the same thing
- GPS error due to both predictable (DOP) and statistical (URE) factors
 - Error is simple product of DOP and URE

 $GPS_{ERROR} = DOP \times URE$

 URE is not a simple sum; six components are statistically added using root sum square

 $- URE = \sqrt{(\Delta p)^2 + (\Delta c)^2 + (\Delta i)^2 + (\Delta t)^2 + (\Delta m)^2 + (\Delta r)^2}$

URE are statistical samples — not exact figures

Bottom Line

- GPS accuracy? Standard answer: It depends
- Many factors contribute (time, region of Earth, orbital parameters, constellation status)
 - Some correctable or minimized
 - Some predictable, but not correctable
 - Some fluctuate greatly and difficult to predict
- Despite this, many still want an actual number

2004 3-D Position Error

Summary

- SATNAV theory
- Signals, codes and services
- Errors and accuracy

Questions?

R. Sean Anderson, KR4YO <u>kr4yo@arrl.net</u> (703) 707-9025