TOPICS ON TRANSMISSION

LINES FOR RF

By Luiz Amaral PY1LL / AC2BR

Introduction

Although the subject Transmission Lines is much presented in the literature, many topics about them seem not to be treated. Here we try to show some of their characteristics that, besides not generally well known, can help to their understanding.

We will not treat anything about Paralleled Lines or Real Stubs as other texts present them (see **References**) and some examples here are only academic with no practical uses, but still helping the global understanding.

Some important concepts

The impedance of some device or system (not necessarily electric) in the general case presents two components, the reactive (imaginary component) and the dissipative one (real component). Reactance is the system property of giving back all the energy delivered to it. As reactance is defined for a given frequency, it and the impedance are concepts rigorously valid only for well-behaved (linear and time independent) under sinusoidal regimen. It is common, however, to extend that concept for other systems and regimens, but it is only perfectly established for sinusoidal simple systems and therefore periodically repeated.

Therefore, if a system is pure dissipative, its impedance is real and, if reactive, it is pure imaginary. A general system has both components and therefore its impedance is complex.

The free space, for example, does not give back the energy of an electromagnetic wave (there is no reflection to be possible a wave return) and, so, it is dissipative.

However, a curious question arises: the line surge impedance **Zo** is real just when it is ideal, that is, not dissipative. Would that be an inconsistence? The answer is no.

If the measured impedance at the line input is **Zo**, there are two possible cases: either we have a match with a resistive load equal to **Zo** (the generator 'sees' the real load), or the line has an infinite length, when there is no reflected wave. In both cases the energy does not return and the impedance must be real (**Zo** in this case).

In a sinusoidal system with frequency f, we choose two dynamic variables (sinusoidal and with the same frequency f) X and Y such that their product is the instant power (or power density in case of waves) P. Therefore:

P = X.Y

However, the power is the quickness of energy transfer of the system and thus:

P = dE/dt

So we write:

$E = \int P.dt = \int X.Y.dt$

As $X \in Y$ are sinusoidal with frequency f, we may rewrite them:

 $\begin{array}{l} X = Xo.sin(2.\pi.f) \\ Y = Yo.sin(2.\pi.f + \phi) \end{array}$

where ϕ is the phase difference between both variables and **Xo** and **Yo** are their respective constant amplitudes.

Putting these definitions on the energy integral, with the integration time equal to the period **T**, we have:

$$E = Xo.Yo.\int_{0}^{T} \sin(2.\pi.f).\sin(2.\pi.f + \varphi).dt = Xo.Yo.T.\cos(\varphi)/2$$

The delivered energy is then proportional to the phase difference cosine. When $\varphi = 0$, $\cos(\varphi) = 1$ and therefore that energy is maximum, that is, nothing returns. If $\varphi = \pm \pi/2$, $\cos(\varphi) = 0$, the transferred energy is null, that is, everything is given back. We conclude that the system is dissipative in the first case and reactive in the second one.

So, if a circuit element is pure reactive (ideal inductor or capacitor), the voltage and the current (those variables with frequency **f** whose product is the instant power) have a phase difference of $\pm \pi/2$ and, if the t element is pure dissipative (a resistance), that phase difference is zero.

Also in an ideal infinite line, as no energy return, the impedance is real and the line is 'seen' as dissipative.

In the case of a wave in the free space, the same thing happens with the electric and magnetic fields in each point of the space (the phase difference between them is zero), where here only the power (superficial) density replaces the power, but the concept is the same.

In an ideal resonant cavity, all delivered energy returns and, so, between the fields there is a phase shift of $\pm \pi/2$ (or 90°).

These results are known by the users, but without a physical analysis of the 'why', as the presented here.

Some relationships on transmission lines

The expression of the impedance Z_2 reflected at an end of an ideal transmission line (no loss) when loaded with impedance Z_1 is:

$$Z_2 = Zo.(Z_1 + j.t.Zo)/(Zo + j.t.Z_1)$$
 [I]

where $j = \sqrt{-1}$ is the imaginary unity, Zo é the line surge impedance^[1] and $t = tg(2.\pi.l/\lambda)$, with tg the trigonometric tangent function, I the line physical length and λ the wavelength in the line^[2].

