Introduction to MicroLab Super I/O

[image: image1.png]$5280

5o, e

Bor

ot o
a 8
e £
i g
getfzal 2l 5
Gt |2 a2l
H R
R
Eilitly =

Tuersz

m

[image: image2.png]WOLNT BREADBOARD PINS FROW OTHER SIOE

w

e
e
n-e
£]
e

gty

The universal interface printed circuit card fits into an eight bit slot on a PC/XT or AT machine where it - buffers the data bus, decodes seven different address ranges, selectable by a jumper, and makes available several other signals.

It also supplies power from the computer's supply to your breadboard projects. Connection is made in the typical fashion from the back of the computer through a 25 pin 'D' connector.

These signals and source power are carried by a six foot 25 wire extension cable to the MicroLab.

The MicroLab houses the printed circuit board that decodes the read/write signals to drive ten I/O ports. A dual row 126 square pin header, running across the top, furnishes connection to the buffered data bus, all ten I/O ports, and the low order address lines as well as the other signals.

Mounted on top of MicroLab's metal chassis is a 1460 tie points solderless connector and a five position power terminal block. Power from the computer of plus/minus 5 and plus/minus 12 volts DC is obtainable to power your projects.

The MicroLab chassis is manufactured from aluminum, with the top measuring 4.5 x 8.1", and stands 1.7" high on nonskid feet. The top is painted glossy black off-setting the white solderless connector and is screened with white letters. The bottom is finished in a glossy royal blue. The six foot cable allows ample freedom from your computer for bread boarding. The finished product will reflect something you can be proud of.

The complete kit, featured in the June, July, and August '94 issues of Electronics Now magazine article has been upgraded. The address signal bus and the processed read/write pulses, feeding the MicroLab's pc board, are now terminated into a capacitive coupled 100 ohm load, permitting the use of a longer cable.

Using MicroLab

Run BASIC that is supplied with DOS and enter single line programs that can read and write to 10 different ports; no additional hardware is required. MicroLab provides direct connection to five input ports and five output ports (all 8 bits wide), a selectable interrupt input, computer reset signal, and buffered data bus. With minimum additional hardware, access to 32 I/O ports is available.

Virtually, you can design and build a circuit and be writing and testing the control software within minutes, not at a work bench, but at your desk, with your own PC.

Why buy an additional power supply for your projects? The PC's power supply output has been growing larger while the accessories have required less. An old dual high 10 Meg drive uses much more power than the typical 2.5 Gig IDE drive of today. Tap into that excess power with the MicroLab.

If you're the type of person who has ideas, who understands (or wishes to learn) the interplay between hardware and software, and who is not afraid to try something new, then let the MicroLab form the perfect marriage between hardware and software.

Put those ideas to work. In the past, designing dumb test instruments obligated you to convert the data with hardware, quite often the most difficult and expensive part. Now, you concentrate on a hardware conversion and leave the data massaging and display to the computer. Just ten years ago, converting a nonlinear thermocouple signal for display on a digital readout using only hardware was a formidable task; now, computer lookup tables make it effortless. Sophisticated math programs are available in the $100 range that can; fit data to a curve, change time domains using FFT (Fast Fourier Transforms), and smooth data in real time. Now is the time to do it!

Solid state relays control power devices; MicroLab controls solid state relays. That same one line BASIC program can now control power sources with ease. Can you think of any power sources that need control?

The first practical application for the MicroLab is an EPROM programmer. The common 27xxx series EPROMs are demonstrated. The software and hookup drawings are supplied here. You can now copy your BIOS into memory, alter its function by writing patches and burn your own system without leaving your desk. Don't think this to be a trivial undertaking, but it can be done.

You need not stop with the 27xxx series. Other EPROMs or microcomputer chips can just as easily be programmed. The more programming you do, the quicker it will become.

Use the MicroLab to develop your own special purpose PC cards. When the bugs have been worked out for both the hardware and software, committing the design to your own card will be a smooth transition.

http://www.dage.net/ftp/stw3-sch.wri
MicroLab's Circuit Operation

Open the download .wri file with a Windows Word processor (Write, WordPad, or Word for Windows) and print to your default printer. Set margins to 0.5" for proper viewing.

