Finding the 
              two passbands of a linear mode B transponder. This is possible if 
              we know the downlink central frequency fc(dwn), the uplink central 
              frequency fc(up) and the bandwidth B : 
            upband:flowuhf=fc(up)-0.5B&fhighuhf=fc(up)+0.5B 
              
              dwnband:flowvhf=fc(dwn)-0.5B&fhighvhf=fc(dwn)+0.5B 
              
              
              Also we can find the mode B calc factor T ( f,T osc ) : 
            T (1) = fc(dwn)+fc(up) 
              ( INV transponder ) 
              T (2) = fc(up)-fc(dwn) ( NON INV transponder ) 
            Some simple 
              mathematical manipulations deliver the 'doppler shift compensated translation equations' 
              ( INV transponder ) A1 and B1 ..... 
            A1 RX=T-[TX+DS70]+DS02
              B1 TX=T-[RX-DS02]-DS70
            DS02 is 2m doppler 
              and DS70 70cm doppler value. DS02=DS70/3 and DS70=DS023 ..... 
              
            Concerning a 
              NON INV transponder : 
            A2 RX=[TX+DS70]-T+DS02
              B2 TX=[RX-DS02]+T-DS70
            Because of the 
              LIN MODE B NON INV function of this transponder we also can find 
              : 
              
            DS70=0.75[T-(TX-RX)]. 
              
            If it concerns 
              mode J : 
            DS70=0.75[(TX-RX)-T]. 
              
            If you want 
              2m doppler values ( DS02 ), replace 0.75 by 0.25 .....
            And a LIN MODE 
              B INV function delivers : 
              
            DS70=1.5[T-(RX+TX)]. 
              
            Perhaps you 
              are able now to construct the mode J formula if necessary. You have 
              to find : 
            DS70=1.5[(RX+TX)-T]. 
              
            And if you want 
              2m doppler values ( DS02 ) again, replace 1.5 by 0.5 ..... 
            You find some 
              calculations ( examples ) in : the VUSat transponder ( fourth submenu 
              button ).