First property (not frequently presented)

If I is equal to an odd multiple of $\lambda/8$, t = tg[2. π .(2.n - 1)/8] = ±1 and Z₂ is:

$$Z_2 = Zo.(Z_1 + j.Zo)/(Zo + j.Z_1)$$
 [II]

Note that, for Z_1 real and equal to R_1 , the module of Z_2 , $|Z_2|$, is equal to Z_0 , independently of the value of R_1 :

$$|Z_2| = Zo.\sqrt{(R_1^2 + Zo^2)}/\sqrt{(Zo^2 + R_1^2)}$$

 $|Z_2| = Zo$ [III]

and its phase given by $\phi = atan[Im(Z_2)/Re(Z_2)]$, is:

 $\varphi = \operatorname{atan}[(Zo^2 - R_1^2)/(2.Zo.R_1)]$ [IV]

Therefore, if $R_1 = 0$, $\varphi = \pi/2$; if $R_1 \rightarrow \infty$, $\varphi = -\pi/2$ and if $R_1 = Zo$, $\varphi = 0^{[3]}$.

¹ Zo is a real quantity for ideal lines and still considered real for lines with small losses.

² That is, taking into account the velocity factor of the line.

³ Z₂ may be written as Z₂ = Zo. $e^{j.\phi}$.

This shows that, if we vary the resistive load R_1 at the end of the line connected to a sinusoidal voltage, the resulting current will have constant module and phase variable with R_1 from - $\pi/2$ to + $\pi/2$. It would be interesting to research about some use for this property.

Second property (well known)

If $I = (2.n - 1).\lambda/4$, then $t \to \infty$, leading to $Z_2 = Zo^2/Z_1$, that is, for a line with length equal to an odd number of one quarter wavelength, the surge impedance is the geometric average between the load and reflected impedances or $Zo = \sqrt{(Z_1, Z_2)}$. Note that this expression is symmetrical between Z_1 and Z_2 so that we may exchange them. This means that, if we put Z_2 as load, the reflected impedance will be Z_1 .

Third property (well known)

If I = n.N2, then t = 0, or $Z_2 = Z_1$, that is, or a line with length equal to an integer number of half wavelength, the reflected impedance is equal to the load one, independently of Zo. One can be see this with the former property, by putting two N4 (or odd multiples of it) line pieces in series: Z_1 transforms to Z_2 by the first piece and Z_2 transforms back to Z_1 by the second piece.

Fourth property (not commonly presented)

If an ideal line of length I and surge impedance Z_0 is loaded with impedance Z_1 , it will reflect an impedance Z according to [I]. We ask if the same line is loaded with Z_2 , which impedance Z_3 it will reflect, that is, which is the relationship between $Z_1 \in Z_3$.

Loading the line with Z_2 :

$$Z_3 = Zo.(Z_2 + j.t.Zo)/(Zo + j.t.Z_2)$$
 [V]

Taking \mathbf{Z}_1 de **[I]**, we get:

 $Z_1 = Zo.(Z_2 - j.t.Zo)/(Zo - j.t.Z_2)$ [VI]

Applying [VI] on [V], we have:

$Z_3 = Zo.[Z_1.(1 - t^2) + 2.j.t.Zo]/[Zo.(1 - t^2) + 2.j.t.Z_1]$

Dividing the numerator and the denominator by $(1 - t^2)$:

$Z_3 = Zo.[Z_1 + 2.j.t.Zo/(1 - t^2)]/[Zo + 2.j.t.Z_1/(1 - t^2))]$

By observing that, if $\mathbf{t} = \mathbf{tg}(2.\pi.\mathbf{l}/\lambda)$, then $\mathbf{t}' = 2.\mathbf{t}/(1 - \mathbf{t}^2) = \mathbf{tg}[(2.\pi.(2.\mathbf{l})/\lambda]^{[4]}$, we may write:

$$Z_3 = Zo.(Z_1 + j.t'.Zo)/(Zo + j.t'.Z_1)$$
 [VII]

Therefore, Z_3 is related to Z_1 by the expression **[VII]**, that is, Z_3 is the reflected impedance of a line with length 2.1 and loaded with impedance Z_1 .

