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Introduction 
 
Although the subject Transmission Lines is much presented in the literature, many topics about them 
seem not to be treated. Here we try to show some of their characteristics that, besides not generally well 
known, can help to their understanding. 
We will not treat anything about Paralleled Lines or Real Stubs as other texts present them (see 
References ) and some examples here are only academic with no practical uses, but still helping the 
global understanding. 
 
Some important concepts 
 
The impedance of some device or system (not necessarily electric) in the general case presents two 
components, the reactive (imaginary component) and the dissipative one (real component). Reactance is 
the system property of giving back all the energy delivered to it. As reactance is defined for a given 
frequency, it and the impedance are concepts rigorously valid only for well-behaved (linear and time 
independent) under sinusoidal regimen. It is common, however, to extend that concept for other systems 
and regimens, but it is only perfectly established for sinusoidal simple systems and therefore periodically 
repeated. 
Therefore, if a system is pure dissipative, its impedance is real and, if reactive, it is pure imaginary. A 
general system has both components and therefore its impedance is complex.  
The free space, for example, does not give back the energy of an electromagnetic wave (there is no 
reflection to be possible a wave return) and, so, it is dissipative. 
However, a curious question arises: the line surge impedance Zo is real just when it is ideal, that is, not 
dissipative. Would that be an inconsistence? The answer is no. 
If the measured impedance at the line input is Zo, there are two possible cases: either we have a match 

with a resistive load equal to Zo (the generator ‘sees’ the real load), or the line has an infinite length, 

when there is no reflected wave. In both cases the energy does not return and the impedance must be 

real (Zo in this case).  
In a sinusoidal system with frequency f, we choose two dynamic variables (sinusoidal and with the same 
frequency f) X and Y such that their product is the instant power (or power density in case of waves) P. 
Therefore: 
 
P = X.Y 
 
However, the power is the quickness of energy transfer of the system and thus: 
 
P = dE/dt 
 
So we write: 
 

E = ∫P.dt = ∫X.Y.dt 
 
As X e Y are sinusoidal with frequency f, we may rewrite them: 
 
X = Xo.sin(2. π.f) 
Y = Yo.sin(2. π.f + φ) 



where φ is the phase difference between both variables and Xo and Yo are their respective constant 
amplitudes. 
Putting these definitions on the energy integral, with the integration time equal to the period T, we have: 
 
 

 

 
The delivered energy is then proportional to the phase difference cosine. When φ = 0, cos(φ) = 1 and 
therefore that energy is maximum, that is, nothing returns. If φ = ± π/2, cos(φ) = 0, the transferred energy 
is null, that is, everything is given back. We conclude that the system is dissipative in the first case and 
reactive in the second one. 
So, if a circuit element is pure reactive (ideal inductor or capacitor), the voltage and the current (those 
variables with frequency f whose product is the instant power) have a phase difference of ± π/2 and, if the 
t element is pure dissipative (a resistance), that phase difference is zero. 
Also in an ideal infinite line, as no energy return, the impedance is real and the line is ‘seen’ as 
dissipative. 
In the case of a wave in the free space, the same thing happens with the electric and magnetic fields in 
each point of the space (the phase difference between them is zero), where here only the power 
(superficial) density replaces the power, but the concept is the same. 
In an ideal resonant cavity, all delivered energy returns and, so, between the fields there is a phase shift 
of ± π/2 (or 90º). 
These results are known by the users, but without a physical analysis of the ‘why’, as the presented here. 
 
Some relationships on transmission lines 
 
The expression of the impedance Z2 reflected at an end of an ideal transmission line (no loss) when 
loaded with impedance Z1 is: 
 
 
 
where j = √-1 is the imaginary unity, Zo é the line surge impedance[1] and t = tg(2.π.l/λ), with tg  the 
trigonometric tangent  function, l the line physical length and λ the wavelength in the line[2]. 
 
First property (not frequently presented) 
 
If l is equal to an odd multiple of λ/8, t = tg[2. π.(2.n – 1)/8] = ±1 and Z2 is: 
 
 
 
Note that, for Z1 real and equal to R1, the module of Z2, |Z2|, is equal to Zo, independently of the value of 
R1: 
|Z2| = Zo.√(R1

2 + Zo2)/√(Zo2 + R1
2) 

 
  
 
and its phase given by φ = atan[Im(Z 2)/Re(Z2)], is: 
 
 
 
Therefore, if R1 = 0, φ = π/2; if R1 → ∞, φ = - π/2 and if R1 = Zo, φ = 0[3]. 
 

                                                           
1 Zo is a real quantity for ideal lines and still con sidered real for lines with small losses. 
2 That is, taking into account the velocity factor o f the line .  
3 Z2 may be written as Z 2 = Zo. e j.φ. 

Z2 = Zo.(Z1 + j.t.Zo)/(Zo + j.t.Z1)   [I] 

|Z2| = Zo   [III]  

φ = atan[(Zo 2 – R1
2)/(2.Zo.R1)]   [IV] 

Z2 = Zo.(Z1 + j.Zo)/(Zo + j.Z1)   [II] 

 

E = Xo.Yo. sin(2.π.f).sin(2.π.f + φ).dt = Xo.Yo.T.cos( φ)/2 ∫ 
0 

T 



This shows that, if we vary the resistive load R1 at the end of the line connected to a sinusoidal voltage, 
the resulting current will have constant module and phase variable with R1 from - π/2 to + π/2. 
It would be interesting to research about some use for this property. 
 
Second property (well known) 
 
If l = (2.n - 1).λ/4, then t → ∞, leading to Z2 = Zo2/Z1, that is, for a line with length equal to an odd number 
of one quarter wavelength, the surge impedance is the geometric average between the load and reflected 
impedances or Zo = √(Z1.Z2). Note that this expression is symmetrical between Z1 and Z2 so that we may 
exchange them. This means that, if we put Z2 as load, the reflected impedance will be Z1. 
 
Third property (well known) 
 
If l = n.λ/2, then t = 0, or Z2 = Z1, that is, or a line with length equal to an integer number of half 
wavelength, the reflected impedance is equal to the load one, independently of Zo. 
One can be see this with the former property, by putting two λ/4 (or odd multiples of it) line pieces in 
series: Z1 transforms to Z2 by the first piece and Z2 transforms back to Z1 by the second piece. 
 
Fourth property (not commonly presented) 
 
If an ideal line of length l and surge impedance Zo is loaded with impedance Z1, it will reflect an 
impedance Z according to [I] . We ask if the same line is loaded with Z2, which impedance Z3 it will reflect, 
that is, which is the relationship between Z1 e Z3. 
Loading the line with Z2: 
 
 
 
Taking Z1 de [I] , we get: 
 
 
 
Applying [VI]  on [V] , we have: 
 
Z3 = Zo.[Z1.(1 – t2) + 2.j.t.Zo]/[Zo.(1 – t 2) + 2.j.t.Z1] 
 
Dividing the numerator and the denominator by (1 – t2): 
 
Z3 = Zo.[Z1 + 2.j.t.Zo/(1 – t 2)]/[Zo + 2.j.t.Z 1/(1 – t2))] 
 
By observing that, if t = tg(2.π.l/λ), then t’ = 2.t/(1 – t 2) = tg[(2.π.(2.l)/λ] [4], we may write: 
 
 
 
Therefore, Z3 is related to Z1 by the expression [VII] , that is, Z3 is the reflected impedance of a line with 
length 2.l and loaded with impedance Z1. 
This can be verified with no calculus as the done before simply remembering that Z1 as a load of a line 
with length l reflects Z2 and this, as a load of more one line piece with length l, reflects Z3. Therefore, Z3 is 
the reflected impedance of a line piece with length 2.l when loaded with impedance Z1. 
Let us see this graphically: as in Figure 1, the load Z1 reflected impedance Z2 on a line with length l; in 
Figure 2, the load Z2 reflects Z3 on the same line. Using the impedance Z2 of Figure 1 as load of Figure 2, 
we get the Figure 3 and, so, the expression [VII] holds. 
 
 
 

                                                           
4 By the properties of the tangent function. 

Z1 = Zo.(Z2 - j.t.Zo)/(Zo - j.t.Z2)   [VI] 

Z3 = Zo.(Z2 + j.t.Zo)/(Zo + j.t.Z2)   [V] 

Z3 = Zo.(Z1 + j.t’.Zo)/(Zo + j.t’.Z1)   [VII] 



 
 
 
 
 
It is interesting to note the case where Z3 = Z1, that is, when Z1 reflects Z2 and Z2 also reflects Z1. 
Putting Z3 = Z1 in [VII] , we get: 
 
Z1.Zo + j.t’.Z 1

2 = Zo.Z1 + j.t’.Zo 2  or 
 
t’.(Zo 2 - Z1

2) = 0 that means: 
either Z1 = Zo, when the line is matched to Z1 and Z1 = Z2 = Z3 = Zo, or t’ = 4.π.l/λ = 0, when then l = 
n.λ/4 (n = integer ), that is, the total length 2.l is equal to an integer multiple of λ/2, that we expected for 
equal reflected and load impedances. 
 
A similar property 
 
Suppose we have a line with length l1 and load Z1 reflecting an impedance Z2. We search for the 
minimum length l2 we load with Z2 to reflect Z1. 
Instead of searching directly for l2, we search for the length l1 + l2 that transforms Z1 into itself, that is, the 
first length l1 transforms Z1 into Z2 that is the load for the length l2 that transforms Z2 back into Z1, as in 
Figures 1’, 2’ and 3’ bellow. 
 
 
 
 
 
 
 
 
Remembering that the minimum length of cable that transforms Z1 into itself (with any surge impedance) 
is λ/2, then l1 + l2 = λ/2. Therefore, the cable length that transforms Z2 back into Z1 is just l2 = λ/2 – l1. 
 
A curious case 
 
Let us have a loop with total length l made with an ideal transmission line with surge impedance Zo, as in 
Figure 4. We ask for the impedance ZA seen at the point A of the line[5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
5 The point A may be any one by the line symmetry. 
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We can redraw the loop as in Figure 5, where both halves6 appear connected in parallel and with an 
infinite R load impedance. So, in Figure 5 and at its right, both conductors are insulated with no mutual 
connection. Figure 6 shows the details.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As both halves are in parallel, they are equivalent to a single line with the same electric length and surge 
impedance Zo/2 [7]. Therefore, the impedance ZA reflected on A may be written using the expression [I]  
with Zo replaced by Zo/2, Z1 by R (that will tend to ∞) and t will be equal to tg(π.l/λ), as l now is replaced 
by l/2. So, for R with any value: 
 
  
 
 
If we perform the limit when R → ∞, we get: 
 
 
 
 
Let us see some special cases. 
If the total length of the loop is l = n.λ (with n = integer ), ZA → ∞; this we must expect because the 
distance from A to the open load is n.λ/2 (see 1st property). 
If l = (2.n – 1).λ/2, ZA = 0, because A sees a line with length (2.n – 1).λ/4 open loaded (see 2nd property). 

                                                           
6 We choose the middle point because, on it, both pa rts have signals with the same amplitude and phase and, so, they may 
be connected or disconnected without affecting anyt hing of the circuit. 
7See Reference 1. 

ZA =(Zo/2).(R + j.t.Zo/2)/(Zo/2 + j.t.R)   [VIII] 

ZA = -j.Zo/[2.tg(π.l/λ)]   [IX] 
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If l = (2.n – 1).λ/4, ZA = ± j.Zo/2  and |ZA| = Zo/2, because A sees a line with length (2.n – 1).λ/8 open 
loaded (see 3rd property). 
We can verify that, for small l (compared with λ), the impedance is capacitive. One could think that such a 
loop would result in inductive impedance[8]. 
 
Another similar case 
 
We build a loop similar to the former one but with a ‘wire exchange’ on any point of the loop, as in Figure 
7. We ask for the impedance ZA. 
The wire exchange at a line end corresponds to add an extra piece of line with length λ/2, as this creates 
a phase inversion as the wire exchange. The new line will have length l + λ/2 and no wire exchange, 
falling in the former case. 
Therefore, we built a line as that of Figure 4, replacing its total length l by l + λ/2. In expression [IX] , by 
making this replacement, we get: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
As summing π/2 to the argument of a tangent function corresponds to transform it into a cotangent or the 
inverse of the original tangent, we have: 
 
 
 
It is interesting to note that after inserting the line piece of length λ/2, the line has no more wire 
exchanging, that is, we lose the reference where it was initially. This shows that this initial position may be 
any one, leading always to the same result [XI] . 
Let us see some special cases. 
 
If l = n.λ (with n = integer ), ZA = 0 
If l = (2.n – 1).λ/2, ZA → ∞ 
If l = (2.n – 1).λ/4, ZA = ± j.Zo/2  e |ZA| = Zo/2 
 
Minimum SWR at resonance 
 
The module of the reflection coefficient at the load end of an ideal transmission line Zo is: 
                                                           
8 This would be true in the case of a loop with one wire open on the point A, but not with a transmissi on line. 

ZA = -j.Zo.tg(π.l/λ)/2   [XI] 

ZA = -j.Zo/[2.tg(π.l/λ + π/2)]   [X] 
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|ρ| = |Zo – Z|/|Zo + Z|   [XII] 
 
with Z = R + j.X and Zo a real quantity. 
By the definition of the Standing Wave Ratio (SWR) r: 
 
r = (1 + |ρ|)/(1 - |ρ|)   [XIII] 
 
Putting [XIII]  in [XII] , we have: 
 
r = (|Zo + Z| + |Zo - Z|)/(|Zo + Z| - |Zo - Z|)  or 
 
r = {√[(Zo + R) 2 + X2] + (√[(Zo - R)2 + X2]}/{ √[(Zo + R)2 + X2] - (√[(Zo - R)2 + X2]}   [XIV] 
 
We want to know the smallest value of r when we vary X. This is important when we are close to the 
resonance of an antenna with some SWR and we vary the frequency or the antenna length. Therefore, 
one gets the smallest value of r by zeroing the derivative of r in respect to X with R constant in [XIV]. 
Rewriting [XIV]  with (Zo + R)2 + X2 = A and (Zo - R)2 + X2 = B, we get: 
 
dr/dX = X.[( √A - √B).(√B + √A) – (√A + √B).(√B - √A)]/[ √A.√B.(√A - √B)2] 
 
At the minimum, dr/dX = 0 , which implies in X = 0, that is, at the resonance, the SWR is minimum for any 
fixed values of Zo and R. With X = 0 in [XIV] , the SWR possible values are r = Zo/R  or r = R/Zo , a well-
known result. 
 
 
References 
 
1 - AntenneX Issue No. 121 – May 2007 – Note 2 

2 – ARRL Antenna Book, 2007 
 
 
 
 


