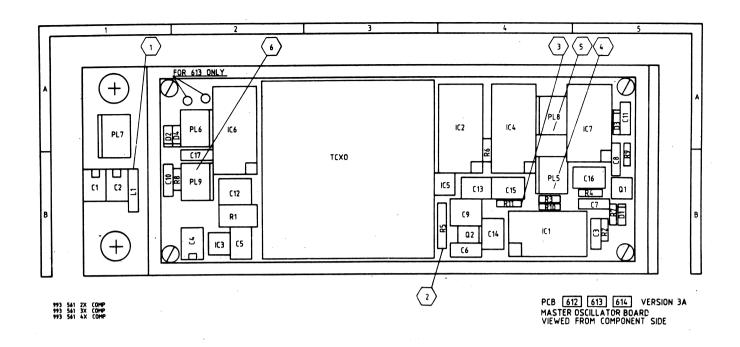
## TECHNICAL DESCRIPTION

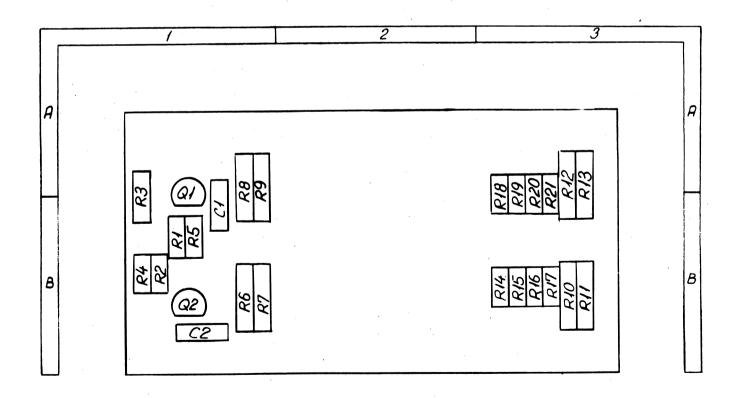
## PCB 612/613/614 MASTER OSCILLATOR

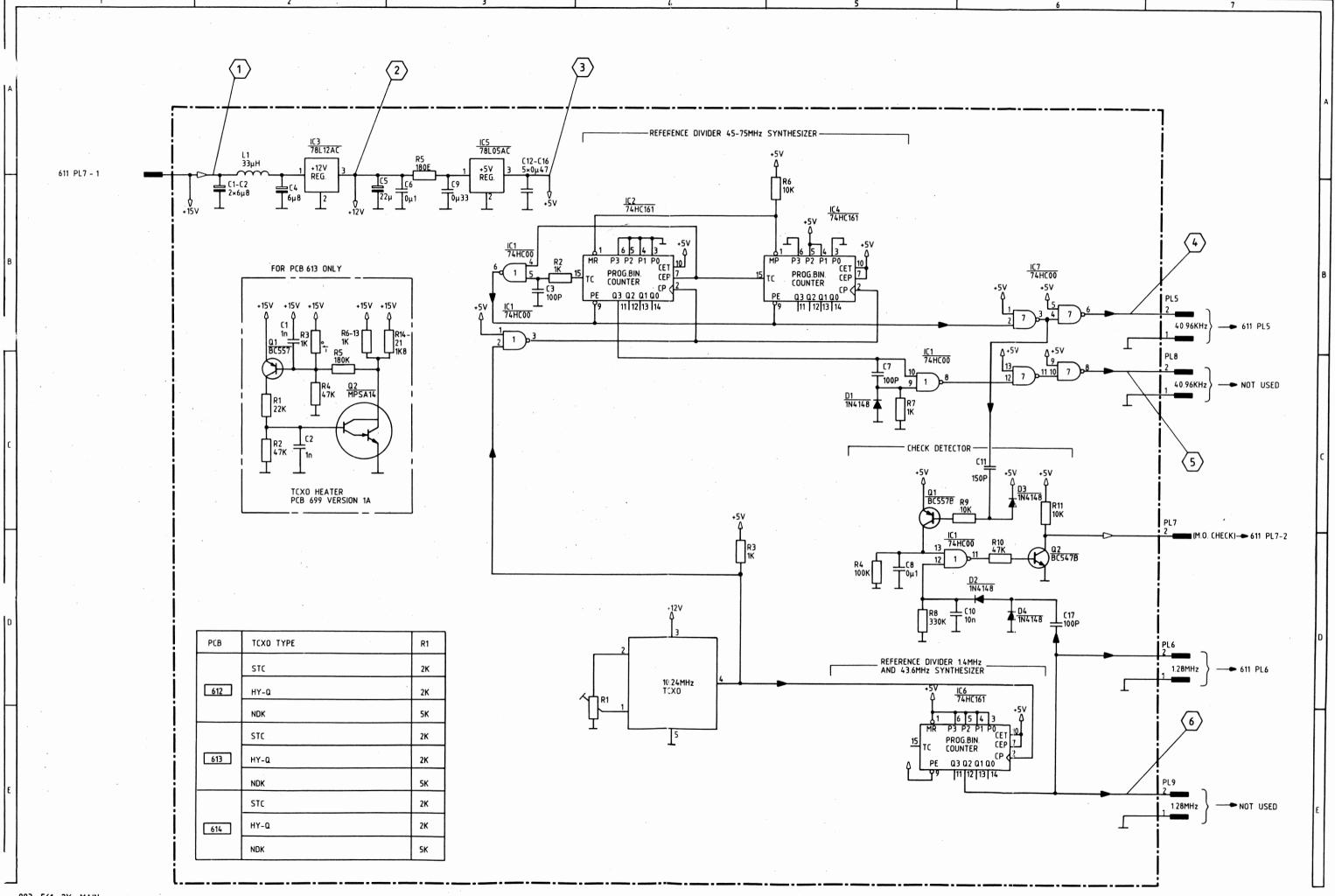
The three Master Oscillators all consist of the same circuits but have different frequency stabilities determined by the 10.24 MHz Temperature Compensated Crystal Oscillator (TCXO) used. The output signal of the TCXO is split between two reference dividers. One for the 45-75 MHz Synthesizer and one for the 43.6 and 1.4 MHz Synthesizers. The Reference Divider, 45-75 MHz Synthesizer, divides the 10.24 MHz TCXO signal by 250 having a 40.96 kHz reference frequency at two outputs.

