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In the design of precise LC passive filters, some problems arise due the use of non-ideal components – 
dissipative capacitors and inductors. The latter are much more important because modern capacitors present 
neglectable losses and, in the real inductors it is very difficult to avoid windings and/or core losses. 
In the case of analog multiplexers, the filters present their attenuation curves with rounded off corners in the 
transition region between rejection and pass bands, affecting the deepness of the resonances on the poles 
(Figure 1). This occurs because the design involves coefficients that are calculated in the basis of a lossless 
transfer functions. 
There are many suggestions in the literature to solve this problem. One method employs pre-distorted 
coefficient tables that produce the required attenuation characteristic, but generating a grate insertion loss in 
the pass-band (Figure 2). 
Another solution uses crystal resonators to get the correct slope of the curves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Example of low-pass filter, showing the 
inductances losses effect. There is a slight change on the 
pass-band, but on the transition region roundnesses occur. 

Figure 2: band-pass filter showing the theoretical 
and measured curves and the result of using pre-
distorted coefficients that recovers the curve shape, 
but introduces an insertion loss. 



 
PROPOSED SOLUTION 
 
In the design of ladder filters, there is a minimum Q that satisfies the practical results. In practice, it is easier 
to get these Q values for the series inductors than for the shunt ones, meaning that, if we get the correct Q 
values for the series inductors, the theoretical ideal conditions can be easily approximated. 
The proposed solution is really very simple. In the electron tubes era, Q multipliers were used to increase the 
Q of the inductors when those values were not obtainable with passive components; the same procedure may 
be used here in the present case. 
Let’s Rp be the parallel equivalent loss resistance of the inductor L  (figure 3a). Another (negative) resistance 
–Rp put in parallel with the first one, will result in a ∞1 value for the total resistance in parallel with the 
inductor, eliminating its losses. The current on a negative resistance flows in the opposite direction of a 
positive resistance, that is, it flows in the direction of that of a generator. Moreover, a negative resistance 
produces energy and thus corresponds to a generator. 
 
                                                                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To compensate for the losses, a signal correspondent to the total losses2 is used. As Figure 4 shows, a signal 
sample is amplified and returns as a feedback to the inductor in such a manner that the feedback is positive, 
with correct phase and amplitude to compensate for all the losses. 
If all inductors are so modified, the gain adjustment for exactly compensating for the losses produces ideal 
inductors. In this form, the filter can be precisely described in terms of its lossless transfer function: the 
attenuation curve recovers its original shape with its sharp corners. 
We must note that, although using active devices, the filter continues to be passive: the local activities are 
used only to compensate for the losses. Thus the filter is now passive with ideal components. 
Amplifiers are unidirectional devices. As the main signal flow doesn’t pass through the amplifier itself, the 
original filter bi-directionality is preserved. This may be sometimes an important point. 
The same characteristic keeps the circuit reliability, particularly in multi-channel communications, as 
amplifier failures degrades only the channels close to the curve corners, without total loss of the 
communications. 
This happens to systems that have the amplifier at the main signal path. 
 

                                                           
1The value is really -∞∞∞∞ because it is the result Rr of two resistances Rp and -Rp in parallel: 
 Rr = Rp x (-Rp) / [(Rp + (-Rp)] → -∞∞∞∞ 
2 The loss compensation system itself introduces its own losses that also must be compensated for. 

 

Figure 3a: equivalent loss parallel 
resistance in (a) can be compensated by 
another one with the same value but 
negative (b). 

Figure 4: A sample of the 
signal on the inductor is 
amplified and returns as 
positive feedback to cancel 
losses. 

Figure 5: Norton Amplifier, with 
load ZL, N = M2 –M – 1 and 
transistors with high beta,                                                 
the input impedance = ZL  and 
voltage gain =  M . 



Figure 6:  Band-pass filter with a series inductor 
compensated for losses; all series inductors must be so 
treated.  

Figure 7: Attenuation curve of the 
filter of Figure 6 with and without 
inductors compensation. Note the 
difference at the corners, rounded 
by the losses. 

This method doesn’t introduce any extra insertion loss and, with good amplifiers, it is possible to avoid 
signal-to-noise ratio degradation. The methods also preserve the group delay of the filter. The inductors are 
aligned separately and this makes the filter alignment very simple. 

 
 
 
 
 
 
CIRCUIT OPERATION  
 
To compensate for losses, the amplifier must be broadband as to 
amplitude and phase to keep the phase relationship between input 
and output. It also must present low noise to avoid degradation of 
the SNR and enough gain to compensate for the losses. Good 
stability is also important because, without losses and with 
positive feedback, the circuit shows a trend to oscillate. 
One topology that satisfies all those conditions is the Norton 
amplifier Figure 5, that is almost an ideal amplifier except by two 
factors: is a very poor isolator because the input impedance is 
strongly dependent on the load impedance at its output; and its 
gain is fixed, with no adjustment provision. These factors, 
however, are not important to our purpose here. 
 
 
 

 
 

 
 
 
 
 
 
In the text: 
Rp = equivalent parallel loss 
resistance of the inductor 
Po = amplifier output power 
Pi = the power at its input 
Pg = lost power on Rp 
Vo = voltage on the No turns 
Vi = voltage on the Ni turns 
VL = amplifier output voltage 
No = number of turns of the 
return winding 
Ni = number of turns of the 
signal sample winding 
Np = number of turns of the 
inductor L  
Zo = input impedance of the No 

turns; Zi = impedance seen by the Ni turns 
ZL  = amplifier output impedance; Q = quality factor of the inductor L  
f = frequency of the defined Q; AL =  inductance / (turns)2 for the inductor core 
M  = voltage gain of the amplifier 
N = load number of turns of the Norton amplifier 
 



R = resistência para ajuste de ganho do amplificador 
 
 
 
 
 
 
 
 
                                                                                                                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A quick analysis of the circuit in Figure 5 shows: 
 
Zi = ZL, assuming that N = M2 - M - 1 
 
Connecting Norton circuit as in Figure 5, one has: 
 
ZL  = R + Zo 
 
that is the load impedance of the amplifier (R is an adjustable resistor provided to be possible to adjust the 
amplifier gain). 
Therefore: 
 
Zi = R + Zo   [1] 
 
Vo = M x Vi   [2] 

 
Suppose Ni = No, that is, the auxiliary windings have the same number of turns (in practice 1 turn is enough): 
 
Vo = Vi   [3] 
 

Figure 8: General attenuation 
curve of the assembled unit. Note 
the deeper due the greater Q 
values. 

Figure 9: Pass-band 
attenuation curve due the 
over-compensation of 
inductors. At the peaks, the 
attenuation is negative, that 
is, an undesirable real gain 
occurs, being possible for the 
amplifier to oscillate. 



From the resistive attenuator formed by R and Zo, we have: 
 
Vo = VL x Zo / (R + Zo) or VL = Vo x (R + Zo) / Zo  [4] 
 
The load Zo is the result of the loads Rp and Zi  in parallel transferred to the No turns, that is, taking into 
account the turns ratio: 
 
Zo = Rp / Np2 // Zi or Zo = Zi x (Rp / Np2) / (Zi + Rp / Np2)   [5] 
 
With [2] in [4] : 

M x Vi = Vo x (R + Zo) / Zo or M x Vi x Zo = Vo X R + Vo x Zo 

 
From we take R: 
 
R = Zo x (M x Vi - Vo) / Vo that with [3], we get: 
 
R = Zo x (M -1) or Zo = R / (M - 1)   [6] 
 
With [1] in [5] we have: 
 
Zo = Rp x (Zo + R) / [Rp + Np2 x (Zo + R)]   [7] 
 
With [6] in [7] we get: 
 
R / (M - 1) = Rp x R x M / (M - 1) or Rp + Np2 x R x M / (M - 1) = Rp x M 
 
Therefore R = Rp x (M - 1)2 / (Np2 x  M)   [8] 
 
But, for a parallel L-R circuit, we have: 
 
Q = Rp / (2 x ππππ x f x L) or Rp = 2 x ππππ x f x L x Q [9] 
 
and L = Np2 x AL    [10] 
 
with [10] and [9] in [8], we have finally: 
 
R = 2 x ππππ x f x AL x Q x (M-1) / M   [11] 
 
We muse remember that this result holds for the use of a Norton amplifier with a series resistance to 
compensate the losses; the expression would be different for another type of circuit. 
Although the value of R in equation [11] gives the theoretical null loss to the inductor, it may lead to 
oscillations or instabilities. A variable resistor (preferentially multiturn) must be used for experimentally 
getting the desired curve for the filter. 
So, equation [11] gives us an approximate value for R. 
The Norton transformer must have the coupling among windings the most perfect as possible to avoid filter 
perturbations due stray capacitances. The number of turns N of that transformer must be the smallest as 
possible, N = 1, preferably. 
 
PRACTICAL RESULTS 
 
To demonstrate the real practicability of this approximation, a band-pass multisection filter from 60 to 
108kHz was built, one of its section showed in Figure 6: the inductor L  is that compensated for the losses. 
The sample signal is got from L  through a one turn winding at left, entering the Norton amplifier crossing the 
dotted line and returning to the inductor through the right via another one turn winding. The resistor R2 
adjusts the gain and C5 prevents HF oscillations due transformer parasitic capacitances. 



Figures 7 and 8 show the attenuation curves with and without the losses compensation. Figure 7 being only an 
expansion of Figure 8. There is clearly a considerable improvement on both pass and attenuation bands. The 
compensation is not very affected by temperature variations due the great thermal stability of the Norton 
amplifier. 
 
ADJUSTMENTS 
 
For the filter alignment, we must use the formal procedure of the filter adjustment, but with the amplifier 
power supply turned off (with no losses compensation). When all inductors are aligned, we turn on the power 
supply with the gain control resistors at their maximum value (minimum compensation) 
Observe the dips in the attenuation band and, for each pole, increase those dips by means of the corresponding 
gain controls. An increase of 10dB is reasonable. Observing the attenuation curve, one makes some little 
readjustments to get the sought response. This must be done with care not to overcompensate the inductors 
and produce oscillations or undesirable peaks at the pass-band corners, as in Figure 9.  
The method generated a patent. Unfortunately, with the coming of the digital technology, filtering by 
frequency bands became much less used. Even so, in the cases where the passivity and bi-directionality are 
important factors, they still have some use3. 
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3For example, some SSB generation/detection systems by the so-called ‘third method’, or even audio filters, can use this type of 
solution. 