This can be verified with no calculus as the done before simply remembering that Z_1 as a load of a line with length I reflects Z_2 and this, as a load of more one line piece with length I, reflects Z_3 . Therefore, Z_3 is the reflected impedance of a line piece with length 2.1 when loaded with impedance Z_1 .

Let us see this graphically: as in Figure 1, the load Z_1 reflected impedance Z_2 on a line with length I; in Figure 2, the load Z_2 reflects Z_3 on the same line. Using the impedance Z_2 of Figure 1 as load of Figure 2, we get the Figure 3 and, so, the expression **[VII]** holds.

⁴ By the properties of the tangent function.

It is interesting to note the case where $Z_3 = Z_1$, that is, when Z_1 reflects Z_2 and Z_2 also reflects Z_1 . Putting $Z_3 = Z_1$ in [VII], we get:

 $Z_1.Zo + j.t'.Z_1^2 = Zo.Z_1 + j.t'.Zo^2$ or

 $t'.(Zo^2 - Z_1^2) = 0$ that means:

either $Z_1 = Z_0$, when the line is matched to Z_1 and $Z_1 = Z_2 = Z_3 = Z_0$, or $t' = 4.\pi . I/\lambda = 0$, when then $I = n.\lambda/4$ (n = integer), that is, the total length 2.1 is equal to an integer multiple of $\lambda/2$, that we expected for equal reflected and load impedances.

A similar property

Suppose we have a line with length I_1 and load Z_1 reflecting an impedance Z_2 . We search for the minimum length I_2 we load with Z_2 to reflect Z_1 .

Instead of searching directly for I_2 , we search for the length $I_1 + I_2$ that transforms Z_1 into itself, that is, the first length I_1 transforms Z_1 into Z_2 that is the load for the length I_2 that transforms Z_2 back into Z_1 , as in Figures 1', 2' and 3' bellow.

Remembering that the minimum length of cable that transforms Z_1 into itself (with any surge impedance) is N2, then $I_1 + I_2 = N2$. Therefore, the cable length that transforms Z_2 back into Z_1 is just $I_2 = N2 - I_1$.

A curious case

Let us have a loop with total length I made with an ideal transmission line with surge impedance Z_0 , as in Figure 4. We ask for the impedance Z_A seen at the point A of the line^[5].

Figure 4

⁵ The point A may be any one by the line symmetry.

We can redraw the loop as in Figure 5, where both halves⁶ appear connected in parallel and with an infinite **R** load impedance. So, in Figure 5 and at its right, both conductors are insulated with no mutual connection. Figure 6 shows the details.

As both halves are in parallel, they are equivalent to a single line with the same electric length and surge impedance $Z_0/2^{[7]}$. Therefore, the impedance Z_A reflected on A may be written using the expression [I] with Zo replaced by Zo/2, Z₁ by R (that will tend to ∞) and t will be equal to $tg(\pi.I/\lambda)$, as I now is replaced by I/2. So, for R with any value:

$$Z_A = (Zo/2).(R + j.t.Zo/2)/(Zo/2 + j.t.R)$$
 [VIII]

If we perform the limit when $\mathbf{R} \rightarrow \infty$, we get:

 $Z_A = -j.Zo/[2.tg(\pi.l/\lambda)]$ [IX]

Let us see some special cases.

If the total length of the loop is $I = n.\lambda$ (with n = integer), $Z_A \rightarrow \infty$; this we must expect because the distance from A to the open load is n.N2 (see 1st property).

If I = (2.n - 1). $\lambda/2$, $Z_A = 0$, because A sees a line with length (2.n - 1). $\lambda/4$ open loaded (see 2nd property).

⁷See Reference 1.

⁶ We choose the middle point because, on it, both parts have signals with the same amplitude and phase and, so, they may be connected or disconnected without affecting anything of the circuit.

If $I = (2.n - 1).\lambda/4$, $Z_A = \pm j.Zo/2$ and $|Z_A| = Zo/2$, because A sees a line with length $(2.n - 1).\lambda/8$ open loaded (see 3rd property).

We can verify that, for small I (compared with λ), the impedance is capacitive. One could think that such a loop would result in inductive impedance^[8].

Another similar case

We build a loop similar to the former one but with a 'wire exchange' on any point of the loop, as in Figure 7. We ask for the impedance Z_A .

The wire exchange at a line end corresponds to add an extra piece of line with length $\lambda/2$, as this creates a phase inversion as the wire exchange. The new line will have length $I + \lambda/2$ and no wire exchange, falling in the former case.

Therefore, we built a line as that of Figure 4, replacing its total length I by $I + \lambda/2$. In expression [IX], by making this replacement, we get:

Figure 7

$$Z_A = -j.Zo/[2.tg(\pi.l/\lambda + \pi/2)]$$
 [X]

As summing $\pi/2$ to the argument of a tangent function corresponds to transform it into a cotangent or the inverse of the original tangent, we have:

$Z_A = -j.Zo.tg(\pi.I/\lambda)/2$ [XI]

It is interesting to note that after inserting the line piece of length N2, the line has no more wire exchanging, that is, we lose the reference where it was initially. This shows that this initial position may be any one, leading always to the same result **[XI]**. Let us see some special cases.

If I = n. λ (with n = integer), Z_A = 0 If I = (2.n - 1). λ /2, Z_A $\rightarrow \infty$ If I = (2.n - 1). λ /4, Z_A = ± j.Zo/2 e |Z_A| = Zo/2

Minimum SWR at resonance

The module of the reflection coefficient at the load end of an ideal transmission line Zo is:

⁸ This would be true in the case of a loop with one wire open on the point A, but not with a transmission line.

 $|\rho| = |Zo - Z|/|Zo + Z|$ [XII]

with **Z** = **R** + **j**.**X** and **Zo** a real quantity. By the definition of the Standing Wave Ratio (SWR) **r**:

 $r = (1 + |\rho|)/(1 - |\rho|)$ [XIII]

Putting [XIII] in [XII], we have:

r = (|Zo + Z| + |Zo - Z|)/(|Zo + Z| - |Zo - Z|) or

 $r = \{\sqrt{[(Zo + R)^2 + X^2]} + (\sqrt{[(Zo - R)^2 + X^2]})/[\sqrt{[(Zo + R)^2 + X^2]} - (\sqrt{[(Zo - R)^2 + X^2]})$ [XIV]

We want to know the smallest value of **r** when we vary **X**. This is important when we are close to the resonance of an antenna with some SWR and we vary the frequency or the antenna length. Therefore, one gets the smallest value of **r** by zeroing the derivative of **r** in respect to **X** with **R** constant in [XIV]. Rewriting [XIV] with $(Zo + R)^2 + X^2 = A$ and $(Zo - R)^2 + X^2 = B$, we get:

 $dr/dX = X.[(\sqrt{A} - \sqrt{B}).(\sqrt{B} + \sqrt{A}) - (\sqrt{A} + \sqrt{B}).(\sqrt{B} - \sqrt{A})]/[\sqrt{A}.\sqrt{B}.(\sqrt{A} - \sqrt{B})^2]$

At the minimum, dr/dX = 0, which implies in X = 0, that is, at the resonance, the SWR is minimum for any fixed values of Zo and R. With X = 0 in [XIV], the SWR possible values are r = Zo/R or r = R/Zo, a well-known result.

References

- 1 AntenneX Issue No. 121 May 2007 Note 2
- 2 ARRL Antenna Book, 2007