The Reference Divider, 43.6 and 1.4 MHz Synthesizer, divides the 10.24 MHz TCXO signal by 8, obtaining a 1.28 MHz signal fed to two outputs. The output signals of the divider are fed to the Check Detector to detect the presence of both. The resulting check signal MO-Check is via the Synthesizer Board 611 fed to the Transceiver Control Board 624.

For Master Oscillator 613 a heater (TCXO Heater 699 ) is incorporated in order to keep the TCXO ambient temperature above 0 deg. Celcius.


## PCB 615/616 MASTER OSCILLATOR


Master Oscillator 615 and 616 produces enhanced frequency stabilities of  $+/-0.35 \mathrm{ppm}$  and  $+/-0.1 \mathrm{ppm}$  respectively. A highly stable oven controlled crystal oscillator (PCB 608 or PCB 609) is mounted in a shielding box on top of the Master Oscillator board. On Master Oscillator 615, PCB 608 is mounted and on 616, PCB 609 is mounted, giving the higher stability. The crystal oscillators produces a temperature stable 20.480000MHz signal giving a total frequency stability of less than either  $10 \mathrm{Hz}$  or  $3 \mathrm{Hz}$  for the Transceiver.


The oscillator signal is led to PCB 615/616 where it is divided by 2. This 10.24 MHz signal is split between to divider chains dividing with 250 and 8 resulting in two reference frequencies of 40.96 kHz and 1.28 MHz respectively.

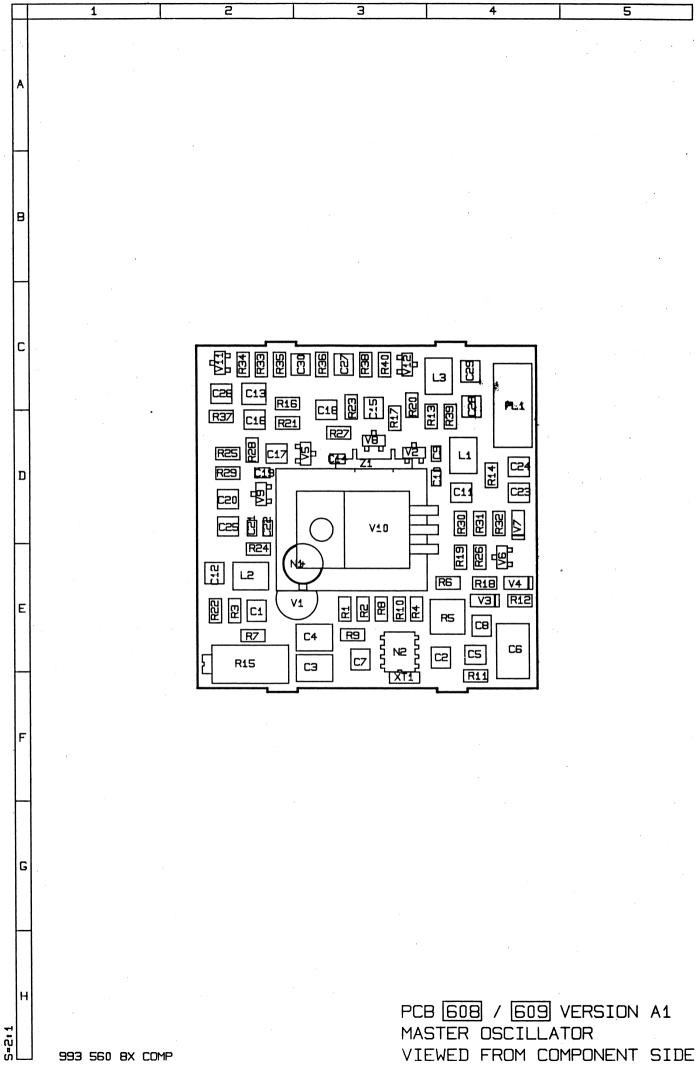
The 40.96kHz signal is led to PL5 and PL8 and is used as a reference frequency for the 45 to 75 MHz synthesizer. Likewise the 1.28 MHz signal is led to PL6 and PL9 and is used as reference frequencies for the 43.6 MHz and the 1.4 MHz synthesizer.

The output signals of the two divider chains are monitored and combined in a check detector, producing a check signal (MO-Check) which via Synthesizer Board 611 is led to the Transceiver Control Board 624. The check signal is used during self-test.



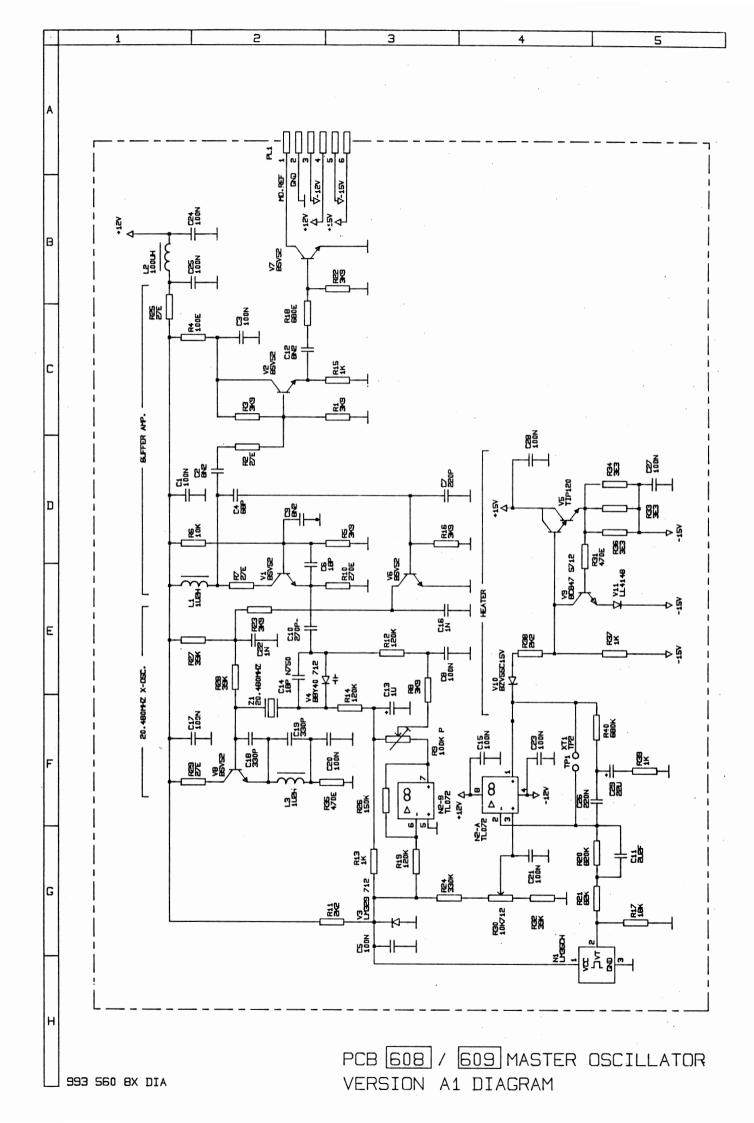


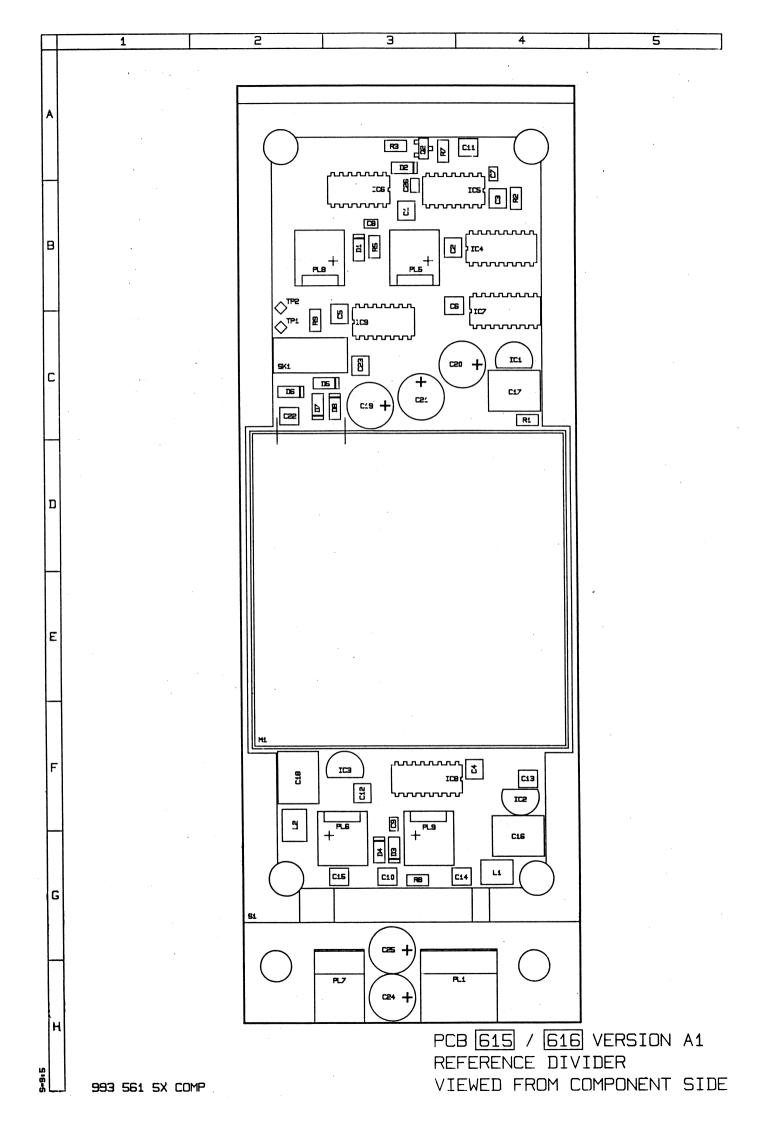


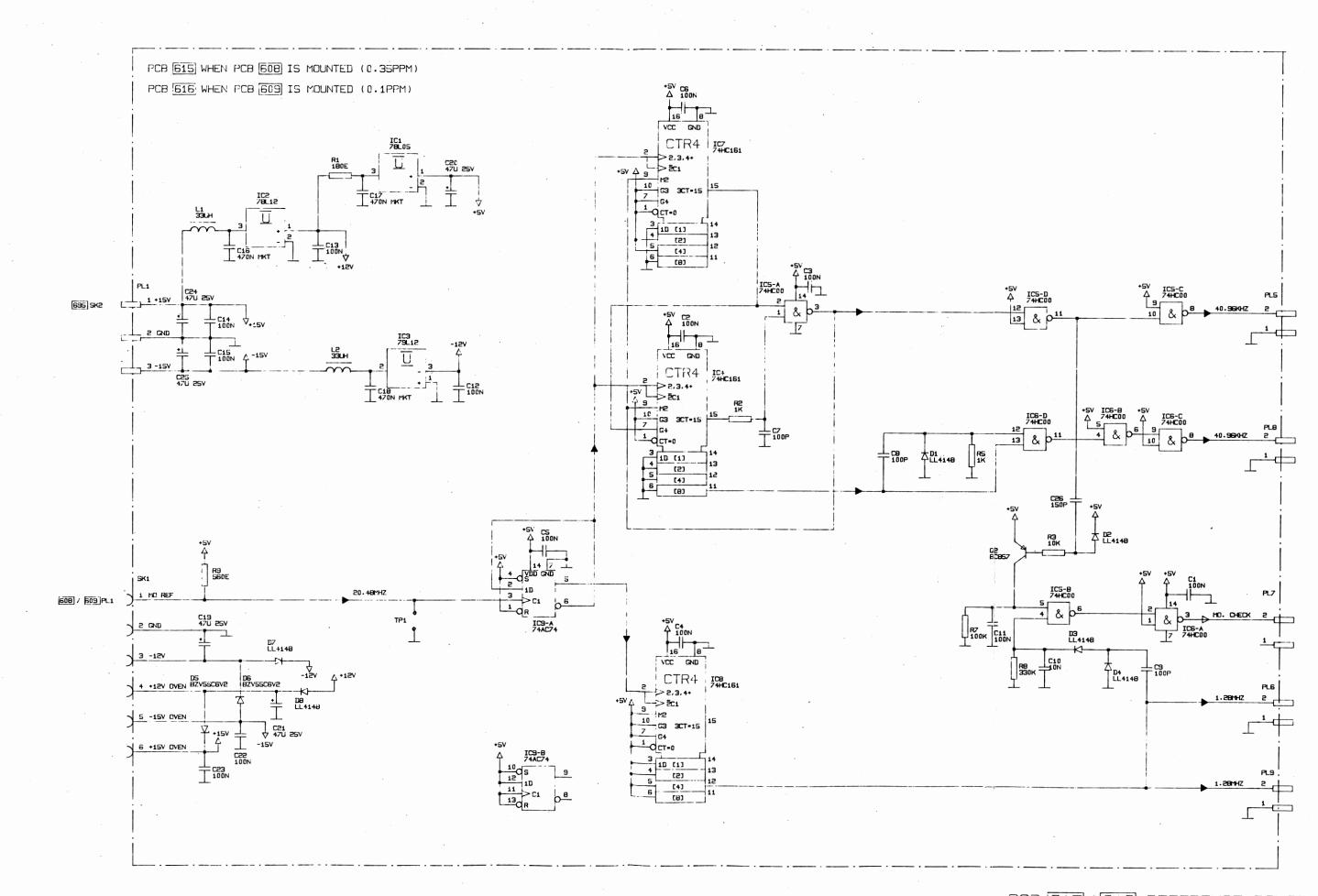

| 107 561 31                      | 850 740 04<br>857 416 10<br>850 741 20<br>850 780 52 | 840 055 70<br>840 054 70 | 830 414 80 | 500 310 00<br>500 510 00<br>501 218 00<br>500 410 00<br>500 533 00 | 1. 652 668 01<br>602 210 00<br>652 722 00<br>8. 622 510 00<br>8. 622 533 01<br>602 410 01<br>602 457 01      | 740 133 01 | 383 570 21 | 569                      | 750 001 45<br>750 001 46 |
|---------------------------------|------------------------------------------------------|--------------------------|------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------|------------|--------------------------|--------------------------|
|                                 |                                                      |                          |            | MF<br>MF<br>Car.<br>MF<br>MF                                       | Sol.al. N150 Tan. Polyes. Polyes. Cer. N150                                                                  |            |            |                          |                          |
|                                 |                                                      | ٠                        |            | 1/8W<br>1/8W<br>1/4W<br>1/8W<br>1/8W<br>1/8W                       | 25V<br>63V<br>25V<br>63V<br>63V<br>63V<br>63V<br>63V                                                         |            |            |                          |                          |
| 613                             |                                                      |                          | •          | 01 01 01 01 01 01 01 01 01 01 01 01 01 0                           | -20+50%<br>2%<br>20%<br>10%<br>-20+50%<br>10%                                                                |            |            |                          |                          |
| ard Complete (                  | MC74HC00N<br>MC74HC161N<br>LM78L12ACP<br>LM78L05ACP  | BC557B<br>BC547B         | 1N4148     | 1 kohm<br>100 kohm<br>180 ohm<br>10 kohm<br>330 kohm<br>47 kohm    | 6.8 uF<br>100 pF<br>22 uF<br>0.1 uF<br>10 nF<br>150 pF<br>0.47 uF                                            | 33 nH      | 10.24 MHz  | 669                      | 2 POL<br>2 POL           |
| Printed Circuit Board Complete  | IC1,7<br>IC2,4,6<br>IC3<br>IC5                       | Q1<br>Q2                 | D1-4       | R2-3,7<br>R4<br>R5<br>R6,9,11<br>R8<br>R10                         | C1,2,4<br>C3,7,17<br>C5<br>C6,8<br>C9<br>C10<br>C11<br>C12-16                                                | <b>L1</b>  | TCXO       | TCXO HEATER PCB          | PL5,6,8,9<br>PL7         |
|                                 |                                                      |                          |            |                                                                    |                                                                                                              |            |            |                          |                          |
| 107 561 21                      | 850 740 04<br>857 416 10<br>850 741 20<br>850 780 52 | 840 055 70<br>840 054 70 | 830 414 80 | 500 310 00<br>500 510 00<br>501 218 00<br>500 410 00<br>500 533 00 | 652 668 01<br>602 210 00<br>652 722 00<br>622 510 00<br>622 533 01<br>602 410 01<br>602 215 00<br>622 457 01 | 740 133 01 | 383 570 11 | 750 001 45<br>750 001 46 |                          |
|                                 |                                                      |                          |            | MF<br>MF<br>MF<br>MF                                               | Sol.al. N150 Tan. Polyes. Polyes. Cer. N150                                                                  |            |            |                          |                          |
|                                 |                                                      |                          |            | 1/8W<br>1/8W<br>1/4W<br>1/8W<br>1/8W<br>1/8W                       | 25V<br>63V<br>63V<br>63V<br>63V<br>63V<br>63V                                                                |            |            |                          |                          |
| 12                              |                                                      |                          |            | ******                                                             | -20+50%<br>2%<br>20%<br>10%<br>-20%<br>-20+50%<br>10%                                                        |            |            |                          |                          |
| nted Circuit Board Complete 612 | MC74HC00N<br>MC74HC161N<br>IM78L12ACP<br>IM78L05ACP  | BC557B<br>BC547B         | 1N4148     | 1 Kohm<br>100 Kohm<br>180 ohm<br>10 Kohm<br>330 Kohm<br>47 Kohm    | 6.8 uF<br>100 pF<br>22 uF<br>0.1 uF<br>10 nF<br>150 pF<br>0.47 uF                                            | 33 uH      | 10.24 MHz  | 2 POL<br>2 POL           |                          |
| nted Circuit B                  | IC1,7<br>IC2,4,6<br>IC3<br>IC5                       | 21<br>22                 | D1-4       | R2-3,7<br>R4<br>R5<br>R6,9,11<br>R10                               | C1,2,4 C3,7,17 C5 C6,8 C9 C10 C11                                                                            | <b>L1</b>  | гсхо       | PL5,6,8,9<br>PL7         |                          |
|                                 |                                                      |                          |            |                                                                    |                                                                                                              |            |            |                          |                          |

MF
NTC
MF
MF
MF
Cer.

602 310 02


107 569 91


|                                    |                          | 1/8W<br>1/8W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/8W<br>1/8W                                    | 1000                |              |                    |                          |        |                                                       |       |         |                          |                  |            |            |                |                          |  |
|------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------|--------------|--------------------|--------------------------|--------|-------------------------------------------------------|-------|---------|--------------------------|------------------|------------|------------|----------------|--------------------------|--|
| 6                                  |                          | -<br>- 0.0<br>- 0. | +<br>1 \( \( \( \) \( \)<br>5 \( \) \( \) \( \) | 10\$                |              |                    |                          |        |                                                       |       |         | •                        |                  |            |            |                |                          |  |
| Printed Circuit Board Complete 699 | BC557B<br>MPSA14         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 kohm<br>1 kohm                              | 1.8 KOIIIII<br>1 nF |              |                    |                          |        |                                                       |       |         |                          |                  |            |            |                |                          |  |
| uit Boar                           | 4                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                     |              |                    |                          |        |                                                       |       |         |                          | •                |            |            |                |                          |  |
| printed circ                       | Q1<br>Q2                 | R1<br>R2,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R3<br>R5<br>R6-13                               | R14-21<br>C1-2      |              |                    |                          |        | ,                                                     |       |         |                          |                  |            |            |                |                          |  |
| щ                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                     |              |                    |                          |        |                                                       |       |         |                          |                  |            |            |                |                          |  |
| 107 561 41                         | 850 740 04<br>857 416 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 840 055 70<br>840 054 70                        | 830 414 80          | 310          | 218<br>410         | 500 533 00<br>500 447 00 | 099    |                                                       | 722   | 510     | 622 533 01<br>602 410 01 | 215              | 622 457 01 | 740 133 01 | 383 570 31     | 750 001 45<br>750 001 46 |  |
|                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                               |                     | MF           | car.<br>MF         | MF                       | נים    | N150                                                  | Tan.  | Polyes. | Polyes.                  | N150             | Polyes.    |            |                |                          |  |
|                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                     | 1/8W<br>1/8W | 1/4W<br>1/8W       | 1/8W<br>1/8W             | 2 547  | νς 2                                                  | 25V   | 637     | 63V<br>63V               | 63V              | 63V        |            |                |                          |  |
| 614                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | •                   | . y y        | U U                | ស្ន                      | 6<br>C | +20-1-00+<br>2%-00-1-00-1-00-1-00-1-00-1-00-1-00-1-00 | 20%   | 108     | 20%                      | ,<br>,<br>,<br>, | 10%        |            |                |                          |  |
| nted Circuit Board Complete 614    | MC74HC00N<br>MC74HC161N  | LM78L12ACP<br>LM78L05ACP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BC557B<br>BC547B                                | 1N4148              | ~ ~          | 180 ohm<br>10 kohm |                          |        | 100 nF                                                | 22 uF |         | 0.33 uF                  |                  | 0.47 uF    | 33 nH      | 10.24 MHz      | 2 POL<br>2 POL           |  |
|                                    | IC1,7<br>IC2,4.6         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q1<br>Q2                                        | D1-4                | R2-3,7<br>R4 | R5<br>R6.9.11      | R8<br>R10                |        | C1, 2, 4                                              | CS    | C6,8    | 65                       | C11              | C12-16     | 1.1        | TCXO (0.4 ppm) | PL5,6,8,9<br>PL7         |  |
|                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                     |              |                    |                          |        |                                                       |       |         |                          |                  |            |            |                |                          |  |




993 560 8X COMP

MASTER OSCILLATOR VIEWED FROM COMPONENT SIDE







|   | ۱ | ľ | ĺ |   |
|---|---|---|---|---|
|   | i | ŕ |   | ١ |
|   | ì | ١ |   |   |
|   | 1 |   |   |   |
|   | ٠ | ۰ |   | į |
|   | ٠ |   |   |   |
|   | : |   |   |   |
|   | ( | • |   |   |
|   | í | í | ĺ |   |
|   | ì |   |   | ١ |
|   | ۹ | ۰ | - |   |
|   | 1 | • | ľ |   |
|   | i | ı | i |   |
|   | i |   |   |   |
|   | i |   | i |   |
|   | ١ |   |   |   |
|   | ٠ | ۰ |   |   |
|   | • |   | 2 |   |
|   |   |   |   |   |
|   | ì |   | - | ١ |
|   | i |   | č |   |
|   | • |   |   |   |
|   | į |   |   |   |
|   |   |   | ١ |   |
|   | ì |   | ř | ١ |
|   | • | 4 |   |   |
|   | ĺ | 1 | ľ |   |
| , | ĺ |   | • | ١ |
|   | i | 1 | ĺ |   |
|   |   |   |   |   |
|   | ĺ | 3 | Ĺ |   |
|   | ĺ | ۰ | ١ | ١ |
|   | i | i | ĺ |   |
|   | • |   |   |   |
|   | į |   |   |   |
|   | ĺ | Į | ľ | į |
|   | 1 |   |   |   |
|   |   |   |   |   |
| 1 | ļ | į | ļ | į |
|   | İ |   |   |   |
| 1 | Į | 1 | ĺ |   |
|   | • | ¢ | ĺ |   |
|   | ſ | ١ | i |   |

PARTS LIST FOR PCB 608 / 609 MASTER OSCILLATOR

| 8                              | က                          | 4                     | ·                                           | 4                   | , <del>-</del> -         |                | — დ                                                 | •                     | - 0                   | ო                   |                                                              |                                           |                       |                       | ო                           |                             | - 8                       | -                          |                     | <del>-</del>                                     | -                        |                      |
|--------------------------------|----------------------------|-----------------------|---------------------------------------------|---------------------|--------------------------|----------------|-----------------------------------------------------|-----------------------|-----------------------|---------------------|--------------------------------------------------------------|-------------------------------------------|-----------------------|-----------------------|-----------------------------|-----------------------------|---------------------------|----------------------------|---------------------|--------------------------------------------------|--------------------------|----------------------|
| SMD RESISTOR 2K2 5%            | SMD RESISTOR 120K 5%       | SMD RESISTOR 1K0 5%   | SMD RESISTOR 18K 5%<br>SMD RESISTOR 680E 5% | SMD RESISTOR 27E 5% |                          |                | SMD RESISTOR 150K 5%<br>SMD RESISTOR 39K 5%         |                       | SMD RESISTOR 470E 5%  | SMD RESISTOR 3E3 5% |                                                              | SMD RESISTOR 100E 5% SMD RESISTOR 680K 5% | SMD RESISTOR 10K 5%   | MOCHING COOK          | I HANS BSV52 NPN 20V SO 123 | DIODE SOD80 BZV55C15V ZENER | TRANS BSV52 NPN 20V SOT23 | ZENEBDIODE I M329          | CAP, DIODE BBY40    | DARLINGTON TRANSISTOR TIP120<br>TRANSISTOR BC847 | CRYSTAL SPEC.20.48000MHZ |                      |
| 57002000                       | 57004200                   | 57001800              | 57003000<br>57007300                        | 57000400            | 57005900                 | 57004400       | 57003900<br>57003400                                | 00000                 | 57001500              | 57006700            |                                                              | 57001000<br>57007600                      | 57002800<br>58051000  | 00010200              | 84720600                    | 83730500                    | 84720600                  | 83003290                   | 83750100            | 84201200<br>84720000                             | 38373551                 |                      |
| R11<br>B38                     | R12<br>814                 | R 113<br>R 15<br>R 37 | R39<br>R17<br>R18                           | R2<br>R7<br>R25     | R29                      | R24            | R26<br>R27                                          | R28                   | H31                   | H33                 | H34<br>H36                                                   | R4<br>R40                                 | 9 8 8                 | 2 3                   | - 9 s                       | V10                         | 75                        | \<br>\<br>\<br>\<br>\      | 5 <b>&gt;</b> ;     | c 6<br>^ ^                                       | Z1                       |                      |
|                                |                            |                       |                                             |                     |                          |                |                                                     |                       |                       |                     |                                                              |                                           |                       |                       |                             |                             |                           |                            |                     |                                                  |                          |                      |
| 'n                             | 13                         |                       |                                             |                     | <b>-</b>                 |                | - 2                                                 | 8                     | က                     | •                   | <b>-</b>                                                     |                                           | · <del></del>         | 2                     | -                           | ₩,                          | -                         | -                          | 7                   |                                                  |                          | · <del>-</del>       |
| PRINTED CIRCUIT BOARD COMPLETE | CAP SMD 1210 100NF 10% X7R |                       |                                             |                     | CAP SMD 1210 270P 2% NP0 | TANTAL B 1.0UF | CERAMIC CAPACITOR 18PF CL1<br>CAP SMD 1210 1.0NF 2% | CAP SMD 0805 330P NP0 | CAP SMD 1210 8.2NF 2% |                     | CAP SMD 7.3X6 220NF<br>TANTAL D 22UF 16V SMD                 | CAP SMD 0805 68PF<br>CAP SMD 0805 18PF    | CAP SMD 0805 220P NP0 | SMD CHOKE-B 1.2UH 10% | SMD CHOKE-B 100UH 10%       | SENSOR LM35CH               |                           | RIBBON CABLE PCB712/PCB713 | SMD RESISTOR 3K9 5% |                                                  |                          | SMD RESISTOR 270E 5% |
| 10761300                       | 67101100                   |                       |                                             |                     | 67008200                 | 67700100       | 602xxxx<br>67003200                                 | 67006800              | 67007100              |                     | 67102000 67700800                                            | 67006600<br>67004000                      | 67006400              | 74100200              | 74101600                    | 85000350                    | 0000                      | 37378501                   | 57002300            |                                                  |                          | 57001400             |
| PCB 608                        | ខន                         | 05<br>08<br>015       | C20<br>C21<br>C23                           | C24<br>C25<br>C27   | SC C28                   | C13            | C16                                                 | C18<br>C18<br>S       | 300                   | C12<br>C12          | 6,50<br>0,50<br>0,50<br>0,50<br>0,50<br>0,50<br>0,50<br>0,50 | <del>2</del> 8                            | C2                    | 55                    | 3 9                         | Z Z                         | 2 .<br>2 .                | <u> </u>                   | æ 8                 | 3                                                | 87.<br>R16               | R23                  |

| $\alpha$      |
|---------------|
| Ш             |
| 흳             |
| >             |
| á             |
|               |
| 핑             |
| <b>→</b>      |
| ũ             |
| 霳             |
| ш             |
| щ.            |
| 퓚             |
| ш             |
| 9             |
| ဖ်            |
| $\overline{}$ |
| 2             |
| 5             |
|               |
| 8             |
| ď             |
|               |
| 뜻             |
| 6             |
| -             |
| 2             |
| ==            |
| =             |
| 22            |
| $\mathbf{E}$  |
| ₹             |
| σ.            |
|               |
|               |
|               |
|               |

## PARTS LIST FOR PCB 615 / 616 REFERENCE DIVIDER

| 3POL PLUG W.FRICT LOCK         |                            | ZPOL MOLEX W.FRICTION LOCK TRANS SOT23 BC857B 45V | SMD RESISTOR 180E 5%<br>SMD RESISTOR 1K0 5% | SMD RESISTOR 10K 5%<br>SMD RESISTOR 100K 5%<br>SMD RESISTOR 330K 5%<br>SMD RESISTOR 560E 5% | 6 POL MICRO MATCH        |                                       |                                          |                            |                             |                                                                                           |                           |                              |                      |
|--------------------------------|----------------------------|---------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|------------------------------------------|----------------------------|-----------------------------|-------------------------------------------------------------------------------------------|---------------------------|------------------------------|----------------------|
| 75100177                       |                            | 75000146                                          | . 57005400<br>57001800                      | 57002800<br>57004100<br>57004400<br>57001600                                                | 75100162                 |                                       |                                          |                            |                             |                                                                                           |                           |                              |                      |
| PL1                            | 2 2 8 5 E                  | PL/<br>02                                         | £ 22 5                                      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                       | SK1                      |                                       |                                          |                            |                             |                                                                                           |                           |                              |                      |
| · · · · ·                      | 13                         |                                                   |                                             | <del>-</del>                                                                                | က                        | ഗ                                     | <b>-</b> ∞                               | ω                          | Q.                          | e ··                                                                                      | ,                         | <b></b>                      | 2                    |
| PRINTED CIRCUIT BOARD COMPLETE | CAP SMD 1210 100NF 10% X7R |                                                   |                                             | CAP SMD 1210 10NF 10%                                                                       | MKT FILM CAPACITOR 470NF | CAPACITOR 47U 25V                     | CAP SMD 0805 150PF<br>CAP SMD 0805 100PF | DIODE LL4148 GEN-PUR SOD80 | DIODE SOD80 BZV55C6V2 ZENER | IC LM78L05 VOLTREG<br>IC LM78L12 VOLTREG<br>IC LM79L12 VOLTREG<br>COUNTER, 4-BIT 74HC161T | QUAD 2-INPUT NAND 74HC00T | DUAL D-TYPE FLIP-FLOP 74AC74 | SMD CHOKE-B 33UH 10% |
| 10756151                       | 67101100                   |                                                   |                                             | 67102200                                                                                    | 62254701                 | 65274702                              | 67004900<br>67005500                     | 83710000                   | 83730800                    | 85078052<br>85078121<br>85079121<br>85980700                                              | 85980000                  | 85984200                     | 74103400             |
| PCB 615                        | 2883                       | 2                                                 | C12<br>C13<br>C13                           | C C C C C C C C C C C C C C C C C C C                                                       | C16<br>C17<br>C18        | C C C C C C C C C C C C C C C C C C C | 38 C 8 8                                 | 128468                     | 000                         | 5 <u>5555</u> 5                                                                           | <u> </u>                  | <u> </u>                     | 52                   |