CTRONIX AutoCall LD1.0
8048 microcontroller-based
large wall alarm clock

Paul Dallas, SV1UI, 2015, with the (ever so) kind assistance of Ctronix.

INTRO

Sometime in the 90's, I salvaged an AutoCall LD1.0 display unit from a skip. I
powered it up recently and it worked fine, so I wrote some software for it to
turn it into a wall clock. There are three reasons I present this here:

1. To assist in understanding the software written for its MAB8039HL (8048)
processor; the code may be useful for others making a microcontroller-
based clock.

2. As a tribute to an absolutely magnificent design by Ctronix!
3. As an aid to anyone repairing an AutoCall unit of that era.

Please note that Ctronix have (ever so) kindly agreed to my publishing the
schematics, and have even provided the PCB layouts shown in Appendix E;
their co-operation exceeded my wildest dreams...

CONTENTS
IINTRO ettt ettt ettt b et st e s bt et e et e s bt e b e s st e bt enbe e st esseeabesatenbeentesatensesnseensaeenseenns 1
CONTENTS ...ttt ettt et e s bt e b e st e s bt e st et e s bt et e satesat et e eatenbeeenseeesbeennneenane 1
FEATURES. ... ettt ettt ettt h et st esa e et e st e s bt et e e atesbe et e sat e bt e sabeeenseesseesseeanns 2
SCHEMATTICS ...ttt ettt sttt ettt et e st a et e e s bt et sa e e bt e b e e st e be e b e satenbeesabeesnseesaneennnees 2
HOW IT WORKS ...ttt sttt ettt ettt et e st e s bt et e s at e be et e e st esbeebesstenseensasatenseensenn 2
MINOR HARDWARE ADDITIONS.......cootititintereetertesteete ettt et st see st sseesseesesseessessesseenseenne s 4
SOFTWARE ...ttt ettt ettt ettt et st e s bt et e e atesbe et e eatesaeenteeat e beenbesateenseesnseesnnee 4
Clock recovery state MACKINE.cocviirieriiiirierieet ettt st et sbe s sbeeseesbeesabessbeesssneeesennes 5
Main State MACKITIE.eiiiiieeiiieetieeete ettt et e e et e e et e s st e e e s te e s abeeessteessaeessssaeassaaesssnssneesssnnnnes 7
TIO-DIO LIST ...ttt ettt ettt ettt b et e e s be e bt s st e s bt et e et e sbeebesabeesnseeeaseeenseesaneens 7
APPENDIX A: CLOCK RECOVERY STATE MACHINE FLOWCHARTS......ccccecceviininieneeienne 8
APPENDIX B: ALARM ENGINE FLOWCHARTcccteiieieeteteeteseesteeee st esieeaessee e esaeseeeneeens 10
APPENDIX C: SOFTWARE LISTING.....coctitiitteiteeieniteieetesieesie et sieesteste st e e s stesseessessesaseesneeens 12
APPENDIX D: INSTRUCTION SHEETccceeotiiitenieienienteteetesieeste st eseeee st e st esneeesaee e 42
APPENDIX E: PCB LAY OUTS.....otitteeetesttetee ettt ettt ettt st st s et etesaaesaseesaneeeas 43
BOtOIM LAYccuviieieeiieeieeteete ettt ettt s e et e st e e st e st e e st e ssbeesstessbaeesnsseaesssaaesnsaees 43
J1E0 030 <) OO PSPPSR 44
APPENDIX F: INNER WORKINGS AND SCHEMATICS.......ccceotetereerieereneenieereseesieesveesveeens 45

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 1

FEATURES

= Shows hours, minutes, seconds, day, month, year.

» 12h or 24h display selectable, with AM / PM indication.

= Automatically caters for leap years.

» Displays "HAPPY BIRTHDAY™" on a specified (hard-coded, I fear) date.

» Alarm with "silence" function.

» Battery backup to cater for mains failures (power cuts / brownouts / blackouts).

» Timing obtained from mains frequency, with automatic fall-over to internal crystal clock during
mains failure.

» Display brightness automatically adapts to ambient light level.

SCHEMATICS

The schematics shown in Appendix F are generally complete, apart from the decoupling capacitors.
Each IC (pretty much) is decoupled with a 10nF ceramic. Also, the values of some components
could not be read without removing them from the board, something I wanted to avoid. So, no
values are provided for these. I didn't go to great lengths to record everything, since this was meant
to be published more as a reference project rather than one for direct duplication. I have not
managed to read the part numbers of T12 and D21, as these were fitted on wrap-around heatsinks. I
suppose any decent PNP TO220 transistor (e.g. a TIP42B) and fast TO220-2 diode (e.g. a BYW29-
100 - do observe polarity!) would probably do fine; If you'd really like to know the original part
numbers, let me know and I'll pull the heatsinks off and see what they are.

Inductor L1 is a different story. You can calculate its value from the
78540 datasheet (I get about 120 microhenries), and then find a suitable
toroid / gapped pot core / E-I ferrite core / whatever to wind it on. The
original has "plenty" of turns of wire on a "large" (about 1,5" dia.)
ferrite core. If you have a specific core in mind and know its Al and
Bmax at 25kHz, I could work the rest out for you on request.

Finally, the piezoelectric sounder LS1 is marked "AT-23K Taiwan,
Projects Unlimited". It is an intriguing animal having 3 pins. It is
wrapped around transistor T2, as follows:

= Its "main" terminal connects to T2's Collector.
= Its "ground" terminal connects to T2's Emitter.
» Its "feedback" terminal connects to R6 and R7.

I did find such sounders for sale on the internet, presumably old stock. I suppose other externally-
driven piezoelectric sounders (e.g. Digi-Key's AT-2830-TWT-R) will probably also do.

HOW IT WORKS

The MAB8039HL microcontroller IC1 runs in external program memory mode, with the program
code stored in IC3. Only half of IC3 is actually used, so presumably a 2732 EPROM could also be
used instead of the 2764.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 2

As the microcontroller multiplexes its data and address lines (lower 8 bits) on its pins DO to D7, IC4
is used to demultiplex the address lines and provide separate address lines to IC3.

The sixteen 7-segment displays are driven in a multiplexed fashion using the following 8-state
cycle:

State 0: The microcontroller serially puts out data bits for segments A, B, C, D, E, F, G of the 7-
segment displays. DO carries information for the lowermost row, while D3 carries information
for the uppermost row. The microcontroller software writes these using a MOV X instruction,
which has the effect of toggling the microcontroller's WR pin; this in turn clocks the segment
data into shift registers IC6 to IC9 (via IC5), which retain it for the next state in the cycle. Note
that in state 0, the microcontroller writes the segment data for the four leftmost displays.

State 1: The microcontroller strobes P2.7 low to switch on the leftmost display column.

State 2: The microcontroller serially puts out the segment data for the 2nd. from left display
column.

State 3: The microcontroller strobes P2.6 low to switch on the 2nd. from left display column.

State 4: The microcontroller serially puts out the segment data for the 2nd. from right display
column.

State 5: The microcontroller strobes P2.5 low to switch on the 2nd. from right display column.
State 6: The microcontroller serially puts out the segment data for the rightmost display column.
State 7: The microcontroller strobes P2.4 low to switch on the rightmost display column.

We then return to state 0. With the original AutoCall LD1.0 software, the entire cycle took about
13msec, and each state lasted about 1,6msec.

Ctronix have pointed out that the unit I have is rather a rare version. A more common variant is the
AutoCall with 20mm digit height configured as 6 rows of 4 digits. The two extra rows in that case
are driven by data lines D4 and D5.

The microcontroller port P1 is used as follows:
= P1.0to P1.4 are used as inputs, and are controlled by DIP switches 1 to 5.

» P1.5 drives the sounder. When pulled low, T3 and T1 are switched on, and the piezo sounder
squeaks. T2 forms an oscillator, with feedback taken directly from the piezo sounder itself.

» P1.6 and P1.7 are used for driving the RS485 transceiver, IC2. These are not actually used in the
clock application, since IC2 is used solely as a receiver.

Other processor lines:

» The !INT input is driven by the RS485 receiver of IC2. This would normally be used to receive
information from the Ctronix control unit, but in this application it is used to receive a filtered
sample of 50 or 60Hz AC mains, which is used as the clock's source of timing.

= The TO general purpose input is brought to the centre pin of a three-pin socket; I have connected
this to ground via pushbutton switch SA, which is used as the "Alarm on-off / Alarm silence /
Clock set" pushbutton.

» The T1 general purpose input is driven by DIP switch 6.

The circuit operates off two separate power supply rails (three if you also count PSU_HYV, but never
mind): The +13V rail which powers the segment display driver circuitry, and the +5V rail which
powers the microcontroller and parts around it (and also IC10). The logic level translation is
performed by IC5. One advantage of this arrangement is that it allows the display segment voltage

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 3

to vary; I used this to provide a display dimming function, as described later.

The +13V supply is controlled by IC11, the (then) ultra-modern 78S40; this runs at about 25kHz.
R56 and R57 provide feedback for the +13V rail, which is compared against IC11's internal 1,25V
reference. If the voltage on the +13V rail is too low, IC11 increases the width of the pulses supplied
to provide more energy to the L-C filter (L1, C10) and thus increase the output voltage.

The watchdog is an interesting design: The first display column strobe (COL1) is supposed to pulse
low every 13msec or so. This pulse train goes through C3 and IC10F and each pulse discharges C2
through D19. If pulses on COL1 stop, then the input of IC10F will coast to OV, its output will
become permanently high, so C2 will stop discharging via D19. C2 will thus slowly charge up
through R5, eventually reaching the threshold on the input of IC10F, thus making IC10F's output
low. This pulls pin 1 (the diode cathode) of IC11 low, pulling its anode low. This in turn pulls the
input OP+ of IC11's op-amp low, bringing its output (pin 4) low and thus causing a microcontroller
reset. The same op-amp also keeps the microcontroller reset if the input voltage is too low.

The entire circuit draws around 1,1A DC from a 24V power supply, with all 7-segment displays on.

MINOR HARDWARE ADDITIONS

1. I found that the display was very comfortable to read even in bright sunlight, but too bright
(erm... annoying, really) at night. It was never meant to be used as a bedroom clock anyway; it
was supposed to be installed in restaurants and pubs.

So, I replaced R57 with a 1K5 1% resistor in series with a FR7-1020 1Sk /e
CdS photocell. A 1K resistor was then placed directly across the W
photocell, and the photocell was poked through a hole in the enclosure.
This way, the +13V rail is at 8,8V when the photocell is dark (thus
dimming the displays), and at 12,9V under bright ambient light.

1€s 1%

2. Inever had the AutoCall LD1.0's control unit; I only ever had the
display unit. So I guessed the display unit was meant to be powered from 24VDC unregulated. I
built a simple power supply for this in a separate box, and also included 8 NiCd batteries (NiMh
will do just as well, if not better) to keep the clock running during power cuts. The power supply
also provides a filtered sample of AC mains to the clock, which is used as the clock's source of
timing. Note that CB is a non-polar capacitor!

SOFTWARE

The software is written in 8048 assembly. The complete listing can be found in Appendix C. It is
assembled with Asm48 version 0.4.1, an excellent piece of multi-platform freeware by the
Adventure Vision Development Team of MEGA (http://www.adventurevision.net); this is available
on SourceForge, among other places.

After initialising the variables and performing some preliminary tasks, the microcontroller sets its
timer to time out after about 1,67msec (clocked by the crystal). The microcontroller then enters a
message loop which essentially does nothing apart from waiting for the timer to time out. This
message loop structure does nothing worth interrupting, so timer interrupts have not been used.

Every time the timer times out it is restarted, and the message loop branches out to the state
machines.

The clock has two state machines, the clock recovery state machine and the main state machine.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 4

Clock recovery state machine

This is a form of PLL which provides the clock tick once a second. It does this by detecting rising
edges on the !INT input, and setting a flag (R7's bit 3) every 50th or 60th rising edge detected
(depending on whether DIP switch 6 on T1 is set for 50 or 60Hz operation). Unfortunately, the 8048
series microcontrollers only have a level-triggered interrupt, which is pretty inconvenient. For this
reason, a polled arrangement is used:

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 5

e

N

\

Time 167 3,33

1 2
Do Do
nothing A\ nothing

State 0

3 4 5 6
Do Do Do Do
nothing A\ nothing A nothing A\ nothing

500 6,67 833 10,00~._11,67 13,33 15,00 16,67 18,33 20

7
Do
nothing

00 21,67 23,33 25,00

11 12 13 0

10
Store
"previous |early rising
state” d

Look

for correct Izl;t% Orl?sfi%; Do
rising nothing
edge ' edge '

=

8 9
Do Do
nothing A\ nothing

Let's say the 50Hz sinewave on !INT had a rising edge at t=0,00msec. Its following rising edge will be at 1/50Hz=20,00msec.
The "previous state” of !INT is stored in state 10 at 16,67msec, which is certainly logic O.

The "rising edge" on !INT should occur in state 12 at 20,00msec.

However, it might just not be caught at state 12, as it might just not have risen yet. In this case, it will be caught at state 13.

\

33 2600 21,67 23,33 25,00

167 333 500 667 833 1000 11,67 1333 1500 16,67 18

—

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0
Look
Do Do Do Do Do Do Do Do Do Do " rSet\Cl)il’oeu s elafloti;(i)r: for correct Izl;t% Orl?sfi?]r Do
nothing A\ nothing A\ nothing A nothing A nothing A nothing A nothing A nothing A nothing A nothing pstate“ e{ige 9 gzigg edge Y nothing

—

Blue: If in the previous cycle the rising edge had been caught in state 12, this would have reset the state machine exactly on the rising edge. In
this case, the rising edge will again be caught in state 12, or if it just has not risen yet, then it will be caught in state 13.

Red: However, if in the previous cycle the rising edge had been caught in state 13, this would have reset the state machine 1,67msec into the

wave. The rising edge will now be caught in state 11, or if it just has not risen yet, then it will be caught in state 12.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 6

Let us examine the 50Hz case (the 60Hz case is similar): Once a rising edge on !INT is detected,
nothing is done for 9x1,67msec=15msec. From 16,67msec onwards, we look for a new rising edge
on !INT. If it is found, then the clock tick counter is decremented and the clock recovery state
machine is reset. On the 50th. count R7's bit 3 is set, to flag that one second has elapsed.

If a rising edge on !INT is not found until 21,67msec, we give up; there is probably a power cut. In
this case a flag (R7 bit 1) is left clear, informing the clock recovery state machine that !INT is not
toggling as it should; in this case, the clock recovery state machine itself decrements the clock tick
counter every 20msec (as timed by the microcontroller's 1,67msec timer), to fill in for the missing
rising edge on !'INT.

This way, if there is a signal on the !INT input at approximately the correct mains frequency, it is
used as the clock's source of timing. If not, then the clock generates its own timing based on its
crystal-controlled timer. In practice, this works remarkably well.

The relevant flowcharts can be found in Appendices A and B; I kept these out of main text, as they
are rather complicated and could do more harm than good...

Main state machine

This runs the 8-state cycle for the displays, described above in the "how it works" section. States 1,
3, 5 and 7 don't really have much to do as regards driving the displays. For this reason, other tasks
are also performed in state 1 (incrementing the time if one second has elapsed) and state 3 (alarm
clock functions); nothing extra has been implemented in states 5 and 7 (yet).

TO-DO LIST

There are a couple more things I would still like to do one day:
1. Find the part numbers of the (few) missing parts.

2. Improve the photocell's response to light: I have found that even in a well-lit room, the 7-
segment displays don't quite reach maximum brightness. A lower resistance photocell might be
better here.

3. Make the birthdate where the clock displays "HAPPY BIRTHDAY™" settable.

4. Make the clock automatically adjust for daylight savings. This is a bit of a pig, because different
countries and regions have different arrangements for daylight savings. Worse still, these might
change as governments change their policies. So, the "daylight savings start date", "daylight
savings end date" and maybe also the time at which the clock goes back / forth an hour should
be settable.

5. The clock currently displays the date in "European" format, i.e. DD-MM-YYYY. I suppose this
could be made settable. An idea would be to make it so that if SW6 is set for 50Hz (Europe)
then the European DD-MM-YYY'Y format is used, and if SW6 is set for 60Hz (U.S.) then the
MM-DD-YYYY display format is used.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 7

Store "previous
state”

< State start

| R7.0=!INT |

R7.2=R7.1

R7.1=0
(no rising edge on lINT
has been found yet)!

|
(State end >

o

Look for early
rising edge

State start >

In the previous state,
IINT was logic 1 so we
are still looking for a
logic 0.

APPENDIX A: CLOCK RECOVERY STATE MACHINE FLOWCHARTS

R7.0=!INT

P

In the previous state,
IINT was logic 0. It is
still logic O; nothing has

/changed, do nothing.

‘ Provide a Clock Tick ‘

‘ bSync="Early" ‘

R6=0 (Reset the
State Machine)

In the previous state,
IINT was logic 0. It is
now logic 1, so we have
a rising edge on !INT.

Note: There is no need
to store the current
state of IINT in R7.0,
since the State Machine
is being reset anyway.

(State end >

Flag R7.0 is used for storing the "previous
state of lINT", i.e. the state of !INT during
the previous state.

Flag R7.1 shows whether a rising edge
was found on !INT:

- R7.1=0: Arising edge was not found on !
INT, so provide a "fill-in" Clock Tick in the
next Clock Recovery State Machine cycle.
- R7.1=1: Arising edge was found on !INT,
so do not provide a "fill-in" Clock Tick in the
next Clock Recovery State Machine cycle.

Flag R7.2 is a copy of R7.1, made early in
the Clock Recovery State Machine cycle. It
signals wheterh a rising edge was found on
IINT in the previous Clock Recovery State
Machine Cycle.

R6 is the state counter for the Clock
Recovery State Machine.

bSync is a memory variable used for
displaying the state of the Clock Recovery
State Machine where the rising edge on !
INT was found. This is useful for
debugging.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 8

State start

>

Look for correct
rising edge

In the previous state,
IINT was logic 1 so we
are still looking for a
logic 0.

R7.0=!INT

}7

In the previous state,
IINT was logic 0. Itis
still logic 0; nothing has

/changed, do nothing.

‘ Provide a Clock Tick ‘

bSync="Correct"

R6=0 (Reset the
State Machine)

Y

In the previous state,
IINT was logic O. It is
now logic 1, so we have
a rising edge on !INT.

Same code as

used in "Look

for early rising
edge”

R7.2==

1?

N
In the last
State
Machine
cycle, no
Clock Tick
had been
provided.
So, provide
a "fill-in"
Clock Tick
now.

‘ Provide a Clock Tick ‘

R6

-0 ‘

-

State end

>

Forcibly reset the State Machine. This is necessary because if
the 50Hz/60Hz input fails and the State Machine is clocked by
"fill-in" Clock Ticks, we want the repetition rate of fill-in Clock

Ticks to be correct. If the State Machine were left to move to the
"look for late rising edge" state, the repetition rate would be slow.

Look for late

rising edge

State start

(

>

| R7.1—1

‘ bSync="Late"

/

In the previous state,
IINT was logic 1. Itis
too late to look for logic
0, assume !INT is stuck
high.

bSync="Stuck high" F

‘ Provide a C|OCF\ In the previous state,

In the previous state,
IINT was logic 0. Itis
still logic 0; assume
IINT is stuck low.

bSync="Stuck low"

P

IINT was logic 0. It is
now logic 1, so we have
a rising edge on !INT.

R6=0 (Reset the
State Machine)

State end

>

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 9

APPENDIX B: ALARM ENGINE FLOWCHART
Alarm engine

< Start >

R7.4==

7.5==

(Alarm on)? (Alarm fllence)

It is time to sound the
alarm, and the alarm

Alternately start and
stop the sound every
second:

bHour==
bAIMH?

Sec is

has not been silenced.

odd number
?

Alarm turned
off or today's
alarm

bMin==
bAIMM?

finished.

Time to
sound alarm.

‘Pl.S:O (make a sound)‘ ‘ P1.5=1 (stop sound)

R7.5 (Alarm Silence)=0

|
T0==1 ..
(button open) < Finished >
?

Button
pushed while
alarm ringing

R7.5 (Alarm Silence)=1

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 10

Flag R7.4 will be used as
the "Alarm On" flag. When
it is logic 1, the alarm is
on.

Flag R7.5 will be used as
the "Alarm Silenced" flag.
It will be 0, unless the
alarm has been silenced
by pushing the button on
TO while the alarm is
ringing.

bDbnce is a variable which
will store the value of the
Clock Tick Counter (R1)
the moment the button is
pressed.

R1 cycles every second.
So, if the button is still
pressed when R1 again
comes around to
R1==bDbnce, we know the
button has been pressed
for one second.

bAISTM is a variable which
will be used as the Alarm
State Machine Counter.

TO button Alarm on-off

State Machine

A three-state state machine is
used to determine whether the
button on TO has been held
pressed for 1 second, to toggle
Alarm on-off.

In State 0, the State Machine
checks whether the button has
been pressed. If it has, it moves
to state 1. The Clock Tick
Counter (R1) is stored in
bDbnce.

In State 1, the State Machine
waits until the Clock Tick
Counter advances beyond its
current value (==bDbnce).

In State 2, the State Machine
knows that the Clock Tick
Counter has advanced beyond
bDbnce. The Clock Tick

State 0: Check
button on TO

< State start

TO==
(button open) ——
? Y
N
P1.0==17? —]
N

v /
If P1.0==0, the
clock is being

set; the button
is used for

>

State 1: Wait for

Clock Tick

State start >

R1==bDbnce??

N

pressed.

Y

/

If R1 is still
==bDbnce, we
are still on the
same Clock
Tick as when
the button was

State bAISTM=2

State 2: Wait for

1 second

(

State start

>

TO==1
(button open)
?

N
P1.0==1"?
Y

R1==bDbnce??

setting the Y
clock, not for 1 second has
State end >

alarm < elapsed, the
functions.

button is still
pressed and

Store the Clock Tick
Counter (R1) in bDbnce

Counter cycles every 1 second,
so when the Clock Tick Counter
is again ==bDbnce, we know
that 1 second has elapsed. If
the button is still pressed, then
Alarm on-off is toggled.

the clock is
not being set.

‘ ‘ ‘ ‘Toggle R7.4 (Alarm On)‘
State bAISTM=1

| State bAISTM=0 |

< State end >

< State end >

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 11

APPENDIX C: SOFTWARE LISTING

In days of old when men were bold though trousers were invented, we used to load code into our
terminals, Sinclairs, Commodore PETs, whatever by typing it in. Clearly, I don't suggest anyone
does this. I include the software listing below none-the-less, in case file ALARMH.asm gets
detached from this document and is no longer obtainable for some reason.

; ALARMH.ASM: Contains the complete clock and alarm software.

; Register use: Only Bank 0 registers will be used in main code. It is

; generally wise to leave Bank 1 registers unused, for use by interrupt service
; routines.

; RO: General purpose register, may be altered by routines.

; R1: Clock tick counter, decrements from 50 or 60 to 0.

; R2: Character to be written to the top display.

; R3: Character to be written to the display 2nd. from top.

; R4: Character to be written to the display 2nd. from bottom.

; R5: Character to be written to the bottom display.

; R6: Clock Recovery State Machine current state.

; R7: This is used as a bit field:

; R7.0: "previous !INT state" flag. Stores the previous state of !'INT, so
; it can be compared to the current state of !'INT.

; R7.1: Set to 1 if a rising edge was found on !INT in the current Clock
; Recovery State Machine cycle.

; R7.2: a copy of R7.1, made early in the Clock Recovery State Machine

; cycle. This is logic 1 if a rising edge was found on !INT in the

; previous Clock Recovery State Machine cycle.

; R7.3: Seconds Increment Flag. Set to 1 if the Clock Tick Counter (R1)

; has decremented to zero; set to 0 otherwise.

; - It is set to 1 by the Clock Recovery State Machine.

; - It is set to © in Main State Machine State 1 (1Stl), which uses it.
; R7.4: Alarm On flag. When it is logic 1, the alarm is on.

; R7.5: Alarm Silenced flag. It is 0, unless the alarm has been silenced
; by pushing the button on TO while the alarm is ringing.

; Flags used:
; FO: Not used.
; F1: Not used, useful for passing information to interrupt service routines.

DIP switches on port P1:
SW1 on P1.0: Used as "Clock Set". To set the clock, set to On (logic 0).

SW2 on P1.1: -
SW3 on P1.2: | Used by subroutine SetClock to set the clock.
SW4 on P1.3: - On is logic 0, off is logic 1:

SW4 | SW3 | SwW2 |
P1.3 | P1.2 | P1.1 | Function

| On | On | Reset Seconds
On | On | Off | Set Minute
On | off | On | Set Hour
On | Off | Off | Set Date
off | On | On | Set Month
off | On | Off | Set Year
off | Off | On | Set Alarm Hour
off | Off | Off | Set Alarm Minute
SW5 on P1.4: On (logic 0): 12h clock. Off (logic 1): 24h clock.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 12

’

’

’
’
’
’
’
’
’
’
’
’

DIP switch SW6 on T1:

SW6 switches between 50 and 60Hz: On (logic 0): 50Hz. Off (logic 1): 60Hz.

External pushbutton on TO:

- When in clock set mode (P1.0==0), push the pushbutton (making TO logic 0),
to advance the counter being set.

- When in normal mode (P1.0==1), holding the pushbutton pressed for 1 second
will toggle the alarm on and off. Also, pushing the pushbutton while the
alarm is sounding will silence the alarm.

Alarm output:
P1.5 is the alarm output. When pulled logic low, the alarm sounds.

; Birthday:

equ eBrthD
equ eBrthM
equ eBrthy

; 7-segment

.equ eBlank
.equ eNumO
.equ eNuml
.equ eNum2
.equ eNum3
.equ eNum4
.equ eNumb
.equ eNumé6
.equ eNum7
.equ eNum8
.equ eNum9
.equ elLetA
.equ elLetB
.equ elLetD
.equ elLetHC
.equ elLetHL
.equ eletL
.equ elLetI
.equ elLetP
.equ elLetR
.equ eLetT
.equ elLetY

7-segment

.equ eCRStU

equ eCRStL

#0x16
#0x04
#OXFA

’

’

; 22nd. of

April

; 2's complement of last two digits of birth year (06).

display definitions:

ABCDEFGO

#0x00 ; 00000000
#OXFC ; 11111100
#0x60 ; 01100000
#0xDA ; 11011010
#OXF2 ; 11110010
#0x66 ; 01100110
#0OxB6 ; 10110110
#0xBE ; 10111110
#OXEO ; 11100000
#OXFE ; 11111110
#0OxF6 ; 11110110
#OxXEE ; 11101110
#0x3E ; 00111116
#OXT7A ; 01111010
#0Ox6E ; 01101110
#0OX2E ; 00101110
#0x1C ; 00011100
#0x08 ; 00001000
#0xCE ; 11001110
#Ox0A ; 00001010
#0Ox1E ; 00011110
#0OX76 ; 01110110

display definitions for
ABCDEFGO

#0Ox7C ; 01111100:
#0x1C ; 00011100:

Autocall_LD10_QMS_8048_.

’

Clock Recovery State Machine display:

U, displayed while bSync has not been set.
L, displayed when !INT input is stuck low.

8039_wall_alarm_clock_v3.odt Page 13

.equ eCRStH #0OxX6E ; 01101110: H, displayed when !INT input is stuck high.
.equ eCREgE #0x80 10000000: Displayed for early rising edge on !INT.
.equ eCREgC #0x02 00000010: Displayed for on-time rising edge on !INT.
.equ eCREgL #0x10 00010000: Displayed for late rising edge on !INT.

~s s o~ o~

; RAM variables

Alarm hour.
Alarm minute.

.equ bAlmHr #0Ox26
.equ bAlmMn #0Ox27

.equ bSec #0x20 ; Seconds counter.
.equ bMin #0x21 ; Minutes counter.
.equ bHour #0Ox22 ; Hour counter.
.equ bDate #0x23 ; Date counter.
.equ bMonth #0x24 ; Month counter.
.equ bYear #0x25 ; Year counter.

.equ bSync #0x28 ; Character to show in order to display the Clock
Recovery State Machine state where !'INT input
rising edge was found.

Main State Machine State Counter.

Stores the value of the Clock Tick Counter (R1l) the
moment the button on TO is pressed.

Alarm State Machine Counter.

.equ bStMSt #0x29
.equ bDbnce #OX2A

R L LT

.equ bALStM #0x2B

.org 0x0000 ; RESET vector.
JMP 1Main

.org 0x0003 ; External interrupt vector.
RETR

.org 0x0007 ; Timer interrupt vector.
RETR

§ e MAIN PROGRAM ROUTINE == ----cccmmcmmmmmmaoamanon-

1Main:
; Main program routine.
; Initialization:
; Select Bank 0 registers:
SEL RBO

; Initialize RAM variables:
CLR A
MOV RO, bSec
MOV @RO, A ; Initialize bSec=0.
MOV RO, bMin
MOV @RO, A ; Initialize bMin=0.
MOV RO, bAlmMn
MOV @RO, A ; Initialize bAlmMn=0.
MOV RO, bHour
MOV @RO, A ; Initialize bHour=0.
MOV RO, bAlmHr
MOV @RO, A ; Initialize bAlmHr=0.
INC A
MOV RO, bDate

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 14

MOV @RO, A ; Initialize bDate=1.
MOV RO, bMonth

MOV @RO, A ; Initialize bMonth=1.

MOV RO, bYear

MOV @RO, #OxOF ; Initialize bYear=15.

MOV RO, bSync

MOV @RO, eCRStU ; Initialize bSync to "Undefined".

MOV RO, bStMSt ; Reset Main State Machine

MOV @RO, #0x07 ; (start at 7, to be later incremented to 0).

CLR A

MOV RO, bDbnce

MOV @RO, A ; Initialize bDbnce=0 (arbitrary value).

MOV RO, bALlStM

MOV @RO, A ; Initialize Alarm on-off State Machine Counter
; to 0.

; Initialize flags:
; The Clock Recovery State Machine flags R7.0 to R7.3 are set to 0.
; The Alarm flags R7.4 and R7.5 are set to 0.

MOV R7, #0x00

; Clock Recovery State Machine initialization:

ANL P1, #OxBF ; Make P1.6 low to disable SN75176's output.
MOV R6, #0x00 ; Reset the Clock Recovery State Machine.
; Initialise the Clock Tick Counter (R1):
MOV R1, #0x3C ; Start with R1=60 (for 60HZz).
JT1 160HzC ; If T1 is high, leave R1 at 60.
MOV R1, #0x32 ; T1 was low, so start with R1=50 (for 50Hz).
160HzC:

; Start the State Machine Timer, which runs the State Machines.
; The crystal frequency is 4.608MHz, so the timer tick is
; 1/4.608MHz*3*5*%32=104usec. If I set the timer to overflow every 16 ticks,
; then I will have an overflow every about 1,67msec. This is the period I
; found the original software used for display column multiplexing.
; Note that between each timer overflow, 32*16=512 instruction cycles can
; can be processed.
MOV A, #0OxFO ; (256-16, for a timer count of 16).
MOV T, A
STRT T

1ELoop:

; Event loop:

; Has the State Machine Timer timed out?
JTF 1StChg ; Yes, so enter Main State Machine.
JMP 1ELoop ; No, so do noting.

1StChg:
; The State Machine Timer has timed out.
; Restart the timer:

MOV A, #OxFO

MOV T, A

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 15

The Clock Recovery State Machine has 11 states (60Hz) or 13 states (50Hz).
This is clocked by the State Machine Timer, thus separating each state by
1,67msec.

Within the 11 or 13 states of this state machine, the following are active:
With t=1/60Hz (if T1l==0) or t=1/50Hz (if Tl==1),

- LCREgE would catch an early rising edge on !'INT (i.e. at less than t).
- LCREgC would catch a rising edge on !INT occurring at time==t.

- LCREgL would catch a late rising edge on !INT (i.e. at more than t).

At state 1CRPrv, the State Machine starts looking for a logic 0 on the
'INT input. When this is found (if not in 1CRPrv then in 1CREgE or
LCREgC), it sets flag R7.0 to 0.

The State Machine then starts looking for a logic 1 on the !'INT input.
When this is found, a rising edge on the !'INT input has been detected,

so a Clock Tick is provided and the State Machine is reset to state 0.

If no rising edge on !'INT is detected until the final state (lCREgL),

the State Machine assumes we have lost mains power. It sets flag R7.1

and resets the State Machine to State 0. In the new Clock Recovery State
Machine cycle, state LCREgC checks whether R7.1 had been set. In this
case, it will provide a "fill-in" Clock Tick to compensate for the
earlier missing rising edge on !INT.

Variable bSync is set to the state in which the rising edge was found.

NE NE NE NE NE NE NE NE N NE NE NE NwE wE wE wE wE wE wEm wE ww

MOV A, R6 Increment the Clock Recovery State Counter
INC A (R6) to the next state.

; this should never happen, it is just put

ANL A, #OxOF ; IT R6 exceeds 15, reset it to 0. Note that
; here as a precautionary measure.

MOV R6, A
JT1 160HzA ; If T1 is high, we are running at 60Hz.
; T1 was low, so use state machine for 50Hz.
ADD A, #1SM50Hz ; 50Hz Cl. Rec. St. Machine jump table origin.
JMPP @A ; Select the appropriate routine.
1SM50Hz: ; 50Hz Clock Recovery State Machine jump table:
.db #LCRENnd ; State 0. 0,00msec. Unreachable.
.db #LCRENnd ; State 1. 1,67msec. Do nothing.
.db #1CRENnd ; State 2. 3,33msec. Do nothing.
.db #LCRENnd ; State 3. 5,00msec. Do nothing.
.db #1CREnd ; State 4. 6,67msec. Do nothing.
.db #LCRENnd ; State 5. 8,33msec. Do nothing.
.db #1CREnd ; State 6. 10,00msec. Do nothing.
.db #LCRENnd ; State 7. 11,67msec. Do nothing.
.db #1CREnd ; State 8. 13,33msec. Do nothing.
.db #1CRENnd ; State 9. 15,00msec. Do nothing.
.db #1CRPrv ; State 10. 16,67msec. Store previous
state.
.db #LCREgQE ; State 11. 18,33msec. Look for early
edge.
.db #LCREgC ; State 12. 20,00msec. Look for correct
edge.
.db #LCREgL ; State 13. 21,67msec. Look for late edge.
.db #1CREnd ; State 14. 23,33msec. Unreachable.
.db #LCRENnd ; State 15. 25,00msec. Unreachable.
160HZzA:
; Tl was high, so use state machine for 60Hz.
ADD A, #1SM6OHz ; 60Hz Cl. Rec. St. Machine jump table origin.
JMPP @A ; Select the appropriate routine.
1SM60Hz: ; 60Hz Clock Recovery State Machine jump table:
.db #LCRENnd ; State 0. 0,00msec. Unreachable.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 16

.db #LCRENnd ; State 1. 1,67msec. Do nothing.

.db #1CREnd ; State 2. 3,33msec. Do nothing.

.db #LCRENnd ; State 3. 5,00msec. Do nothing.

.db #1CREnd ; State 4. 6,67msec. Do nothing.

.db #LCRENnd ; State 5. 8,33msec. Do nothing.

.db #LCRENnd ; State 6. 10,00msec. Do nothing.

.db #LCRENnd ; State 7. 11,67msec. Do nothing.

.db #LCRPrv ; State 8. 13,33msec. Store previous
state.

.db #LCREgE ; State 9. 15,00msec. Look for early
edge.

.db #LCREgC ; State 10. 16,67msec. Look for correct
edge.

.db #LCREgL ; State 11. 18,33msec. Look for late edge.

.db #1CREnd ; State 12. 20,00msec. Unreachable.

.db #LCRENnd ; State 13. 21,67msec. Unreachable.

.db #1CREnd ; State 14. 23,33msec. Unreachable.

.db #LCRENnd ; State 15. 25,00msec. Unreachable.

1CRPrv:
; Set the "previous !INT state" flag (R7.0) to the current state of !INT,
; for use in later comparisons.

MOV A, R7 ; Get R7.

ANL A, #OxFE ; Start by setting Acc. bit 0 to 0.

JNI TINTOA ; If 'INT is logic O, leave Acc. bit 0 at 0.
ORL A, #0x01 ; VINT was logic 1, so set Acc. bit 0 to 1.

LINTOA:
; Note: The result (which is to go in R7.0) has been left in the Accumulator.

; Store a copy of R7.1 in R7.2, because R7.1 is set to O below, while its
; value is needed in 1CREgC.

ORL A, #0x04 ; Start by setting Acc. bit 2 to 1.
JB1 171E1A ; If R7.1==1, leave Acc. bit 2 at 1.
ANL A, #OxFB ; R7.1 was 0, so set Acc. bit 2 to 0.

171E1A:
; Note: The result (which is to go in R7.2) has been left in the Accumulator.

; Set R7.1 to 0 (since no rising edge on !'INT has been found yet)!

ANL A, #OxFD ; Set Acc. bit 1 to 0.
MOV R7, A ; Store R7.
JMP 1CREnd ; Finished.

1CREQE:

; Look for early rising edge on !INTO.
; - If the previous !'INT state (R7.0) was 1, this means !'INT had not fallen
; to logic 0. Continue searching for a logic 0 on !'INT (really, just
; store the value of !INT in R7.0).
; - If the previous value of !'INT (i.e. R7.0) is 0, then
; - if the current value of !'INT is 0, do nothing (since nothing has
; changed) .
; - if the current value of !'INT is 1, we have a rising edge on !INT.
; In this case,
; - A Clock Tick is provided,
; - R7.1 is set to 1 to inform the next Clock Recovery State Machine
; cycle that a Clock Tick has been provided,
; - bSync is set to "Early"
; - the Clock Recovery State Machine is reset to state 0.
MOV A, R7 ; Get R7.
JBO 170E1A ; If R7.0==1 go and set R7.0 to !INT.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 17

JNI 1CREnd

CALL 1ClkTk

MOV A, R7
ORL A, #0x02
MOV R7, A

MOV RO, bSync
MOV @RO, eCREgE

MOV R6, #0x00
JMP 1CRENnd

170E1A:
ANL A, #OxFE
JNI 1INTOC
ORL A, #0x01
LINTOC:
MOV R7, A
JMP 1CREnd

1CREQC:

~s = o~ o~

; Look for "correct" rising edge
; time). The routine is the same

MOV A, R7
JBO 170E1B

JNI TINTOD

CALL 1ClKkTk

MOV A, R7
ORL A, #0x02
MOV R7, A

MOV RO, bSync
MOV @RO, eCREgC

MOV R6, #0x00
JMP TINTOD

170E1B:
ANL A, #OxFE
JNI 1INTOE
ORL A, #0x01
LINTOE:
MOV R7, A

LINTOD:

’

’

~s wE wa o~

.
’

’

Is !'INT still logic 0? If so, do nothing.

The previous !'INT state (R7.0) was logic O
and the current !INT state is logic 1, so
we have a rising edge on !INT:

; Provide a Clock Tick,

Set R7.1 to 1,
Set bSync to "Early",
Reset the Clock Recovery State Machine,
Finished.

Set R7.0 to !INT. Note: Acc. already is =R7:
Start by setting Acc. bit 0 to 0.
If IINT is logic 0, leave Acc. bit 0 at 0.

I'INT was logic 1, so set Acc. bit 0 to 1.

Store R7.
Finished.

on !INTO (i.e. arriving at the expected
as for 1CREgE.

; Get R7.
; If R7.0==1 go and set R7.0 to !INT.

Is !'INT still logic 0? If so, do nothing.

The previous !'INT state (R7.0) was logic O
and the current !INT state is logic 1, so
we have a rising edge on !INT:

; Provide a Clock Tick,

Set R7.1 to 1,

Set bSync to "On-time",

Reset the Clock Recovery State Machine,
Finished.

Set R7.0 to !INT. Note: Acc. already is =R7:
Start by setting Acc. bit 0 to 0.
If 'INT is logic 0, leave Acc. bit 0 at 0.
I'INT was logic 1, so set Acc. bit 0 to 1.

Store R7.
Finished.

; Additionally, if the previous Clock Recovery State Machine cycle had not
; provided a Clock Tick (this is signalled by R7.2==0), then provide a
; "fill-in" Clock tick to compensate, and forcibly reset the Clock Recovery

; State Machine:

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 18

MOV A, R7
JB2 1CREnd

CALL 1ClkTk
MOV R6, #0x00
JMP 1CRENd

1CREgL:

.
’
’
.
’
’
’
’
’
’
’
’
’
’
’

Look for late rising edge on

- If the previous !'INT state
to logic 0. It is too late
that !'INT is stuck high.

Get R7.
If R7.2==1, the previous Clock Recovery State
Machine cycle had provided a Clock Tick, so
do nothing.

; Else, provide a "fill-in" Clock Tick,
; Reset the Clock Recovery State Machine,
; Finished.

~s wE o~ o~

1INTO.
(R7.0) was 1, this means !'INT had not fallen
to look for a logic O on !INT now; assume

- If the previous value of !'INT (i.e. R7.0) is 0, then
- if the current value of !'INT is O, assume !INT is stuck low.
- if the current value of !'INT is 1, we have a rising edge on !INT.

In this case,

- A Clock Tick is provided,
- R7.1 is set to 1 to inform the next Clock Recovery State Machine
cycle that a Clock Tick has been provided,

- bSync is set "Late",

- the Clock Recovery State Machine is reset to state 0.

MOV A, R7
JBO 170E1C

JNI 1INTOF

CALL 1ClkTk

MOV A, R7
ORL A, #0x02
MOV R7, A

MOV RO, bSync
MOV @RO, eCREgL
JMP 1SkipA

170E1C:

MOV RO, bSync
MOV @RO, eCRStH
IMP 1SkipA

LINTOF:

MOV RO, bSync
MOV @RO, eCRStL

1SkipA:

MOV R6, #0x00
JMP 1CRENd

1CRENd:

’

; Jump to Main State Machine:

JMP 1MStM

; Get R7.
; If R7.0==1 go and set bSync to "Stuck high".

; Is 'INT still logic 0?7 If so, go and set
; bSync to "Stuck low".

; The previous !'INT state (R7.0) was logic 0
; and the current !INT state is logic 1, so
; we have a rising edge on !INT:

; Provide a Clock Tick,

; Set R7.1 to 1,

; Set bSync to "Late".

; VINT stuck high: Set bSync to "Stuck high".

; VINT stuck low: Set bSync to "Stuck low".

; Reset the Clock Recovery State Machine.
; Finished.

; Clock Recovery State Machine end.

; A JMP instruction is used because of the
; change in memory page.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 19

.org 0x0100 ; Helps avoid page break within routine.

lMStM

The Main State Machine has eight states, which it cycles through using

memory variable bStMSt as the State Counter.

The states are:

- 0: Writes leftmost display column segments.

- 1: Strobes P2.7 low to switch on leftmost display column,

then deals with seconds increment.

2: Writes 2nd. from left display column segments.

- 3: Strobes P2.6 low to switch on 2nd. from left display column,
then runs the TO button Alarm on-off State Machine and the alarm
engine.

NE s NE NE NE NE NwE N N NE wE N v o wE N

- 4: Writes 2nd. from right display column segments.
- 5: Strobes P2.5 low to switch on 2nd. from right display column.
- 6: Writes rightmost display column.
- 7: Strobes P2.4 low to switch on rightmost display column.
The Main State Machine then returns to 0.
MOV RO, bStMSt ; Increment the Main State Machine State
MOV A, @RO ; Counter to the next State.
INC A
ANL A, #0x07 ; If State==8, then make State=0.
MOV @RO, A
; Jump to the routine for the State:
ADD A, #1StJmp - 0x0100 ; Main State Machine jump table origin.
JMPP @A ; Select the appropriate routine.
1StImp: ; Main State Machine jump table:

.db #1StLcO - 0x0100
.db #1StLcl - 0x0100
.db #1StLc2 - 0x0100
.db #1StLc3 - 0x0100
.db #1StLc4 - 0x0100
.db #1StLc5 - 0x0100
.db #1StLc6 - 0x0100
.db #1StLc7 - 0x0100
; "Real" jumps are necessary due to the possibility of a change
; 1n memory page:
1StLco:
JMP 1St0
1StLcl:
JMP 1St1
1StLc2:
JMP 1St2
1StLc3:
JMP 1St3
1StLc4:
JMP 1St4
1StLc5:
JMP 1St5
1StLc6:
JMP 1St6
1StLc7:
JMP 1St7

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 20

15t0:
; State 0: Write segments for leftmost display column.
; P2.7->P2.4 all logic high:

ORL P2, #0OxFO ; Upper 4 bits.
; Write leftmost display column:
CALL 1DWhat ; Find out what is to be displayed.
ADD A, #1S0Jmp - 0x0100 ; State 0 jump table origin.
JMPP @A ; Select the appropriate action.
1S0Jmp:
.db #1S0Tme - 0x0100

.db #1lSOAlm - 0x0100
.db #1SOHBr - 0x0100

1S0Tme:
; Display the time (leftmost column).
MOV RO, bHour ; Get hour.
IN A, P1 ; Get P1 state.
JB4 124hA ; Is P1.4 logic 1 (SW5 Off, 24h clock)?
MOV A, @RO ; - No (12h clock). Get hour,
CALL 124H12 ; Convert hours from 24h to 12h,
JMP 124hB ; Done.
124hA:
MOV A, @RO ; - Yes (24h clock). Get hour.
124hB:
CALL 17SegT ; Convert to seven segment (tens).
MOV R2, A ; Leftmost top character.
MOV RO, bSec ; Get second.
MOV A, @RO
CALL 17SegT ; Convert to seven segment (tens).
MOV R3, A ; Leftmost 2nd. from top character.
MOV RO, bDate ; Get date.
MOV A, @RO
CALL 17SeqT ; Convert to seven segment (tens).
MOV R4, A ; Leftmost 2nd. from bottom character.
MOV R5, eNum2 ; Leftmost bottom character ("2").
JMP 1SOFin ; Finished.
1SO0Am:
; Display the alarm time (leftmost column).
MOV RO, bAlmHr ; Get alarm hour.
IN A, P1 ; Get P1 state.
JB4 124hI ; Is P1.4 logic 1 (SW5 Off, 24h clock)?
MOV A, @RO ; - No (12h clock). Get alarm hour,
CALL 124H12 ; Convert hours from 24h to 12h,
JMP 124hF ; Done.
124hI:
MOV A, @RO ; - Yes (24h clock). Get alarm hour.
124hF:
CALL 17SeqT ; Convert to seven segment (tens).
MOV R2, A ; Leftmost top character.
MOV R3, eBlank ; Leftmost 2nd. from top character.

MOV R4, eBlank
MOV R5, eBlank
JMP 1SOFin

Leftmost 2nd. from bottom character.
Leftmost bottom character.
Finished.

~s o~ o~ o~

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 21

1SOHBr:
; Display Happy Birthday (leftmost column).
MOV R2, eLetHC Leftmost top character.
MOV R3, elLetY Leftmost 2nd. from top character.

MOV R4, elLetB ; Leftmost 2nd. from bottom character.
MOV R5, elLetHL ; Leftmost bottom character.
JMP 1SOFin ; Finished.
1SOFin:
; Write leftmost column.
CALL 1lsWCol ; Write column.
JMP 1ELoop ; Return.
1Stl:
; State 1:

; Strobe P2.7 logic low to switch on leftmost display column:
ANL P2, #Ox7F

; Deal with the seconds increment flag:

MOV A, R7 ; Get R7.
JB3 1SecA ; Is R7.3==1 (i.e. Has one second elapsed)?
JMP 1ELoop ; - No, so do nothing (Return).
1SecA:
; One second has elapsed.
IN A, P1 ; Get P1 state.
JBO TNCStA Is P1.0 (Not Clock Set)==17

- No, so check TO (the pushbutton).

JTO lEndA If it is logic 1 (unpressed), do nothing.
CALL 1StClk ; If it is logic 0 (pressed), set clock.
JMP 1EndA

~s s o~ o~

INCStA:
CALL 1IncTm ;- Yes, so increment time.

LEndA:
MOV A, R7
ANL A, #OxF7 ; Clear the Seconds Increment Flag (R7.3).
MOV R7, A
JMP 1ELoop ; Return.

1St2:
; State 2: Write segments for 2nd. from left display column.
; P2.7->P2.4 all logic high:

ORL P2, #OxFO ; Upper 4 bits.
; Write 2nd. from left display column:
CALL 1DWhat ; Find out what is to be displayed.
ADD A, #1S2Jmp - 0x0100 ; State 2 jump table origin.
JMPP @A ; Select the appropriate action.
1S2Jmp:
.db #1S2Tme - 0x0100

.db #1S2Alm - 0x0100
.db #1S2HBr - 0x0100

1S2Tme:
; Display the time (2nd. from left column).
MOV RO, bHour ; Get hour.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 22

12

12

1S

12

12

1S

1S

’

.org

IN A, P1
JB4 124hC
MOV A, @RO
CALL 124H12
JMP 124hD
4hC:

MOV A, @RO
4hD:

CALL 17SegU
MOV R2, A

MOV RO, bSec
MOV A, @RO
CALL 17SegU
MOV R3, A

MOV RO, bDate
MOV A, @RO
CALL 17Segu
MOV R4, A

MOV R5, eNum@
JMP 1S2Fin

2Alm:

Get P1 state.
Is P1.4 logic 1 (SW5 Off, 24h clock)?
- No (12h clock). Get hour,
; Convert hours from 24h to 12h,
Done.

- Yes (24h clock). Get hour.

; Convert to seven segment (units).
2nd. from left, top character.

Get second.

; Convert to seven segment (units).
2nd. from left, 2nd. from top character.

Get date.

; Convert to seven segment (units).
2nd. from left, 2nd. from bottom character.

2nd. from left, bottom character ("0").
Finished.

Display alarm time (2nd. from left column).

MOV RO, bAlmHr
IN A, P1
JB4 124h]
MOV A, @RO
CALL 124H12
IMP 124hG
4h]:

MOV A, @RO
4hG:

CALL 17SegU
MOV R2, A

MOV R3, eBlank
MOV R4, eBlank
MOV R5, eBlank
JMP 1S2Fin

2HBr:

Display Happy Birthday (2nd.

MOV R2, elLetA

MOV R3, eBlank
MOV R4, elLetl

MOV R5, elLetD

JMP 1S2Fin

2Fin:

i Write 2nd. from left column.

CALL 1lsWCol
JMP 1ELoop

0x0200

’
’
’

.
’

~s s o~ s

; Get alarm hour.
; Get P1 state.
; Is P1.4 logic 1 (SW5 Off, 24h clock)?

- No (12h clock). Get alarm hour,
; Convert hours from 24h to 12h,
Done.

- Yes (24h clock). Get alarm hour.

; Convert to seven segment (units).
2nd. from left, top character.

2nd. from left, 2nd. from top character.
2nd. from left, 2nd. from bottom character.
2nd. from left, bottom character.

Finished.

from left column).

’
.
’
’
.
’
’

2nd. from left, top character.

2nd. from left, 2nd. from top character.
2nd. from left, 2nd. from bottom character.
2nd. from left, bottom character.

Finished.

; Write column.
Return.

Helps avoid page break within routine.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 23

15t3:
; State 3:

’

I

NE NE = wE o wE NE wE wE o wE o wE o wE o wE

Strobe P2.6 logic low to switch on 2nd. from left display column:
ANL P2, #OxBF

Alarm on-off State Machine:

A three-state State Machine is used to determine whether the button on TO

has been held pressed for 1 second, to toggle Alarm on-off.

- In State 0, the State Machine checks whether the button has been pressed.
If it has, the Clock Tick Counter (R1l) is stored in bDbnce and we move to
State 1.

- In State 1, the State Machine waits until the Clock Tick Counter advances
beyond its current value (==bDbnce).

- In State 2, the State Machine knows that the Clock Tick Counter has
advanced beyond bDbnce. The Clock Tick Counter cycles every 1 second, so
when the Clock Tick Counter is again ==bDbnce, we know that 1 second has
elapsed. If the button is still pressed, then Alarm on-off is toggled.

MOV RO, bA1StM ; Get the Alarm on-off State Machine counter.
MOV A, @RO
ADD A, #LAlSt] - 0x0200 ; Alarm on-off State Machine jump table origin.
JMPP @A ; Select the appropriate routine.

1A1St]: ; Alarm on-off State Machine jump table:

.db #LA1SMO - 0x0200
.db #LA1LSM1 - 0x0200
.db #1lA1SM2 - 0x0200

1ALSMO:

; State 0: Check button on TO:
JTO 1ASEnd Is TO==1 (button open)? If so, do nothing.

IN A, P1 ; Get P1 state.
JBO 1NCStB ; Is P1.0 (Not Clock Set)==17?
JMP 1ASEnd ; - No, so the clock is being set; the button
; is used for setting the clock, not for
; alarm functions. So, do nothing.
INCStB: ; - Yes, so the clock is not being set.
MOV A, R1 ; Store the Clock Tick Counter (R1)
MOV RO, bDbnce ; in bDbnce,
MOV @RO, A
MOV RO, bALlStM ; Proceed to Alarm on-off State Machine
MOV @RO, #0x01 ; State 1,
JMP 1ASEnd ; Finished.
1TA1SM1:
; State 1: Wait for Clock T1ck
MOV RO, bDbnce Is R1==bDbnce? If so, we are still on the
MOV A, R1 ; Clock Tick as when the button was first
XRL A, @RO ; pressed:

MOV RO, bA1StM - No, so proceed to Alarm on-off State
MOV @RO, #0x02 Machine State 2.

JZ 1ASEnd ; - Yes, so do nothing.
JMP 1ASEnd . Finished.

1A1SM2:

; State 2: Wait for 1 second:
JTO 1ASMRs ; Is TO==1 (button open)? If so, go and reset
the Alarm on-off State Machine.

IN A, P1 Get P1 state.
JBO 1NCStD Is P1.0 (Not Clock Set)==
JMP 1ASMRs - No, so the clock is being set; go and reset

R

the Alarm on-off State Machine.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 24

INCStD:
MOV RO, bDbnce
MOV A, R1
XRL A, @RO
JNZ 1ASEnd

MOV A, R7
JB4 1A10nB
ORL A, #0x10
MOV R7,A

JMP 1ASMRs

1A10nB:

ANL A, #OXxEF
MOV R7,A

LASMRs :
MOV RO, bAlStM
MOV @RO, #0x00

LASEnd:

; Alarm engine:
MOV A, R7
JB4 1A10nA
JMP 1NoAlm

1A1O0NA:
MOV RO, bHour
MOV A, @RO
MOV RO, bAlmHr
XRL A, @RO
JNZ 1NoAlm

MOV RO, bMin
MOV A, @RO

MOV RO, bAlmMn
XRL A, @RO

JNZ 1NoAlm

JTO 1ButOA

MOV A, R7

ORL A, #0x20

MOV R7, A
1ButOA:

MOV A, R7
JB5 1NoSnd

MOV RO, bSec
MOV A, @RO
JBO 1NoSnd

ANL P1, #OxDF

NE s N wE NE s wE ww

~E NE s N wE wE o wE o e

NE NE N wE o wE = wa

- Yes, so the clock is not being set.
Is R1==bDbnce?

- No, so do nothing.
- Yes, so 1 second has elapsed, the
button is still pressed and the clock is
not being set.
Toggle R7.4 (the Alarm On flag):
Is R7.4==17
- No, so set R7.4=1,
and store R7.

- Yes,
so set R7.4=0,
and store R7.

Reset Alarm on-off State Machine to State 0:

Alarm on-off State Machine finished.

Get R7.
Is R7.4==1 (Alarm On)?
- No, so do not sound alarm.

- Yes, the alarm is on.
Is bHour==bAlmHr?

- No, so do not sound alarm.
- Yes.
Is bMin==bAlmMn?

- No, so do not sound alarm.
- Yes.
Is TO==1 (button open)?
- No, so the button is pushed while the
alarm is ringing. Silence the alarm:
Get R7.
Set R7.5 (Alarm Silence)=1.
Store R7.
- Yes, TO0==1, so the button is open.

Get R7.

Is R7.5==1 (Alarm Silence)?

- No, so it is time to sound the alarm
and the alarm is not silenced.
Alternately start and stop the sound
every second:

Get the seconds counter bSec.

; Is bSec an odd number?
- If yes, stop the sound.
- No. Set P1.5=0 to make a sound,

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 25

JMP 1ELoop ; Return.

INoAlm: ; Either the alarm is turned off, or today's
alarm is finished. Set R7.5 (Alarm Silence)=0
in preparation for tomorrow's alarm:

P I

MOV A, R7 Get R7,
ANL A, #OxDF Set R7.5 (Alarm Silence)=0,
MOV R7, A Store R7.
1NoSnd:
ORL P1, #0x20 ; Set P1.5=1 to stop the sound.
JMP 1ELoop ; Return.
1St4:

; State 4: Write segments for 2nd. from right display column.
; P2.7->P2.4 all logic high:

ORL P2, #OxFO ; Upper 4 bits.
; Write 2nd. from right display column:
CALL 1DWhat ; Find out what is to be displayed.
ADD A, #1S4Jmp - 0x0200 ; State 4 jump table origin.
JMPP @A ; Select the appropriate action.
1S4Jmp:
.db #1S4Tme - 0x0200

.db #1S4Alm - 0x0200
.db #1S4HBr - 0x0200

1S4Tme:
; Display the time (2nd. from right column).
MOV RO, bMin ; Get minute.
MOV A, @RO
CALL 17SegT ; Convert to seven segment (tens).
MOV R2, A ; 2nd. from right, top character.

; 2nd. from right, 2nd. from top character (R3):

; IT P1.4 is logic 1 (SW5 Off, 24h clock): R3=eBlank.

; If P1.4 is logic O (SW5 On, 12h clock): R3=eLetA (AM) or elLetP (PM).
MOV R3, eBlank Make R3=eBlank to begin with.

IN A, P1 ; Get P1 state.
JB4 124hE ; Is P1.4 logic 17
; - No (12h clock), so write AM or PM:
MOV RO, bHour ; Get hour.
MOV A, @RO
ADD A, #0OxF4 ; Set carry flag if bHour>=12.
MOV R3, elLetA ; Let's start with R3=elLetA.
JNC 1AMB ; Is bHour>=127? (use carry flag set above).
MOV R3, elLetP ; - Yes it is, so make R3=eletP.
1AMB: ; - No it isn't, so leave R3=eletA.
124hE: ; - Yes (24h clock), so leave R3=eBlank.
MOV RO, bMonth ; Get month.
MOV A, @RO
CALL 17SeqT ; Convert to seven segment (tens).
MOV R4, A ; 2nd. from right, 2nd. from bottom character.
MOV RO, bYear ; Get year.
MOV A, @RO
CALL 17SegT ; Convert to seven segment (tens).
MOV R5, A ; 2nd. from right, bottom character.
JMP 1S4Fin ; Finished.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 26

1S4Alm:

; Display alarm time (2nd. from right column).

MOV RO, bAlmMn
MOV A, @RO
CALL 17SeqT
MOV R2, A

’

’

; Get alarm minute.

; Convert to seven segment (tens).

; 2nd. from right, top character.

; 2nd. from right, 2nd. from top character (R3):
24h clock): R3=eBlank.
12h clock): R3=eLetA (AM) or eLetP (PM).

; If P1.4 is logic 1 (SwW5 Off,
; If P1.4 is logic O (SW5 On,
MOV R3, eBlank
IN A, P1
JB4 124hH

MOV RO, bAlmHr
MOV A, @RO
ADD A, #0OxF4
MOV R3, elLetA
JNC TAMC
MOV R3, elLetP
1AMC:
124hH:

MOV R4, eBlank
MOV R5, eBlank
JMP 1S4Fin

1S4HBr:
; Display Happy Birthday (2nd.
MOV R2, elLetP

MOV RO, bYear
MOV A, @RO
ADD A, eBrthy
CALL 17SeqT
MOV R3, A

MOV R4, elLetR
MOV R5, elLetA
JMP 1S4Fin

1S4Fin:

; Write 2nd. from right column.
CALL 1sWCol
JMP 1ELoop

.org 0x0300

1St5:
; State 5:

’

~s o~ o~ s

.
’

’
’

.
’

; Make R3=eBlank to begin with.

Get P1 state.

Is P1.4 logic 17

- No (12h clock), so write AM or PM:
Get alarm hour.

Set carry flag if bAlmHr>=12.
Let's start with R3=elLetA.
Is bHour>=127? (use carry flag set above).
- Yes it is, so make R3=elLetP.
; - No it isn't, so leave R3=elLetA.
- Yes (24h clock), so leave R3=eBlank.

; 2nd. from right, 2nd. from bottom character.
; 2nd. from right, bottom character.

Finished.

from right column).

’

’

’

; 2nd. from right, top character.

Get current year.

Subtract birth year.
; Convert to seven segment (tens).
2nd. from right, 2nd. from top character.

2nd. from right, 2nd. from bottom character.

2nd. from right, bottom character.
Finished.

; Write column.

; Return.

; Helps avoid page break within subroutine.

; Strobe P2.5 logic low to switch on 2nd. from right display column:

ANL P2, #OxDF
JMP 1ELoop

15t6:

’

; Return.

; State 6: Write segments for rightmost display column.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 27

; P2.7->P2.4 all logic high:
ORL P2, #OxFO ; Upper 4 bits.
; Write rightmost display column:
CALL 1DWhat
ADD A, #1S6Jmp - 0x0300
JMPP @A
1S6Jmp:
.db #1S6Tme
.db #LS6Alm - 0x0300
.db #LS6HBr - 0x0300

; Find out what is to be displayed.
; State 6 jump table origin.
; Select the appropriate action.

- 0x0300

1S6Tme:
; Display the time (rightmost column).
MOV RO, bMin ; Get minute.
MOV A, @RO
CALL 17SegU ; Convert to seven segment (units).
MOV R2, A ; Rightmost top character.

Rightmost 2nd. from top character:

MOV R3, elLetL
MOV A, R7

JB4 1A10nC

MOV R3, eBlank

1A10NnC:

MOV RO, bMonth
MOV A, @RO
CALL 17SegU
MOV R4, A

MOV RO, bYear
MOV A, @RO
CALL 17SegU
MOV R5, A

JMP 1S6Fin

1S6Alm:

NE s v ws owE owa

Begin with the letter "L" ("Alarm On").
Get R7.

Is R7.4==1?

- No, so R3=blank ("Alarm Off").

- Yes, so leave R3=letter "L".

Get month.

; Convert to seven segment (units).
Rightmost 2nd. from bottom character.

Get year.
; Convert to seven segment (units).

Rightmost bottom character.
Finished.

; Display alarm time (rightmost column).

MOV RO, bAlmMn
MOV A, @RO
CALL 17SegU
MOV R2, A

MOV R3, elLetL
MOV A, R7

JB4 1A10nD

MOV R3, eBlank

LA1ONnD:

MOV R4, eBlank

MOV RO, bSync

’

~E NE s v wE o

; Get alarm minute.

; Convert to seven segment (units).
Rightmost top character.

Rightmost 2nd. from top character:
Begin with the letter "L" ("Alarm On").
Get R7.

Is R7.4==17

- No, so R3=blank ("Alarm Off").

- Yes, so leave R3=letter "L".

Rightmost 2nd. from bottom character.

Get Clock Recovery State Machine status

MOV A, @RO ; display character.
MOV R5, A ; Rightmost bottom character.
JMP 1S6Fin ; Finished.

1S6HBr:

; Display Happy Birthday (rightmost column).

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 28

MOV R2, elLetP ; Rightmost top character.

MOV RO, bYear ; Get current year.
MOV A, @RO
ADD A, eBrthy ; Subtract birth year.
CALL 17SeqU ; Convert to seven segment (units).
MOV R3, A ; Rightmost 2nd. from top character.
MOV R4, eLetT ; Rightmost 2nd. from bottom character.
MOV R5, eLetY ; Rightmost bottom character.
JMP 1S6Fin ; Finished.
1S6Fin:
; Write rightmost column.
CALL 1lsWCol ; Write column.
JMP 1ELoop ; Return.
1St7:
; State 7:

; Strobe P2.4 logic low to switch on rightmost display column.
ANL P2, #OxEF
JMP 1ELoop ; Return.

.org 0x0400 ; Helps avoid page break within subroutine.

1ClKTk:

; Subroutine ClockTick:

; Provides a "Clock Tick". It decrements the Clock Tick Counter RI.

; - If Rl has not reached zero, it just returns.

; - If Rl has reached zero, the Seconds Increment Flag (R7.3) is set to inform
; the Main State Machine that one second has elapsed.

; Then, R1 is reset to 60 (for 60Hz) or 50 (for 50Hz).

Affects RI.
Affects bit 3 of R7.
DINZ R1, 1CTEnd ; Decrement the Clock Tick Counter. If it
; has not reached zero, we are finished.
MOV A, R7 ; The Clock Tick Counter has reached zero, so:
ORL A, #0x08 ; Set the Seconds Increment Flag (R7.3),
MOV R7, A

Re-Initialise the Clock Tick Counter:

MOV R1, #0x3C Start with R1=60 (for 60Hz).

~s s o~ o~

JT1 1CTEnd If T1 is high, leave Rl at 60.
MOV R1, #0x32 Tl was low, so set R1=50 (for 50Hz).
1CTEnd:
RET
1DWhat:

; Subroutine DisplayWhat:

; Determines what is to be displayed and returns the result in the accumulator:
; Accumulator=0 if the time is to be displayed.

; Accumulator=1 if the alarm time is to be displayed.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 29

; Accumulator=2 if "Happy Birthday" is to be displayed.

; Affects RO.
IN A, P1 ; Get P1 state.
ANL A, #0x0D ; 00001101 (keep only P1.0, P1.2, P1.3).
XRL A, #0x0C ; 00001100: Are P1.0==0, P1l.2==1, P1l.3==
; (i.e. is the alarm time being set)?
JZ 1DsAlm ; If so, go and display the alarm time.
IN A, P1 ; Get P1 state.
JBO UINCStC ; Is P1.0==0 (i.e. is the clock being set)?
JMP 1DsTme ; - Yes, so go and display the time.
INCStC: ; - No, the clock is not being set.
JNTO 1DsAlm ; Is the button on TO pushed (T0==0)? If so,
go
; and display the alarm time.
MOV RO, bDate ; Get the date.
MOV A, @RO
XRL A, eBrthD ; Is the date equal to birth date?
JNZ 1DsTme ; If not, go and display the time.
MOV RO, bMonth ; Get the month.
MOV A, @RO
XRL A, eBrthM ; Is the month equal to birth month?
JINZ leTme ; If not, go and display the time.

; The clock or alarm are not belng set, the button on TO is not pushed and
; the date and month are == birthday. Dlsplay Happy Birthday:

MOV A, #0x02

RET

1DsAlm: ; Display the alarm time.
MOV A, #0x01
RET

1DsTme: ; Display the time.
CLR A
RET

1sWCol:

; Subroutine WriteColumn:

; Uses subroutine lsWSeg to write the segment information to

; the displays in the column which is to be addressed with P2.7->P2.4 after
; this function returns.

; The data to be written to the display column should be provided as follows:
; R2: Character to be written to the top display.

; R3: Character to be written to the display 2nd. from top.

; R4: Character to be written to the display 2nd. from bottom.

; R5: Character to be written to the bottom display.

; Affects RO, R2, R3, R4, R5.

; The Carry flag is affected.

CALL 1sWSeg ; Write dummy segment into 4015 shift
register.
CALL 1sWSeg ; Write G segments.
CALL 1sWSeg ; Write F segments.
CALL 1sWSeg ; Write E segments.
CALL 1lsWSeg ; Write D segments.
CALL 1sWSeg ; Write C segments.
CALL 1sWSeg ; Write B segments.
CALL 1sWSeg ; Write A segments.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 30

1s

’
.
’
’
.
’
’
.
’

RET

WSeg:

Subroutine WriteSegments:

Writes the segment information in the LSB of R2, R3, R4, R5 to data bits
D3, D2, D1 and DO of a dummy external address.

RO is used as a temporary store.

R2, R3, R4 and R5 are returned rotated right through carry by 1 bit.

The Carry flag is affected.

MOV RO, #0x00

; Clear RO.

; Write segment for the top display to RO:

MOV A, R2

RRC A

MOV R2, A

JNC 1R20K

INC RO
1R20K:

; Prepare RO to
MOV A, RO
RL A
MOV RO, A
; Write segment
MOV A, R3
RRC A
MOV R3, A
JNC 1R30K
INC RO
1R30K:

; Prepare RO to
MOV A, RO
RL A
MOV RO, A
; Write segment
MOV A, R4
RRC A
MOV R4, A
JNC 1R40K
INC RO
1R40K:

; Prepare RO to
MOV A, RO
RL A
MOV RO, A
; Write segment
MOV A, R5
RRC A
MOV R5, A
JNC T1R50K
INC RO
1R50K:

receive

for the

receive

for the

receive

for the

; Move segment data to carry flag.
; If segment is zero, jump.
; Segment was one so make lowest bit of RO one.

next bit:

2nd. from top display to RO:
; Move segment data to carry flag.
; If segment is zero, jump.

; Segment was one so make lowest bit of RO one.

next bit:

2nd. from bottom display to RO:
; Move segment data to carry flag.
; If segment is zero, jump.

; Segment was one so make lowest bit of RO one.

next bit:

bottom display to RO:
; Move segment data to carry flag.

; If segment is zero, jump.
; Segment was one so make lowest bit of RO one.

; Send segment data, which is now in RO, to the displays:

MOV A, RO
MOVX @RO, A
RET

; Dummy, irrelevant address in RO.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 31

124H12:

; Converts the 24 hour value in the accumulator (0 to 23) to the 12 hour value
; (0 to 12).

; The Carry flag is affected.

INZ #1n12AA ; Special case: Is it 12AM (hour===0)7?
MOV A, #0x0C ; - Yes, so make A=12.
RET
1n12AA: ; - No, it is not 12AM.
ADD A, #OxF3 ; Set carry bit if Hour > 13
JNC 1AMA ; Is it 1PM (hour==13) or beyond?

; It is 1PM (hour==13) or beyond, so subtract 12 from hour value.
; To subtract 12, we would have to add 12's two's complement (0xF4) to A.
; Since we have already added OxF3 above, all we need to do is INC A.
INC A
RET
TAMA:
; It is from 1 to 12AM, so A has to be returned unaltered. However, we have
; already added OxF3 to A, so we need to add OxF3's two's complement to
; bring A back to where it was.
ADD A, #0Ox0D
RET

.org 0x0500 ; Helps avoid page break within subroutine.

1StClk:
; Subroutine SetClock: Increments the approprlate counter (minute, hour, date
; etc) relevant to the setting of P1.1, P1.2 and P1.3, or resets the seconds
; counter.
; Uses RO.
; The Carry flag is affected.
; Check the setting of P1.1, P1.2 and P1.3:
IN A, P1 ; Get P1 state.
ANL A, #OxOE 00001110 (keep only P1.1, P1.2 and P1.3).

RR A ; Move to bits 0, 1 and 2.

ADD A, #1SCJImp - 0x0500 ; SetClock jump table origin.

JMPP @A ; Select the appropriate routine.
1SCImp: ; SetClock jump table:

.db #1SCSe - 0x0500
.db #1SCMi - 0x0500
.db #LSCHr - 0x0500
.db #1SCDt - 0x0500
.db #1SCMo - 0x0500
.db #1SCYr - 0x0500
.db #LSCAH - 0x0500
.db #1SCAM - 0x0500

1SCSe: ; Reset the seconds counter:
CLR A
MOV RO, bSec
MOV @RO, A
RET

1SCMi:

CALL 1IncMi ; Increment minute.
RET

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 32

1SCHr:

CALL 1IncHr
RET

1SCDt:

CALL 1IncDt
RET

1SCMo:

CALL 1IncMo
RET

1SCYr:

CALL 1IncYr
RET

; Increment hour.

; Increment date.

; Increment month.

; Increment year.

1SCAH: ; Increment Alarm Hour:
MOV RO, bAlmHr ; Get current Alarm Hour value.
MOV A, @RO
ADD A, #OxE9 ; Set carry flag if bAlmHr >= 23.
MOV A, @RO ; Get value of bAlmHr again.
INC A ; Increment alarm hour.
JNC 1nH23B ; Was bAlmHr >= 23 (carry flag from above)?
CLR A ; - Yes, so set bAlmHr=0.

1nH23B:
MOV @RO, A ; Store bAlmHr.
RET

1SCAM: ; Increment Alarm Minute:
MOV RO, bAlmMn ; Get current Alarm Minutes value.
MOV A, @RO
ADD A, #0xC5 ; Set carry flag if bAlmMn >= 59.
MOV A, @RO ; Get value of bAlmMn again.
INC A ; Increment alarm minutes.
JNC 1nM59B ; Was bAlmMn >= 59 (carry flag from above)?
CLR A ; - Yes, so set bAlmMn=0.

1nM59B:
MOV @RO, A ; Store bAlmMn.
RET

1IncTm:

; Subroutine IncrementTime:
; to all other time units.

’
’
I
I

Increments the seconds counter, and rolls over

Uses RO.

The Carry flag is affected.

; Increment the seconds counter bSec. If the seconds counter reaches 59,
; it is returned to 0 and the Carry flag is set.

MOV RO, bSec
MOV A, @RO
ADD A, #0OxC5 ; Set carry flag if bSec >= 59.
MOV A, @RO ; Get value of bSec again.
INC A ; Increment seconds.
JNC 1nS59A ; Was bSec >= 59 (carry flag from above)?
CLR A ; - Yes, so set bSec=0.
1nS59A:
MOV @RO, A ; Store bSec.
JNC 1EndB ; Did seconds roll over? If not, we are done.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 33

; Seconds did roll over, so increment minutes:
CALL 1IncMi
JNC 1EndB ; Did minutes roll over? If not, we are done.

; Minutes did roll over, so increment hours:
CALL lIncHr
JNC 1EndB ; Did hours roll over? If not, we are done.

; Hours did roll over, so increment date:
CALL 1IncDt
JNC 1EndB ; Did date roll over? If not, we are done.

; Date did roll over, so increment month:
CALL 1IncMo
JNC 1EndB ; Did month roll over? If not, we are done.

; Month did roll over, so increment year:
CALL lIncYr

1EndB: ; Finished.
RET

1IncMi:

.
’
’
.
’
’
.
’

Subroutine lIncrementMinutes. Increments the minute counter bMin.
If the minutes counter reaches 59, it is returned to 0 and the Carry flag
is set.

Uses RO.

Affects the Carry flag.
MOV RO, bMin
MOV A, @RO
ADD A, #0xC5 ; Set carry flag if bMin >= 59.
MOV A, @RO ; Get value of bMin again.
INC A ; Increment minutes.
JNC 1nM59A ; Was bMin >= 59 (carry flag from above)?
CLR A ; - Yes, so set bMin=0.

1nM59A:
MOV @RO, A ; Store bMin.
RET

1IncHr:

’
’
’
’
’

Subroutine lIncrementHours. Increments the hours counter bHour.

If the hours counter reaches 23, it is returned to 0 and the Carry flag
is set.

Uses RO.

; Affects the Carry flag.

MOV RO, bHour

MOV A, @RO
ADD A, #OxE9 ; Set carry flag if bHour >= 23.
MOV A, @RO ; Get value of bHour again.
INC A ; Increment hours.
JNC 1nH23A ; Was bHour >= 23 (carry flag from above)?
CLR A ; - Yes, so set bHour=0.
1nH23A:
MOV @RO, A ; Store bHour.
RET
1IncDt:

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 34

Subroutine lIncrementDate. Increments the date counter bDate.
If the date counter reaches the number of days in the month, it is returned
to 1 and the Carry flag is set.
Note that this subroutine does cater for leap years.
Uses RO.
Affects the Carry flag.
Also uses bMonth, bYear.
; Set A to 2's complement of number of days in month:
MOV RO, bMonth

NE = N wE wE owE o wa

MOV A, @RO ; Get current month.
ADD A, #OXxFE ; Is it February?
JNZ lnFebA ; - No, so use lookup table.

; It is February, so use a special routine:
MOV RO, bYear

MOV A, @RO ; Get current year.
ANL A, 0x03 ; Keep only the lowest two bits.
JZ lLeapY ; Are the lowest two bits 07
MOV A, #OxE4 ; - No (not leap year). A=2's complement of 28.
JMP 1ContA
lLeapY:
MOV A, #OxE3 ; - Yes (leap year). A=2's complement of 29.
JMP 1ContA
1nFebA:

; It is not February, so use lookup table to find how many days in month.
MOV RO, bMonth

MOV A, @RO ; Get current month.
ADD A, #MDLkp - 0x0500 ; Lookup table base address.
MOVP A, @A
JMP 1ContA
IMDLkp: ; Lookup table for days in each month:
.db #0x00 ; Dummy (month 0).
.db #0OxE1l ; January (2 s complement of 31).
.db #0OxE4 ; February (2's complement of 28).
.db #0OxE1l ; March (2's complement of 31).
.db #0OxE2 ; April (2's complement of 30).
.db #0OxE1l ; May (2's complement of 31)
.db #0OxE2 ; June (2's complement of 30)
.db #0OxE1l ; July (2's complement of 31)
.db #0OxE1l ; August (2's complement of 31).
.db #0OxE2 ; September (2's complement of 30)
.db #0xE1l ; October (2's complement of 31)
.db #0OxE2 ; November (2's complement of 30).
.db #0xE1l ; December (2's complement of 31).
1ContA: ; We arrive here with A==2's complement of
; number of days in month.
MOV RO, bDate
ADD A, @RO ; Set carry flag if bDate >= days in month.
MOV A, @RO ; Get value of bDate again.
INC A ; Increment date.
JNC 1nDMxA ; Was bDate >= days in month (carry above)?
MOV A, #0x01 ; - Yes, so set bDate=l.
1nDMxA:
MOV @RO, A ; Store bDate.
RET
1IncMo:

’

; Subroutine lIncrementMonths.

Increments the months counter bMonth.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 35

~s = o~ o~

1I

’
’
’
’
’

.0
17

’
’
’
’
’
’

If the months counter reaches 12, it is returned to 1 and the Carry flag
is set.
Uses RO.
Affects the Carry flag.
MOV RO, bMonth

MOV A, @RO
ADD A, #0OxF4 ; Set carry flag if bMonth >= 12.
MOV A, @RO ; Get value of bMonth again.
INC A ; Increment months.
JNC 1nM12A ; Was bMonth >= 12 (carry flag from above)?
MOV A, #0x01 ; - Yes, so set bMonth=1.
1nM12A:
MOV @RO, A ; Store bMonth.
RET
ncYr:

Subroutine lIncrementYears. Increments the years counter bYear.
If the years counter reaches 99, it is returned to 15 and the Carry flag
is set.
Uses RO.
Affects the carry flag.
MOV RO, bYear

MOV A, @RO

ADD A, #0x9D ; Set carry flag if bYear >= 99.

MOV A, @RO ; Get value of bYear again.

INC A ; Increment years.

JNC 1nY99A ; Was bYear >= 99 (carry flag from above)?

MOV A, #OxOF ; - Yes, so set bYear=15.
1nY99A:

MOV @RO, A ; Store bYear.

RET
-------------------- 7-SEGMENT DISPLAY LOOKUP SUBROUTINES -------------------
rg 0x0600 ; Helps avoid page break within subroutine.
SeqT:

Translates the hexadecimal number in the accumulator to its 7-segment
representation for the tens digit. The result is returned in the accumulator.
Only works for numbers up to 99 decimal (0x63).

Note that this is routine is frightfully wasteful of space; however, it
returns in very few clock cycles (whereas a "proper" binary-to-BCD conversion

; would take about 80 clock cycles).

ADD A, #17SLKT - 0x0600 ; Lookup table base address.
MOVP A, @A
RET

17SLKT: ; Lookup table:
.db eNum0 ; Decimal 0.
.db eNum@ ; Decimal 1.
.db eNum@ ; Decimal 2.
.db eNum@ ; Decimal 3.
.db eNum@ ; Decimal 4.
.db eNum@ ; Decimal 5.
.db eNum@ ; Decimal 6.
.db eNum@ ; Decimal 7.
.db eNum@ ; Decimal 8.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 36

eNum0
eNuml
eNuml
eNuml
eNuml
eNuml
eNuml
eNuml
eNuml
eNuml
eNuml
eNum?2
eNum2
eNum?2
eNum2
eNum?2
eNum2
eNum?2
eNum2
eNum2
eNum2
eNum3
eNum3
eNum3
eNum3
eNum3
eNum3
eNum3
eNum3
eNum3
eNum3
eNum4
eNum4
eNum4
eNum4
eNum4
eNum4
eNum4
eNum4
eNum4
eNum4
eNum5
eNum5
eNum5
eNum5
eNum5
eNum5
eNum5
eNum5
eNum5
eNum5
eNumé
eNum6
eNum6
eNum6
eNum6
eNum6
eNum6
eNum6
eNum6

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 37

NE NE N NE NE NE NE M= NE NE WA NE N NE wE NE NE wE A wE WA WA NE N NE NE NE NwE wE wE NE NE wE NE NE NE WA NE N wE NE NE wE WA A wE NE wE NwE N NE NE NE wE wE wE wE wE wa wam

Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal

9.

10.
11.
12.
13.
14,
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.

.db eNum6 ; Decimal 69.

.db eNum?7 ; Decimal 70.
.db eNum?7 ; Decimal 71.
.db eNum?7 ; Decimal 72.
.db eNum?7 ; Decimal 73.
.db eNum7 ; Decimal 74.
.db eNum?7 ; Decimal 75.
.db eNum7 ; Decimal 76.
.db eNum?7 ; Decimal 77.
.db eNum?7 ; Decimal 78.
.db eNum?7 ; Decimal 79.
.db eNum8 ; Decimal 80.
.db eNum8 ; Decimal 81.
.db eNum8 ; Decimal 82.
.db eNum8 ; Decimal 83.
.db eNum8 ; Decimal 84.
.db eNum8 ; Decimal 85.
.db eNum8 ; Decimal 86.
.db eNum8 ; Decimal 87.
.db eNum8 ; Decimal 88.
.db eNum8 ; Decimal 89.
.db eNum9 ; Decimal 90.
.db eNum9 ; Decimal 91.
.db eNum9 ; Decimal 92.
.db eNum9 ; Decimal 93.
.db eNum9 ; Decimal 94.
.db eNum9 ; Decimal 95.
.db eNum9 ; Decimal 96.
.db eNum9 ; Decimal 97.
.db eNum9 ; Decimal 98.
.db eNum9 ; Decimal 99.
17SeqgU:

; Translates the hexadecimal number in the accumulator to its 7-segment

; representation for the units digit. The result is returned in the

; accumulator.

; Only works for numbers up to 99 decimal (0x63).

; Note that this is routine is frightfully wasteful of space; however, it

; returns in very few clock cycles (whereas a "proper" binary-to-BCD conversion
; would take about 80 clock cycles).

ADD A, #17SLKkU - 0x0600 ; Lookup table base address.
MOVP A, @A
RET

17SLkU: ; Lookup table:
.db eNum@ ; Decimal 0.
.db eNuml ; Decimal 1.
.db eNum2 ; Decimal 2.
.db eNum3 ; Decimal 3.
.db eNum4 ; Decimal 4.
.db eNum5 ; Decimal 5.
.db eNumé6 ; Decimal 6.
.db eNum7 ; Decimal 7.
.db eNum8 ; Decimal 8.
.db eNum9 ; Decimal 9.
.db eNum@ ; Decimal 10.
.db eNuml ; Decimal 11.
.db eNum2 ; Decimal 12.
.db eNum3 ; Decimal 13.
.db eNum4 ; Decimal 14.

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 38

eNum5
eNumé
eNum7
eNum8
eNum9
eNum0
eNuml
eNum2
eNum3
eNum4
eNum5
eNum6
eNum?7
eNum8
eNum9
eNum0
eNuml
eNum?2
eNum3
eNum4
eNum5
eNumé
eNum?7
eNum8
eNum9
eNum0
eNuml
eNum2
eNum3
eNum4
eNum5
eNum6
eNum7
eNum8
eNum9
eNum0
eNuml
eNum?2
eNum3
eNum4
eNum5
eNumé
eNum?7
eNum8
eNum9
eNum0
eNuml
eNum2
eNum3
eNum4
eNum5
eNumé
eNum7
eNum8
eNum9
eNum0
eNuml
eNum?2
eNum3
eNum4

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 39

NE NE N NE NE NE NE M= NE NE WA NE N NE wE NE NE wE A wE WA WA NE N NE NE NE NwE wE wE NE NE wE NE NE NE WA NE N wE NE NE wE WA A wE NE wE NwE N NE NE NE wE wE wE wE wE wa wam

Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

eNum5
eNumé
eNum7
eNum8
eNum9
eNum0
eNuml
eNum2
eNum3
eNum4
eNum5
eNum6
eNum?7
eNum8
eNum9
eNum0
eNuml
eNum?2
eNum3
eNum4
eNum5
eNumé
eNum?7
eNum8
eNum9

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 40

NE NE NE NE NE NE NE N NE NE NE NE N NE NE NE NE N wE wE wE wE o wE ww

Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal

75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.

88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

APPENDIX D: INSTRUCTION SHEET

50Hz MAINS 6 [60Hz MAINS
12h CLOCK 5 | 24h CLOCK
4
3
2
CLOCK SET 1 | CLOCK RUN
ON OFF

ITEM TO BE SET:
SW4 | SW3 | SW2 | Function

On | On | On | Reset Seconds

On | On | Off | Set Minute

On | Off | On | Set Hour

On | Off | Off | Set Date

Off | On | On | Set Month

Off | On | Off | Set Year

Off | Off | On | Set Alarm Hour
Off | Off | Off | Set Alarm Minute

To set the clock:
Set SW1to "On".
Set SW2, SW3 and SW4 to the desired positions.
Push the pushbutton to advance the selected item.
When finished with all settings, return SW1 to "Off".

Pushbutton funtions:

= While SW1is "On" (setting the clock): Pushing the button
advances the selected item.

= While SWL1 is "Off": Pushing the button displays the alarm
time. Holding the button pressed for 1 second toggles the
alarm on ("L" displayed on screen) and off.

» Pushing the button while alarm is sounding: Silences the
alarm. The alarm will sound again tomorrow (if it is kept on).

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 41

APPENDIX E: PCB LAYOUTS
Kindly provided by Ctronix:

Bottom layer

-/- o nre a = ATYA .
—H - I
e - -
o p .

hEan—— J::-’;f"

= = | N
- -
LegF EY B
S IEE H B
HiHE BN
@ HESH £ M
HI9H BB
[| 1
----- o apEEE — S & amaN,

Cracii-

™ .fr — Iy './ — -
A\ 0

.
@

(K g =8

- - =
= - o
- - &
- . - o ’
- . 2
- - =
* e -
;2 " = —_—
51 I b] -
4 - o —
| a . “a=—a =
" -

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 42

Top layer

d
'\ e o v+
e S
—a : 3 3 = O} ‘.l
P o Ir b e == y
|
i e 7 :\\"\' ci .ﬁ\‘\-___:1__ =
e [A |
g aiE ®
'* a . |
ER L
o -y e 1
g |
BB \'_ __!g;;-_ = fﬂl‘ﬂ‘_;- =% " —— ‘
—— : H==2"
| | ‘
|
! g L = i | e \ -
Lt - |
e B SR
SRR
N Ed B »
4 e el
nj‘].._,:u. - ,_nv//;p- SN - H—erone
|
|
o o & e
\': M3 AP
ol ERAE @
d = 2 j & — e = [
B — Ll E T i ;_.._‘_,..
e
(1 |
i e 2 § %
‘ O e B ———n o
NS CLE ——)
N ot 5
» =i
‘n - v .J -
- 5 } L% i

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 43

APPENDIX F: INNER WORKINGS AND SCHEMATICS

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 44

— -
o 1
| e—a i
& =M —
L —an—
| —M—
—MIt—

VI gt
METASXHMATIZT | '

TPO®OAOTIK &

EAAWNIKHE KATAL {

Autocall_LD10_QMS_8048_8039_wall_alarm_clock_v3.odt Page 45

PSU_HV

1N4148? |
Qi D2l\l
1”:”2 .| C4
4,608MHz 100u/40
C5 C6
GND
1N4148? |
D1 ™
PSU_RESET +| C1 GND GND
1u/63
This pushbutton is additional 1C1
(not part of the AutoCall LD10) 2 2 | x1ALd P10 |22
GND 7 8 | xta2 P11 |28
P12 |22
4 30
aND L =] RESET P13 a1 IC4 IC3
P14 -
<[. 5 32 D6 3 2 A8 AQ__10 11 DO
SE E[]é I ESS S pYRES IO Y, Al o] A 2 M2 i
3-PIN SK T 71 Ea p17 |34 D2 71 a5 3 |6 A2 A2 81 s oo 13 D2
X1-1 = DO 8 14 4 (2 AQYRAZ 7| a3 o |12 D3
oo 1 21 DI 13 12 Ad A4 6 16 D4
X12 = 5] ™ P20 -2 o B T] A+ 04 |5
X1-3 = T P21 |22 D3 12160 e |2 A3 A5 > A o5 g D5
. P22 |23 D5 ! 7D 7Q A5 A6 A6 06 D6
INT P23 |22 D7 18 | gp gq |2AZ A7 zg A7 o7 P8 D7
R9 25 P24 36 1 24 | A8
GND 2 | prog P25 oc A9
SN75176 37 T o
10K 5 i P26 11 Enc A10
R10 GND DO DO po7 |38 23 1 A1
e_:'—l_ R I D113 | . GND 74HCT373N 2 | o
100 7 B RE [2— D2 14 1 pp L
RS422 B 5 D3 15 8 GND _ 20
RU1_ [A " D32 o8 rRD P& 2] CE
< 8 D5 Ds 17 | ™ 10 27| &
100 VCC DE D5 WR PGM
RS422 A | L D618] pg . <4t e
IC2 D7 D7 PSEN 5V
10K +5V I ”s N + TMS2764-25JL
VDD ALE L_cola
GND <tao| V20 [ITeTEY
+5V 20 | &g L coL2]
L coli]
MAB8039HL IC5
Note: All ICs decoupled with a GND DO 3 Al AO 2 ROW4
10nF ceramic (if | remember well)... D1 5 Bl Bo -4 BROWS3
D2 71 o oo |8 ROW?2
D3 915 o |10 ROW1
11 12
El EO
7 = Fo |15 CLK | DISPLAY
b <1 1 wmobe
+5V 4504N

18.04.15 20:47 /home/pdallas/Share/New6/Socrates clock/Diagram/Eagle schematics/Autocall_LD10_p1_ver_A.sch (Sheet: 1/1)

< 12
[a]
3V | F 12R
DISPLAY .. A4
h— |C6B o R
rowi 7 [A |5 D D3 D4 D5 D6
4 V]) f a f a f a f
Q8 R15 Le] e L] L]
ClK 9 3 X5 1 o o Ay o i o b o
5 CLK QC 10 <® c’ "L c’ ,L c’ ,L c’ ,L
RES QD i * 12R 4 1= [4)= £ o y— [o y— [
f4°‘5’\‘ , Ris E,_,OK—< E,_’OK—< E,_’OK—< E,_’OK—<
GND
@ 158 LC2341-41 LC2341-41 LC2341-41 LC2341-41
s 2
, Ri17
E e 12R
, Ri8
|C6A o
< 12R
510 oa 3 =
QB R19
CLK 1 Beik ac (1 o £
RES QD |-2- S 12R
f4015N
GND , R20
2 12R
. R2A
78 3 12R
Row2 7 [o oa LS 29 D7 D8 D9 D10
4 Y] La) e |f LaJ i Laf i E t
cak s b I3 S5 1 R22 Ty Ty oy | e |
6 "res ap |10 | [S2 12R o e [P o e [E o e [P o e [E
25 9 d, , K d, ’ K d, ’ K u, ’ K
4015N R23 &’ o [& e’ o [& e’ o [& e’ o [
GND 2
] 158 L[C2341-41 LC2341-41 LC2341-41 LC2341-41
©
¢ , R
ﬁ - 12R
, R
|C7A [
o] 12R
510 on (8 =
QB R26
CLK 2 Boik ac [5 g
RES QD |2 o = 12R
f4015N
GND . R
’% < 12R
.4 R28
1C8B [8)
BOWa 7 [o on LS e = 12R D11 D12 D13 Di4
o QB g % ; R29 L] et Laf i Lo} i 2 i
CLK LK QC S b’ ’g [b’ ,g [b’ ,9 [n’ ,9 [
8 I'res ap |9 | [12R B L of J et [P [G of ¥ et [P
R | ST | ST o U= (S
5 4015N , R3O0 of AR o A o & o &
ND
@ 158 LC2341-41 LC2341-41 LC2341-41 LC2341-41
© =
, Rat
E'é S 12R
, R32
IC8A L
& 12R
510 oa (3 o
QB R33
CLK 1 Beik ac (1 o 2
RES QD |-2- 2 = 12R
f4015N
GND ,» R34
E 12R
R35
IC9B
ROW4 7 D QA) aD1(6) aD17 ' aD123 '
QB La La
ClLK 9 o | o} o | o} o | b) 9 |
A & 3 {1 {-1E {-IE
K d, ’ K d, ’ K d, ’ K
4015N ef K ef oK ef °K ef °K
GND e e h—
@ 158 L[C2341-41 L[C2341-41 L[C2341-41 L[C2341-41
S
: , R3s
E S 12R
. R39
IC9A w
S 12R
510 on (8 =7
CLK_1 bk 83 1 o M40
14 RES ap |2- (,2 = 12R T8 T9 T10 T11
[BD675 BD675 BD675 BD675
aNp oTeN R41 R42 R43 R44
c
|—4‘- ~]
B Z Z & Z P
c2 oo & el 2 TaNDe Y 2 T aNDy o 2 GND
e I =] I =] I =] I
100n YA YA SYANS SYANS
P GND P GND P GND P GND
GND 74HC14N| PSU_WDOG
i [I : p -
10M
COoL1 coL2 CcoL3 coL4

19.04.15 12:14 f=0.75 /home/pdallas/Share/New6/Socrates clock/Diagram/Eagle schematics/Autocall_LD10_p2_ver_A.scl

PSU_HV o — 13V
a —
N & Large, toroidal o
R54 |_8 b S +| C10 >
F O S ol [<
150 <) 1000u/35 8| |15
R53 R55 1
D4 D20 —— GND
PT3A di ' . - .| C11
3A diode .*-Lm OR link 220 2W GND 2 o
- 0gls 1u/63
._Ej 1000u/35 E ¢~ R ol
v e . 1v25 +C8 - 0 &
>
X1 GND 0] Some’ REF 1u/63 GND
= op- |-L GND "’
2 11| anp o |6 I think this
07— +
[E 438 8 s vce 2 GND must be
4 I 12 4 a7805 +5V
= 1 CAP ouT
14867 GND B
RS422_A GND VIN EMTTER |2 PSU_RESET
—> 14 1 SENSE aone |2 J_
RS422_B ol 1€ 15 | bRiver GND PSU_WDOG
— R52 16 { swiTcH CATHODE [
1K 78540
GND

Circuitry within this rectangle is additional (not part of the AutoCall LD10)

FB

DB 4

TR1
10

5-pin DIN 5-pin DIN
XA XB

[V
j<
©

T
o
=

1N5408 Y o
hﬁlf

3300u/35

2
<4 5

1

3
>
3>

S/

RA

DA 4
1N5408 ™

BAT

| al |© cB
<

o
8 x AA NiCd

4u7/63

1N5408

About 2,6V RMS @ 50 or 60Hz

18.04.15 20:28 /home/pdallas/Share/New6/Socrates clock/Diagram/Eagle schematics/Autocall_LD10_p3_ ver_A.sch (Sheet: 1/1)

2% 18V 1,5A

	INTRO
	CONTENTS
	FEATURES
	SCHEMATICS
	HOW IT WORKS
	MINOR HARDWARE ADDITIONS
	SOFTWARE
	Clock recovery state machine
	Main state machine

	TO-DO LIST
	APPENDIX A: CLOCK RECOVERY STATE MACHINE FLOWCHARTS
	APPENDIX B: ALARM ENGINE FLOWCHART
	APPENDIX C: SOFTWARE LISTING
	APPENDIX D: INSTRUCTION SHEET
	APPENDIX E: PCB LAYOUTS
	Bottom layer
	Top layer

	APPENDIX F: INNER WORKINGS AND SCHEMATICS