Universal Interface Card

The interface board [shown on page 1 of schematic] plugs into any empty 8-bit slot in either an XT or AT computer. A full 20 address lines (capable of addressing 1 Meg of memory) are available at PC connector J1, labeled A0 - A19. The I/O capabilites of the microprocessor are limited to only the first 16 address lines A0 - A15, or 65536 individual I/O ports. IBM choose to only decode 10 address lines A0 - A9, reducing the maximun number of I/O ports to 1024; still an ample amount. Since you have other cards installed which only decode the lower 10 address lines, this card will follow suit and only decode the lower 10 lines (A0 - A9).

A large block of I/O addresses have been set aside for interfacing cards from address 100 to 1CF hex. Actually, this address range is undocumented in the XT but specifically set aside for I/O use in the AT machines. This group of addresses are decoded by the universal interface card. Address lines A4 - A9 are decoded by IC2 into 7 groups of 16 in the range of 100 to 1C0 hex. A jumper selects which address group will be active. Fortunately, all DOS I/Os, such as COMs, LPTs, game ports and the like, have well defined I/O address that are not in the above range. Other nonDOS function cards may use addresses in this range. It is wise to make a list of all addresses used by the cards in your machine and not to duplicate or overlap any of these addresses. If you do overlap addresses, you more than likely will have problems, often times intermittent. Since this card has a large selection of legal addresses, there should not be any difficulty in selecting a free 16 byte group. Select only one address group by installing one jumper.

For the purpose of this discussion, the first group of addresses will be assumed, and any mention of I/O ports will be addressed from 100 to 10F hex, or 256 to 271 decimal.

Interrupts can and do share interrupt inputs, but not at the same time. One of three interrupt inputs can be selected with a jumper on the universal interface card; intr 3 (com 2), intr 4 (com 1), or intr 7 (prn). This jumper will enable an external interrupt from your project to signal the computer for service. A positive pulse through Q1 will pull the selected interrupt line low. The process of using interrupts is somewhat involved under DOS and differs between the XT and AT. Before using an interrupt, several conditions must be met. It's not difficult, but interrupt handling would require another article just to cover the subject adequately. Many such sources exists; DOS is a very useful but complicated system which is changing with each new version. For the time being, we'll leave the interrupt jumper off (disconnected).

The output pulse from this main address decoder IC2 is fed to IC4 and combined with the address enable signal and the I/O read and write signals. A read or write pulse is generated only when an access to the selected I/O group is made.

The 8 bit data bus is buffered by IC3. The direction of the data are from the computer to the I/O unless a read is requested in the selected group. When a read is selected, pin 12 from IC4 changes the direction of the data buffer IC3, and data are then fed from the input to the computer bus. The lower 4 address select lines are buffered by IC1.

Nine of the 25 cable wires are dedicated to supplying power to the breadboard. Not only is the +5VDC and ground supplied, but also the +12/-12 and -5VDC. All of these voltages may come in handy for your projects. The +5 volt source is fused with F1 at 0.5 amps, while the +12 volt source is fused at 0.25 amps. The fuses are to protect only the wires in the cable. The -12 and -5 volt sources should be current limited to less than 0.5 amps by the power supply. If not, then either disconnect them or limit them with additional fuses. If greater currents are required, fabricate a separate cable connecting it directly to a disk drive power connector and run it to the breadboard power output terminals. Depending on wire size and your power supply several amps should be available.

The reset drive signal is available at the breadboard for circuits that need to be initialized on start up. This signal will pulse high anytime the CPU is reset.

MicroLab Card

The breadboard PC board is mounted with the circuit (solder) side up in a chassis which holds the solderless connectors. Connections to the signals are made across the top of the board at connector J4 (refer to pages 2-4 of schematic). The power sources are picked off the board and connected to a terminal strip J5. Power for your projects are then taken from the terminal strip to the solderless connectors. The +5 volts and ground are also used by the board to power the various circuits. Care should be taken not to fed incorrect voltages to any breadboard circuits or back into the 126 pin connector (J4).

The 4 lower address select lines are presented in their true state and inverted state through IC3. The read/write signals are also inverted by IC3. The 8 buffered data lines are connect to J4 as well as the reset drive and interrupt line.

The lower 4 address lines are decoded in IC1 along with the processed write pulse. The decoder output's 8 inverted write pulses, one for each of the low order address selects. All of these write pulses are available on J4. Five of them are also sent to data latches IC9 to IC13, which latch and hold the data for use. Associated with each output latch is its write pulse and an output enable control.

In a similar fashion, the lower 4 address lines are decoded by IC2 with the processed read pulse. The decoder outputs 8 inverted read pulses, one for each of the low order address selects. All of these read pulses are available on J4. Five of them are also sent to data latches IC4 to IC8, which transfer the data during input. Associated with each input latch is its read pulse and an external 'latch data' control.

MicroLab's Consruction

You will need to download the printed circuit boards and parts layout to follow this discussion. The file is in .wri format and will contain four pages. Open file with a Windows Word processor (Write, WordPad, or Word for Windows) and print to your default printer.

| MicroLab - PC Boards with Component Layout |

http://www.dage.net/ftp/stw4-cpc.wri
It is recommended that printed circuit cards be used, at least for the universal interface card that plugs into an 8-bit slot. The breadboard platform circuit could be fabricated using any familiar technique. Using the printed circuits shown here will make the assembly very simple. The right angle 25 pin 'D' connectors, along with a standard 25 pin shielded cable, will eliminate any point to point wiring. The only wiring will be from the breadboard card to the terminal block for power and ground. Both PC boards can be purchased separately.

| Check it out |

http://www.dage.net/kit.html#micropart
Assembling the Universal Interface Card

Parts List for Universal Interface PC Board

All resistors are 1/4 watt 5% unless noted.

Integrated Circuits

IC1
74HC32

Quad 2-input OR gate

IC2
74HC138
3 to 8 Line Decoder

IC3
74HC245
Octal Bus Transceiver

IC4
74HC27

Triple 3-input NOR gate

Resistors

R1
1K

R2
100K

Capacitors

C1
50 pF ceramic

C2-4
0.1 uF ceramic

Fuses with mounting hardware

F1
0.5 A

F2
0.25 A

Transistor

Q1
MPS4124 transistor

Other Parts

20
Dual row 10 square pin connector with 2 jumpers

J2
25S 'D' connector right angle PC mount

1
PC board L mounting bracket

Component Layout

[image: image3.png]DAGE
SCIENTIFIG
oL R

MODEL
ST

Gather all parts before starting assembly. Sockets maybe used for all ICs but are not required. Using the component layout shown above (also included in the downloaded PC board drawing), install and solder all components. Note that IC U3 is mounted opposite from the others.

Assembling the MicroLab Card

Parts List for MicroLab Breadboard PC Board

Integrated Circuits

IC1-2
74HC138
3 to 8 Line Decoder

IC3
74HC04

Hex Inverter

IC4-8
74HC373
Octal D-Type Latch

IC9-13
74HC374
Octal D-Type Flip Flop

Resistors

R1-10
56K 1/8 watt 5% resistors

RP-1
Resistor pack 8 pin SIP (7 100 ohm with common)

Capacitors

C1-3
0.1 uF ceramic

C4
10 uF tantalum 25 volt

C5-10
200pF ceramic

Other Parts

J3
25P 'D' connector right angle PC mount

J4
128 wire wrap pins 0.025" square x 0.75" long

Component Layout

[image: image4.png]

If you plan on installing this board in a case, mount the J4 connector on the circuit side of the board. Gather all parts before starting assembly. Sockets should be used for all input/output Ics (IC4 - IC13). Using the component layout shown above (also included in the downloaded PC board drawing), install and solder all components. All resistors need to be 1/8 watt size to fit the board.

The 128 square pin connector J4 that installs across the top can be installed on the component side of the PC board only if you intend not to use an enclosure. As pictured in this project, the PC board is mounted inside a case with the component side down. If you plan on installing this board in a case, mount the J4 connector on the circuit side of the board.

Power connection to a terminal block are available next to the 'D' connector. This completes the MicroLab Beardboard Card assembly.

Final Assembly

After the PC boards have been assembled, check correct placement and orientation of the ICs. Check soldering and correct for any mistakes or solder bridges. Install a 1/2 amp fuse in the 5 volt supply and a 1/4 amp fuse in the 12 volt supply on the parallel interface card. Place a jumper to set the appropriate address range that is free in your computer. All discussion will assume the default address range of 100 to 10F hex. The interrupt jumper can be left disconnected at this time.

Fasten a mounting L bracket to the "D" connector. The universal interface card is now ready to install. Procure a 6 foot 25 conductor cable to connect the interface card with the breadboard card. If the breadboard PC is mounted in a chassis as shown, it will be necessary to wire the 4 voltages and ground to a terminal strip. Access to the voltages are via the terminal block for use on the solderless connectors.

Installing MicroLab

Start with the Universal Interface Card

The MicroLab is designed to work with any PC/XT or AT using the ISA (Industry Standard Architecture) bus. The Universal Interface card installs in any 8-bit 'short' slot connecting to your main computer's bus.

There are seven address groups that can be selected with a jumper. Select one, and install the jumper. Listed below is a table listing these groups. The first group (set 100) will probably work and all discussions will refer to this group. If there are conflicks with other cards, change the jumper and adjust all the addresses used by our examples accordingly.

Jumper
HEX Range
DEC Range

100
100-10F
256-272

120
120-12F
288-303

140
140-14F
320-335

160
160-16F
352-367

180
180-18F
384-399

1A0
1A0-1AF
416-431

1C0
1C0-1CF
448-463

Leave the interupt jumper disconnected at this time. Install the Universal interface card. Connect the MicroLab with a 25 conductor extension cable. Extension cable means that all 25 conductors are installed, pin to pin.

Signal Identification on 126 Pin Connector

The 126 interfacing pin header (J4), which lay across the top edge of the MicroLab, provide easy access to the buffered computer signals. The pins are numbered from left to right 1-63 Top row, and 1-63 Bottom row. This connector's pin function is shown below and can also be downloaded and printed.

| Download MicroLab Pin Out |

http://www.dage.net/ftp/stw8-pin.wri
As an example, the data lines for input port #6 are accessed at pins 11-14 T/B (top/bottom), and read signal R6 at pin 15B. The solderless breadboard connector in our kit has the same numbering as these pins.

[image: image5.png]CONTROL BYTE

PE
OE
CE

PGM

Qaaae
S

PORT 263

Before powering up the system, make at least 16 jumpers about 7" long to connect between the header and breadboard. A 0.025" female socket will mate with the header. The other end and be a 22 to 24 gauge solid wire, but a square 0.025" pin works superbly.

MicroLab Testing and Troubleshooting

Ah, the joys of having it work the first time . . . and the despair if it doesn't.

Test Instruments Required

Logic Probe

16 Jumpers

You will also need a very expensive computer based test station to test this project. Fortunately, you already have the expensive computer based test station. Once your computer is up and running, you have at your disposal a very sophisticated signal generator. You will need a software program for testing, but you may be amazed at just how simple such a program can be, while still doing a very thorough job. This particular project is very simple to check, but the ideas can be extended to more complicated hardware.

You probably will not need a volt/ohmmeter, but they are handy to have around.

Turn your computer on - if it boots, skip the next three paragraphs.

If your computer doesn't boot or function normally, remove power and then remove the MicroLab from the extension cable. Re-apply power. There are many philosophies in troubleshooting, this one is divide and conquer. If it boots, look to the MicroLab or cable, if not, there's a problem with the card.

Look for the obvious first; solder bridges, hot ICs. The interface card while not being addressed, only loads the PC bus with a CMOS input. If your computer doesn't boot now, the interface card must be incorrectly installed, or have faulty parts, or a faulty PC board.

Repair or replace the bad items until your computer boots and runs normally with card and MicroLab installed.

Hopefully you jump directly to here and are ready to start with a detailed checkout.

BASIC will be used to write these test programs since it's widely know and comes packaged with DOS. The following programs are written in GWbasic and not Qbasic. The GWbasic programs will run in Qbasic without being modified.

The following table lists hex and decimal addresses for the five fully decoded input and output ports:

PORT
DEC
HEX

3
259
103

4
260
104

5
261
105

6
262
106

7
263
107

Keep in mind that the input ports are isolated from the output ports. As an example, address 260 decimal is the address for input port #4 that is located on pins 21-25T/B, and is also the address for output port #4 located on pins 48-52T/B. The term port #4 actually refers to two ports; two physically separated ICs. The input port #4 maybe used in one circuit, while output port #4 maybe used in a completely different circuit.

Here's an example of a simple BASIC program that stimulates many of the circuit elements. Load BASIC, then enter and run the following:

10 OUT 263,0 20 OUT 263,255 30 goto 10

This program starts by addressing output port #7. Let's see just what is involved with this step. The universal interface card must respond by decoding the address with U2 and generating a negative pulse at pin 15. This pulse is combined with IOW (I/O Write) and AEN (Address ENabled) in U4 pins 3, 4, and 5 to produce a positive 'write' pulse from pin 6. All of this takes place on the interface card. The 'write' pulse is sent on pin 18 of J2 to pin 18 of J3 on the MicroLab PC board. It then gets inverted by IC3 pin 5 to pin 6 and is finally present on pin 5T. Check this with the logic probe for pulse activity.

The pulse is generated again in line 20 of the program and then generated again and again as the program loops. The logic probe will blink constantly when the pulse is present. If the pulse is not present at pin 5T, then verify its presents on the cable J3 pin 18. Work your way back through the interface card until the problem is found.

The 'write' pulse from the interface card is also routed to decoder IC1. The low address lines A0 - A3 are decoded for port #7 and coincidentally pin 7 pulses low which latches all zeros into output latch IC9. This pulse also appears on pin 37T. All 8 data bits go low which can be monitored on pins 33-36T/B. When line 20 of the program is performed, the 'write' pulse is repeated only this time all ones get latched into IC9. All 8 data bits go high. As the program is repeated indefinitely, these output pins 33-36T/B on are cycled and easily measured with a logic probe.

The previous 3 line program has allowed checking many of the functions on the two cards. There are some weaknesses as the test program stands, but it's not bad for as simple as it is.

Software Testing

Three test programs will be used to test MicroLab: cycleout.bas, inp2crt.bas, and loopback.bas. All three will run in GWBASIC or QBASIC.

Test Everything with CYCLEOUT.BAS

To use the following Qbasic program select it with the mouse and use your menu commands to copy it to the clip board (Edit-Copy). Then open your Windows Word processor (Write, Wordpad or Word for Windows) and paste from clip board. Save as CYCLEOUT.BAS as a text file only.

100 REM * for ST-1 Purpose: cycle each output data line for IC's 9 - 13, plus

110 REM * cycle all write pulses W0 - W7 and the base 'write' pulse.

120 REM * Hardware: Logic probe to check pulse activity.

130 REM ***

140 REM * BA base address, T offset port address, C counter

150 REM ***

160 CLS :REM * START

170 INPUT "Enter base address in decimal (for example - 256) ";BA:PRINT:PRINT

180 PRINT"WORKING":PRINT

190 PRINT"Use cntl/break to quit!"

200 FOR C=1 TO 4 : REM cycles clock *****LOOP1*****

210 REM cycles all 8 outputs with 0's and 1's

220 FOR T=BA TO BA+7 : REM *****LOOP2*****

230 OUT T,0 : OUT T,255

240 NEXT T : REM *****LOOP2*****

250 REM runs clock so that you know program is running

260 LOCATE 4,10

270 IF C=1 THEN PRINT"³"

280 IF C=2 THEN PRINT"/"

290 IF C=3 THEN PRINT"Ä"

300 IF C=4 THEN PRINT"\"

310 NEXT C : REM *****LOOP1*****

320 GOTO 200

This program extends the concept of cycling a single port to cycling all output ports, all write pulses (IC1 pins 7, 9-15), and all address lines A0-A3. Pins 33-58B and 33-59T can now be checked for pulse activity. Note that the 'output enable' pin at each output port will be low and should not cycle.

The buffered data will also be changing, as well as the address lines A0 to A3. But they will not be cycling at the same rate as the data output. This is due to the fact that they are an indication of what is happening in the computer and not just the I/O ports. The 8 address pins 1-4T/B and the 8 data line pins 60-63T/B will always be cycling as the computer runs; all other lines will only cycle during I/O in this address range.

Test Input Ports with INP2CRT.BAS

To use the following Qbasic program select it with the mouse and use your menu commands to copy it to the clip board (Edit-Copy). Then open your Windows Word processor (Write, Wordpad or Word for Windows) and paste from clip board. Save as INP2CRT.BAS as a text file only.

100 REM * for ST-1. Purpose: to diplay an input port on screen.

110 REM * Hardware: Switch to set input, resistors.

120 REM ***

130 REM * AI address input port, T counter, A$ any key, N input byte

140 REM * BP bit position during printing

150 REM ***

160 CLS : REM *START

170 INPUT" Enter input port address in decimal ";AI

180 PRINT:PRINT" Press Cntl/Break to exit!

190 REM * Draw 8 boxes at center screen to display input byte ***************

200 LOCATE 9,26 : PRINT"#7 #6 #5 #4 #3 #2 #1 #0"

210 LOCATE 10,25 : PRINT"Ú";

220 FOR T=1 TO 7 : PRINT"ÄÄÄÂ"; : NEXT T : PRINT"ÄÄÄ¿"

230 LOCATE 11,25 : FOR T=1 TO 8 : PRINT"³ "; : NEXT T : PRINT"³"

240 LOCATE 12,25 : PRINT"À";

250 FOR T=1 TO 7 : PRINT"ÄÄÄÁ"; : NEXT T : PRINT"ÄÄÄÙ"

260 REM * GET PORT AND DISPLAY **

270 BP=27 : REM used as pointer for bit print *****LOOP1*****

280 N=INP(AI)

290 FOR T=7 TO 0 STEP -1 : REM *****LOOP2*****

300 LOCATE 11,BP

310 IF N AND 2^T THEN PRINT"1" ELSE PRINT"0"

320 BP=BP+4:NEXT T : REM *****LOOP2*****

330 A$=INKEY$: IF A$="" GOTO 270 : REM *****LOOP1*****

340 GOTO 270

Input ports must be checked in a different manner. As an example, let's check input port #4 (address 260 decimal). Start by tying all 8 input pins (21-24T/B) to Vcc through 1K resistors (a single SIP resistor works nicely).

Load and run the test program "INP2CRT.BAS."

This program will ask you to input the address of the port under test (260). The binary value of this port will then be dynamically displayed in the center of the screen. Since all bits have been tied high, you should see eight 1's displayed. Connect a 100 ohm resistor to ground and touch the input lines one at a time. As each input is touched, its value should change to a 0. Verify that each bit changes and is numerically correct, i.e., bit 7 is bit 7 and not bit 6. Also verify that only the bit you touch goes low.

Test Every Bit Automatically with LOOPBACK.BAS

To use the following Qbasic program select it with the mouse and use your menu commands to copy it to the clip board (Edit-Copy). Then open your Windows Word processor (Write, Wordpad or Word for Windows) and paste from clip board. Save as INP2CRT.BAS as a text file only.

100 REM * for ST-1 Purpose: to check I/O ports by feeding a test byte from

110 REM * an output to an input and comparing. Three tests are made:

120 REM * bits stuck high or low, bits tied together, and everything else.

130 REM * Hardware: Loopback plug.

140 REM **

150 REM * AO address output port, AI address input port, BC bit counter

160 REM * TB test byte, SH switch halt on section error, S1 switch temp

170 REM * S1 switch one of two errors, T counter

180 REM **

190 CLS: SH=0 : REM * initialize soft switch

200 INPUT " Enter output port address in decimal ",AO

210 INPUT " Enter input port address in decimal ",AI

220 PRINT:PRINT"Program checking for bits stuck high or low.":PRINT

230 REM * test for bits stuck high ****

240 OUT AO,0

250 TB=INP(AI)

260 FOR BC=7 TO 0 STEP -1

270 IF (TB-2^BC)>=0 THEN PRINT"bit ";BC;" is stuck high":TB=TB-2^BC:SH=1

280 NEXT BC

290 REM * test for bits stuck low ****

300 OUT AO,255

310 TB=INP(AI)

320 FOR BC=7 TO 0 STEP -1

330 TB=TB-2^BC

340 IF TB<0 THEN PRINT"bit ";BC;" is stuck low":TB=TB+2^BC:SH=1

350 NEXT BC

360 IF SH=1 THEN GOTO 560

370 LOCATE 4,50:PRINT"** PASSED **"

380 PRINT:PRINT"Program checking for bits stuck together.":PRINT

390 FOR BC=0 TO 7

400 S1=0:REM loop switch; set to one on any fault

410 OUT AO, 2^BC:TB=INP(AI): IF TB<> 2^BC THEN S1=1

420 OUT AO,255-2^BC:TB=INP(AI): IF TB<>255-2^BC THEN S1=1

430 IF S1=1 THEN PRINT" check bit";BC:SH=1

440 NEXT BC 450 IF SH=1 THEN GOTO 560

460 LOCATE 6,50:PRINT"** PASSED **"

470 PRINT:PRINT"Checking all bit combinations. Please wait!":PRINT

480 FOR T=0 TO 255

490 OUT AO,T

500 TB=INP(AI)

510 IF TB<>T THEN PRINT"Error at";T:SH=1

520 NEXT T

530 IF SH=1 THEN GOTO 560

540 LOCATE 8,50:PRINT"** PASSED **"

550 PRINT:PRINT"Test done, loopback good!":PRINT:GOTO 570

560 PRINT:PRINT"Program halted. Bit error.":BEEP

570 END

At this point you have cycled all the output ports and ran a rather detailed test on one input port. There is a major disadvantage of cycling all the output bits on, then all the bits off; if two or more bits are shorted together, this test would not find the fault. The most complete test would consist of cycling all possible combinations.

This is easily checked by fabricating a loopback plug; a dual data plug that can connect eight bits from an output port to eight bits of an input port. While a loopback plug is handy for rapid checkout, the same purpose can be accomplished by using 16 jumpers and simply connect all 8 bits of an output port to the corresponding 8 bits of an input port, via the breadboard connector.

This final check will verify the correct operation of any output port to any input port. The program outputs a value through a selected output port and then reads the value back through a selected input port. If the value agrees, everything is functioning properly.

Connect an input port to an output port and load and run "loopback.bas." The program will ask you for input and output address and will then cycle values between them as follows: testing for bits stuck low or high, testing for bits tied together, and finally all other combinations. If an error occurs, the program will halt and display the fault for the first two tests. If a bit is stuck low, the faulty bit number will be display, e.g., bit #6 stuck low. The program will not proceed until the problem has been corrected. The second part of the test will pick up bits that are cycling together (electrically connected) and display them by number. The program will again stop until the fault is corrected. At this point the port should be okay, but the third part of the test checks all possible combinations. If a fault occurs (highly unlikely) the value is displayed but the program keeps running. Passing all three tests for each output port and each input port will guarantee a perfect setup.

While this test may sound complicated, in practice with a loopback jumper, it can be conducted in just a few minutes.

Easy Pin Finding

Connecting to the 126 interface pins can seem daunting especially in poor light or with poor eyesight. The numbers along the breadboard correspond on a one to one bases to the breadboard header, but parallax can mislead.

The 'latch data' pin on the input ports and the 'output enable' pin on the output ports can serve as navigation points since these pins are usually not needed. Place a small piece of tubing over these pins as shown below:

[image: image6.png]Microlat

%

Then write the addresses you'll be using on the tiny ledge behind the solderless connector. The 4 dual pins to the left of the markers are the port data. Remove the tubing when the pin function is needed.

Congradulation! You now have a perfect functioning MicroLab. Now try an "EPROM Programmer".

MicroLab

"Give a man a fish and you'll feed him for a day; teach a man to fish and you'll feed him for life" (old proverb). If you purchase an EPROM programmer it's only a matter of time before a new type of EPROM comes along requiring you to upgrade or just flat out buy a new one. If you're in the business of programming EPROMs, the several hundred dollar expense is quickly justified. But if you only occasionally need to use one, you can now build a sophisticated EPROM programmer on your I/O breadboard with nothing more than a few jumper wires. A BASIC program is included which will allow you to program the popular 2716, 2732, 2764, 27128, 27256, and the 27512 type EPROMs. That's the fish. But if you learn how to fish, you will be able to write your own programs on that powerful computer you already own. After you learn how to program one EPROM, adapting that program to new EPROMs will be a simple task. