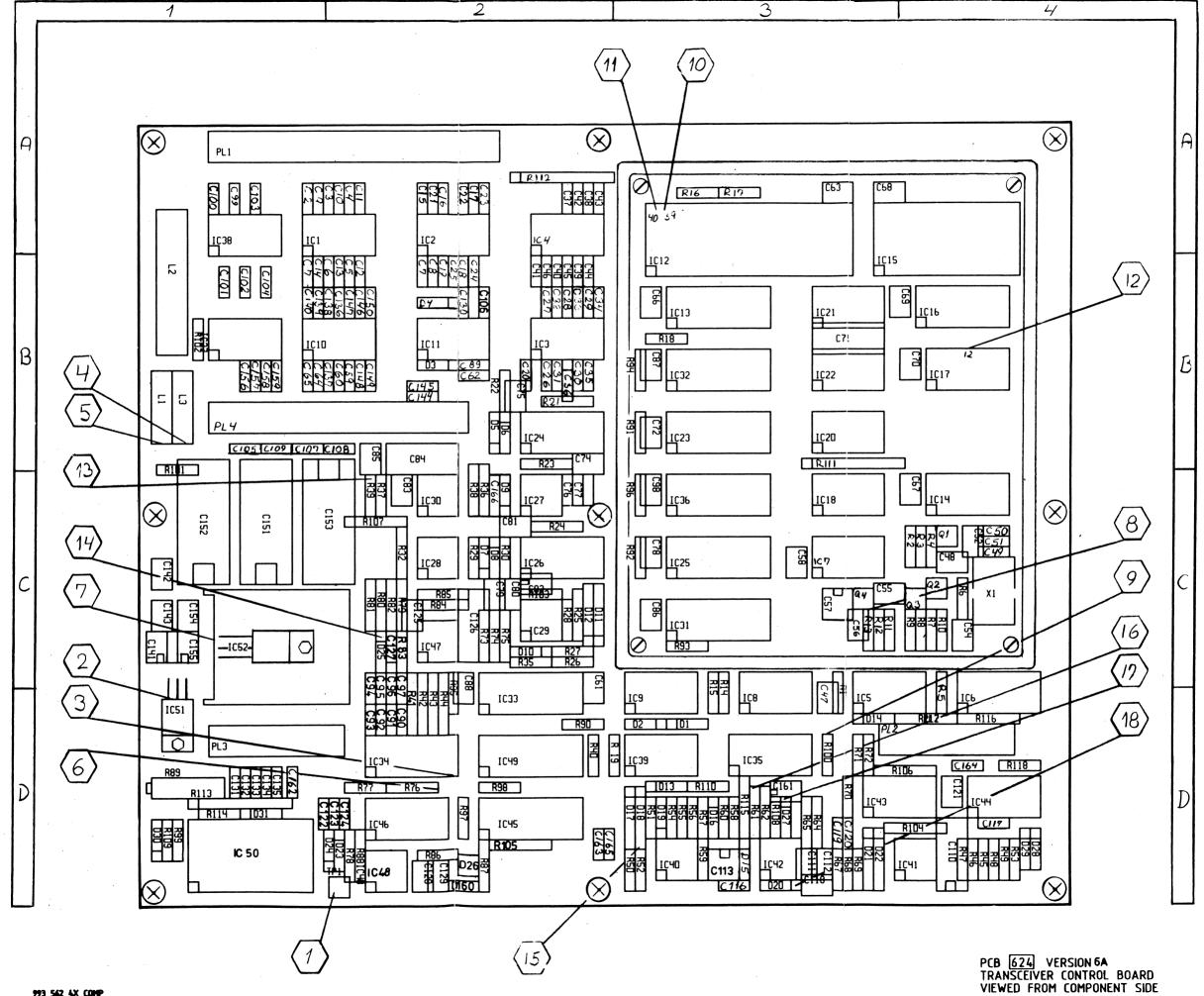
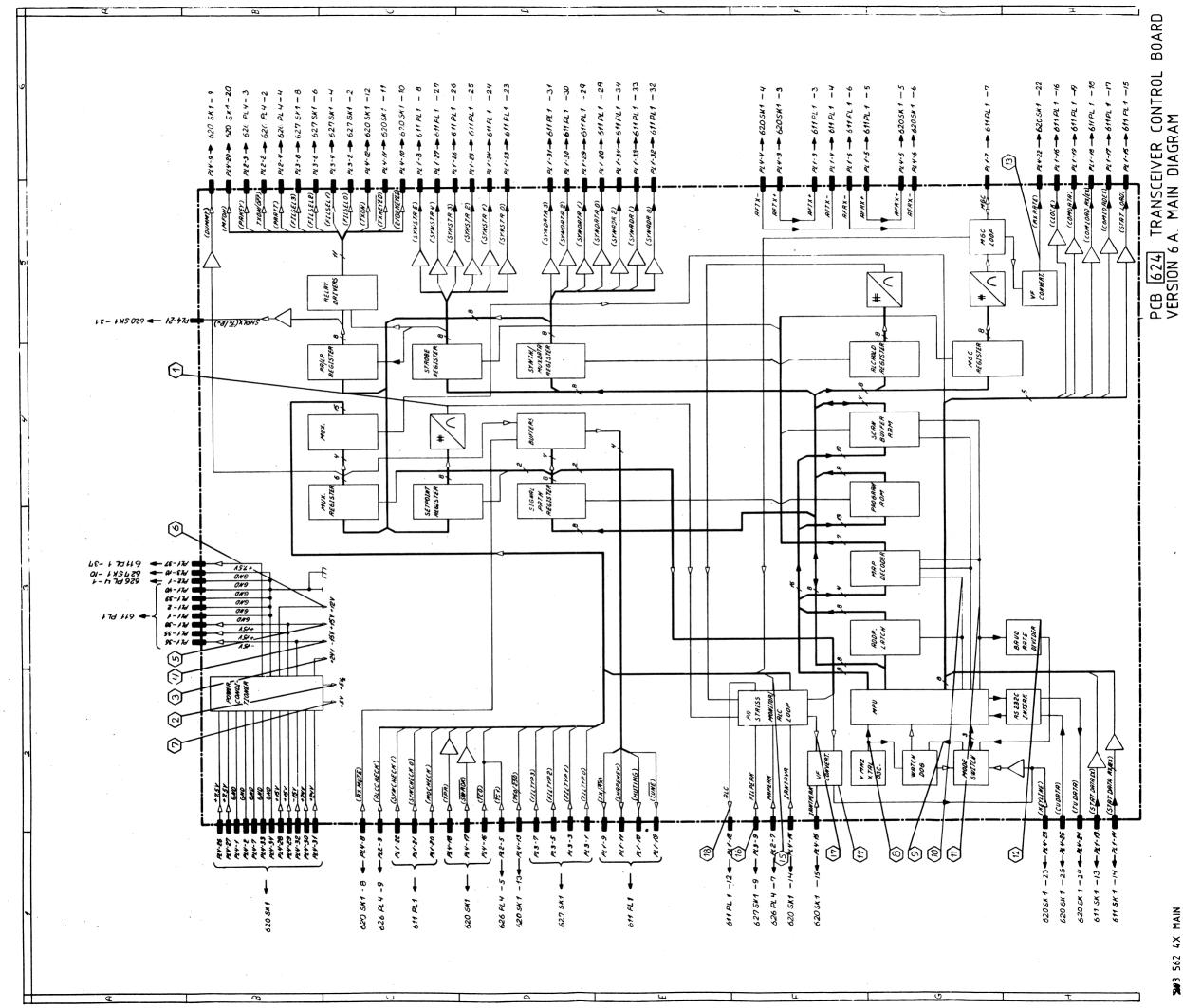
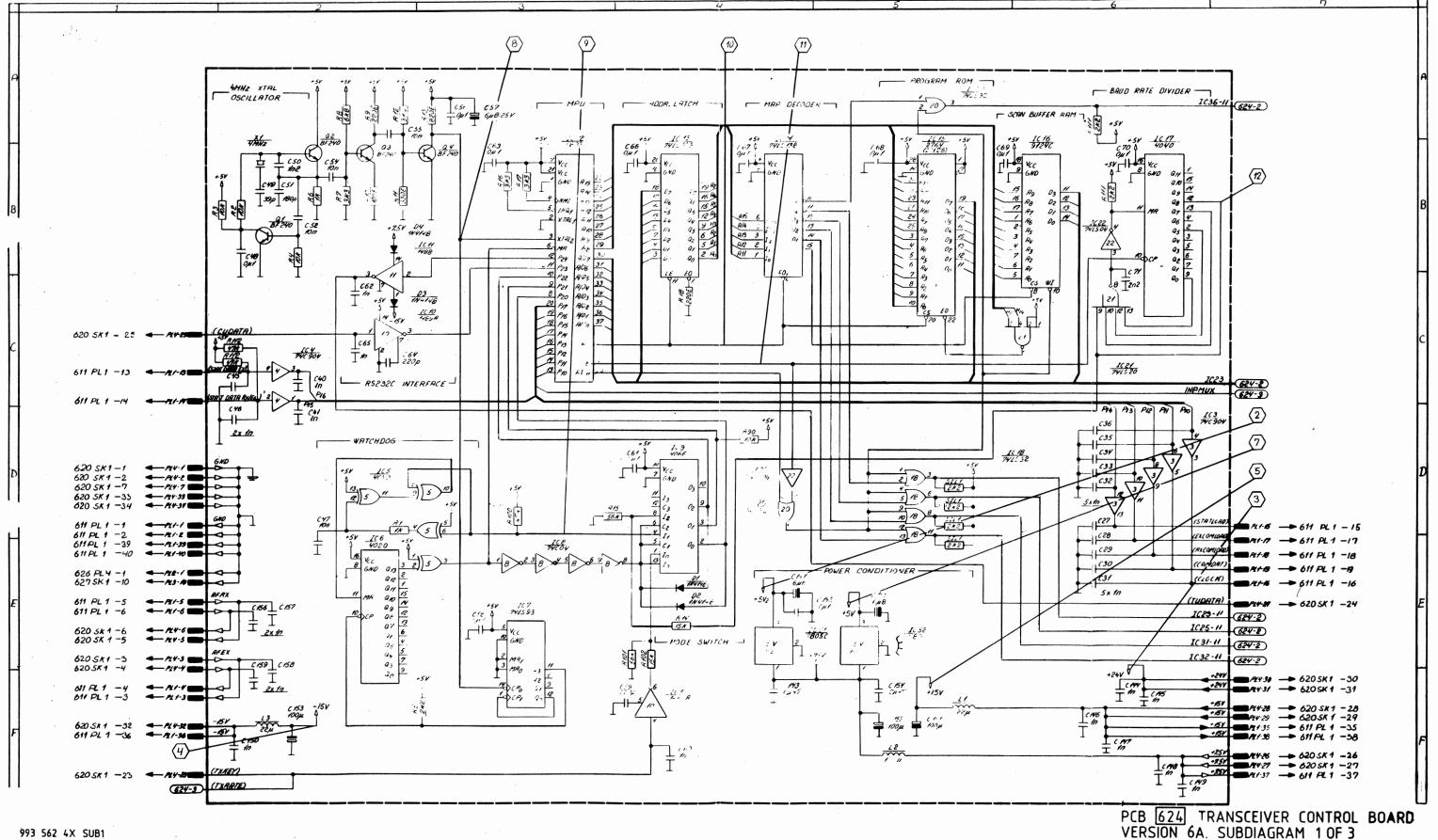
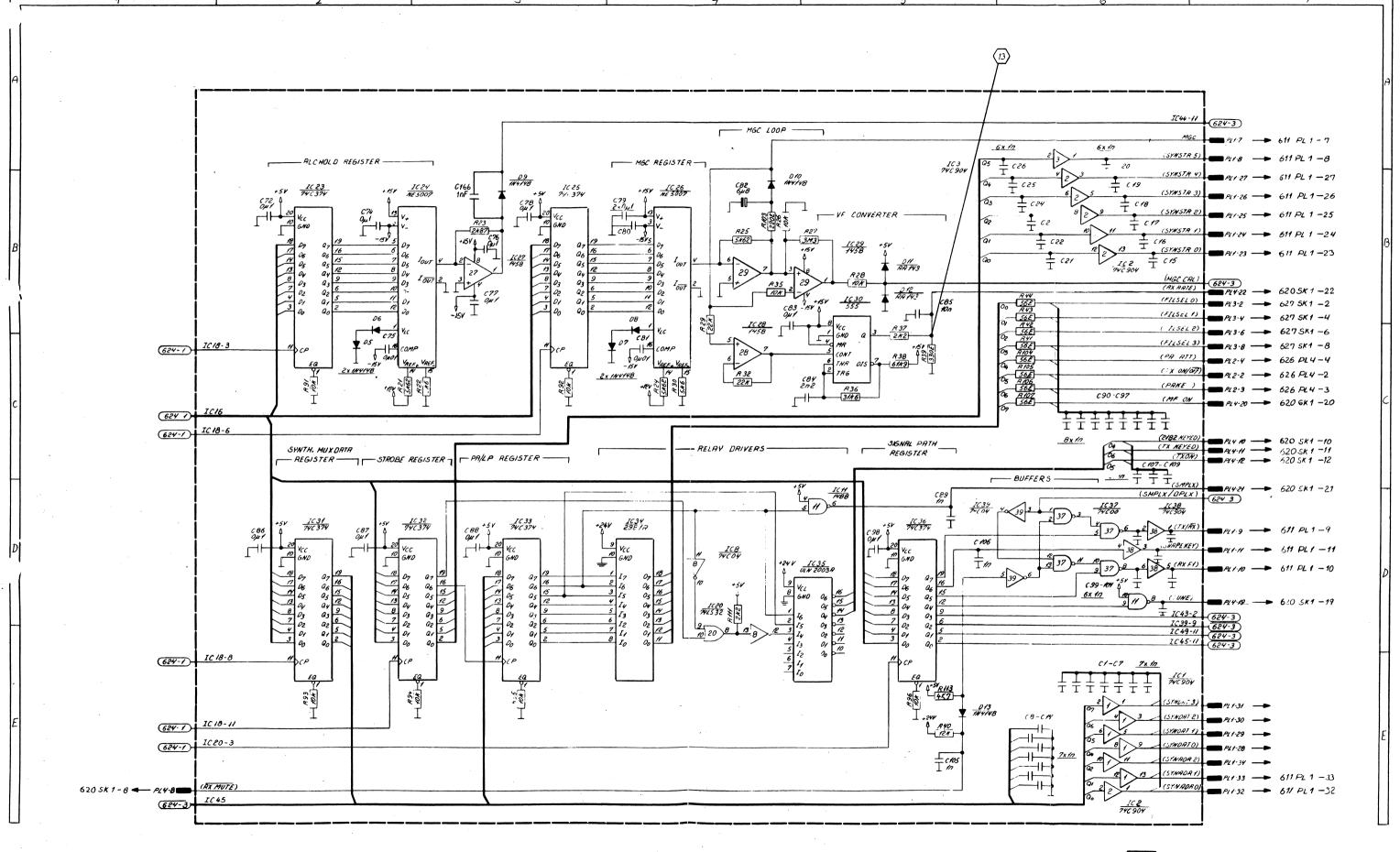
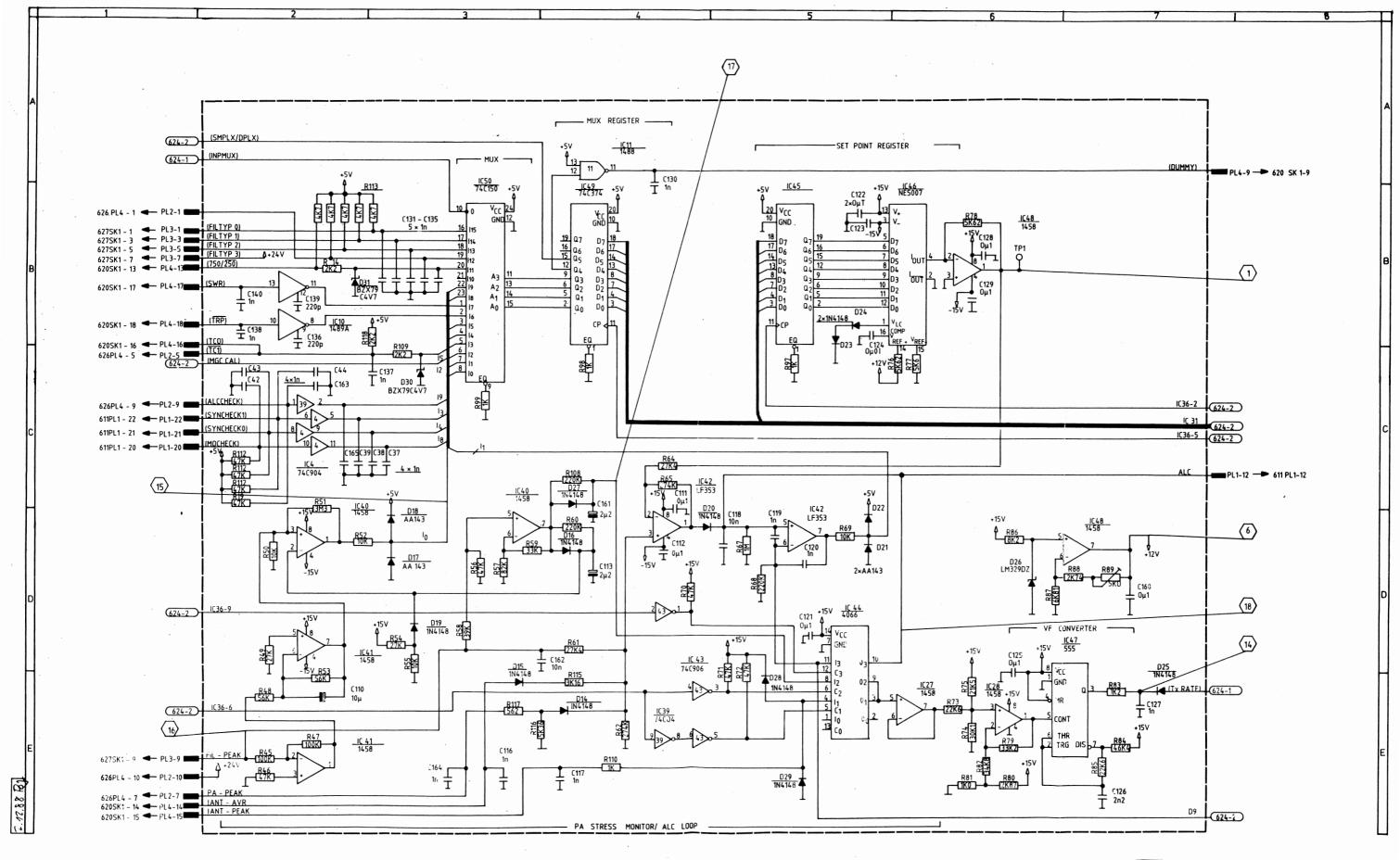
TECHNICAL DESCRIPTION


PCB 624 TRANSCEIVER CONTROL BOARD


This module implements the following functions: Communication with Control Board 600 as a slave by receiving and executing command messages in order to control Receiver Signal Path 618, Exciter Signal Path 619, Synthesizer Board's 611 (one for the receiver and one for the exciter), P.A. Filters and Antenna Tuning Unit Board 660, and by transmitting acknowledge and status messages back to 600. To achieve this, a structure similar to that described in the section concerning 600 is used: The "MPU" communicates with its counterpart on 600 using (TUDATA) and (CUDATA) via "RS 232C INTERFACE". Status of 618 (i.e. crystal filters installed) is read as a 16 bits packet using the signals (STAT DATA RX/EX), (CLOCK) and (STAT LOAD), while commands are transferred from 624 in the form of a 32 bits packet using (COMDATA), (CLOCK) and (COM LOAD RX/EX). This processor is also clocked by a "4 MHz XTAL OSCILLATOR" and is initialized by a "WATCHDOG" capable of automatically restarting a stalled program, which does not issue a 32 Hz trigger signal combined with "MODE SWITCH". "ADDRESS LATCH" and "MAP DECODER" operate in the same manner as on 600, "PROGRAM ROM" holds 16 kbytes in EPROM, while "SCAN BUFFER RANT (1 knibbles) is used for holding the programmed scanning channels.


The frequency synthesizers on 611 are controlled via multiplexed data (SYNDATA 0--3) and address busses (SYNADR 0--2) using (SYNSTRO 0--5), whereas the corresponding switching between transceiving states on 618 and 619 is done by proper sequencing of the signals (TX/RX), (SHAPEKEY) and (MUTING) triggered by transitions of the signal (KEYLINE) originating from Audio Processing Board 601 . (KEYLINE) is also modulated by "VF CONVERTER" to carry a telemetry signal representing output power back to 600 via 601. Two analog loops are located on this board. The most simple is associated with the receiving state of 610 through "MGC REGISTER" and the corresponding DAC driving "MGC LOOP" connected to another "VF CONVERTER" generating a new telemetry signal representing received signal strength (RXRATE). The other loop ("PA STRESS MONITOR/ALC LOOP") stabilizes the output in the transmitting state by comparing the output of the "SETPOINT REGISTER" and the corresponding DAC with the signals FILPEAK, PAPEAK and IANTAVR in order to generate the error signal ALC used for driving an electronically controlled attenuator placed in the transmitter signal path. If the signal (PA OK), derived from 654 Power Splitter, is high during transmission in full power, it means that one or more of the power amplifiers is faulty. In this (SET POINT) is decreased by 0.8 dB to prevent overload of the remaining power amplifiers.


Finally, another signal controlled from the processor is generated using "ALCHOLD REGISTER" and the corresponding DAC to make the gain of the transmitter signal path independent of the modulating signal. To increase the number of peripherals on this board beyond the capacity of "MAP DECODER" indirect addressing is introduced by using "SYNTHESIZER/MUXDATA REGISTER" not only for driving the synthesizers but also as a local bus feeding the following registers: "PA/LP REGISTER" (controls the relays switching the P.A. Filters depending on the TX frequency via "RELAY DRIVERS" and the power to Power Amplifier Board 626), "NULTIPLEXER REGISTER" (controls a 16-to-1


multiplexer "MUX" used for monitoring diagnostic and status signals) and "SETPOINT REGISTER" (already mentioned). Directly driven from the databus are "STROBE REGISTER" (strobes the synthesizer as described earlier) and "SIGNAL PATH REGISTER", which via "BUFFERS" controls the keying signals mentioned before. The handshake protocol with the processor located on 660 uses the signals (TUNE) and (TPR). The status of 660 is constantly monitored via (SWROK) and (TCO) and any changes detected are signalled to 600 using appropriately coded messages. In the same way 626 is monitored via (TC1) and "PA STRESS MONITOR/ALC LOOP". The signals (FILTYP 0--3) and (750/250) from P.A. Filters and 660 are used for identifying purposes by the "MPU".

TEST POINTS FOR 624 TU CONTROL BOARD

1 +8.62V (IN NORMAL CONDITION)	+5.71V WITH - 3.2dB REDUCED POWER (IF (15) HAS BEEN "HIGH" MORE THAN ONE
2 +5V	MIN.) +4.36 WITH - 5.25dB REDUCED POWER (IF THE INTERNAL TEMPERATURE OF THE ATU EXCEEDS 85°)
(3) +24V	A TO EXCEEDS 03 7
4 -15V	
(5) +15V	
<a>6 -12 ∨	
√7 +5V	
(8) 4Mhz +5V	
9 32hz +5V	
(10) 1Mhz +5V	
11) 1Mhz +5V	
(12) 2400hz +5V0	
(13) 13.3Khz +2V	(NO SIGNAL RECEIVED)
14) 10.5Khz + 15V	(NO KEYING)
(15) NORMALLY OV	IF IN A FULL POWER TRANSMISSION THE AVERAGE POWER EXCEEDS THE PEAK POWER MINUS 3dB IT CHANGES TO +5V THIS CAN BE TESTED BY WHIST-LING IN THE MICROPHONE DURING TRANSMISSION.
9V dc WHEN 250W QUTPUT	
65V dc WHEN 250W DUTPUT	
(18) 3-6V dc +5V DEPEN	DING ON OUTPUT SIGNAL

993 702 51

500 410 00	322	333	368	210	233	339	282	415	456	744/		328	633	422	431	461	412	100	427	439		433	427	527	610	422	430		310	434	312	446	382	368	770		000	000	331 6	511 353 60	7 967
Æ	M FP	MF	M F	MF	MF	MF	MF	MF	MF	MF	MF	MF	Car.	MF	MF.	M.	MF	Z Z	MF	MF	MF	X Y	MF	MF	MF	MF	A F	MF	MF	MF	MF	M.	ΣX	Z Z	Pot	Sil.	Sil.	sil.	ΑF	Σ Σ Fr Fr	717
1/8W	1/8W	1/8W	1/8W	1/8W	1/8W	1/8W	1/8W	1/8W	1/8W	1/8W	1/4W 1/8W	1/4W	1/4W	1/8W	1/4W	1/4W	1/8W	1/2/1	1/8W	1/8W	1/8W	1/8W	1/0W	1/4W	1/8W	1/4W	1/4W	1/4W	1/4W	4	1/8W	4	1/8W	1/4W	11 / 1				4	1/4W	•
\$, C) %	ري م	rυ π ≫ %	. v	л %	5%	5%	5%	₩ d	0 r	. % . %	1%	₩ %	٠ % ،	% 6	* °	n N N	o ex	, v,	5 %	ر م م	n u	٠ ١	1%	5%	₩,	% 6	¥ 4	• •	18	2%	₩ H	ر اد	1.8	1			,		~ ~	
10 kohm	2.2 kohm	3.3 kohm	6.8 Kohm	000	30	6.	20	2	56 kohm	4 4 7 7	5.6	87	۳.	55	٥	1.9	12 Konm		27	6	0	33 Kohm	4	274	7	9 ,	1.0	33.2 kohm	1.0	ω.	1.2	4.	7.6	2.74 Kohm		2	7	4.7	9	5.36 Kohm	v
R2-4,26,28,35, 50,52,55,69,	37,	16,17	R8	07,01,0	R11,39	R12	2	,102	,48,53,101	,46,36,70=72,10	7,101,1	æ	3	ຕ	K36	KJS	-44	47	, rU	R58	R57	8	64,10			R73,85	K/4	R/3	R81	R82	R83	R84	K86	787 788	582	R111	R112	R113	R115	R116 R117	, 114
107 562 41	857 490 40 850 407 00	402	850 749 32	406	148	148	680	437	857 413 80	18 × 49 × 68 ×	700		915		743	50 740	850 /40 41	857 437 40			50 500	850 145 80	298	200	740	035	490)	840 024 00		830 414 80		830 032 90	014 3	832 794 70		812 000 00		500 310 00	
524 cdering)											(XX denotes program version number)											-																CRYSTAL		5% 1/8W MF	
rd Complete (rsion when o	74C904 CD4070BC	4020B	24704 74004	CD4066BC	1489P	1488P	6803	74LS373	74LS138	2712R	(XX denote:		9124C	CD4040BC	74L532	241520	/ 4 LS 0 4	74C374			NE5007	MC1458N	UDN2981	ULN2003A	74C00	LF353	747350	MA7805		BF240		1N4148		LM329DZ	AA143	BZX79C4V7		4MHz		шиох т	
Printed Circuit Board Complete 624 (specify program version when ordering)	IC1-4,38 IC5	ICE	108 39	IC9,44	ICIO	IC11	IC12	IC13	IC14	1015)		IC16	1010	1018,20	1021	1022	IC23.25.31-33.	36,45,49		IC24, 26, 46	IC27-29,40,41,48	IC34	IC35	IC37	1642	1043	IC51,52		Q1-4		20 23-25 27-39	67-12,62-62,02	D26	D11.12.17.18.21.22	D30,31		X1	000000000000000000000000000000000000000	KI, 6, 110, 9/-99	

PARTS LIST FOR TRANSCEIVER CONTROL BOARD 624 VERSION 6A

00	01	00	000 000 000 000 000 000 000 000 000 00	01
310	410	510	1139 3122 2188 6688 6688 3222 7100 6222 6222 6222 6222 6222 7100 6220 6220 6220 6220 6220 6220 6220 6	034
603	622	622	6002 6002 6002 6013 6113 6013 740 740 740 756	2
Cer.	Polyes.	Polyes.	N150 Cer. Cer. Sol.al. Cer. W.alum. Tantal Polyes. W.alum.	
100V	63V	63V	63V 63V 63V 25V 100V 125V 16V 35V 63V 25V 25V	
10%	10%	10%	2 % % % % % % % % % % % % % % % % % % %	
nF	nF	u F	PF DF DF DF DF DF DF DF DF DF DF	Pol.
H .	10	0.1	39 11.35 11.86 10.	4
C1-46,60,62,65,89, 90-97,99-109, 116,117,119,120,127, 130-135,137,138,140, 144-150,156-159,163,	C47,52,54,55,75, 81,85,118,124	C48,56,58,61,63, 66-70,72,74,76-80, 83,86-88,98,111,112, 121-123,125,128,129, 142,160	C49 C50 C51 C57,82,141,155 C59,64,136,139 C71,84,126 C10 C113,161 C143,154 C151-153 C162 L1,L3 L1,L3 PL1	PL4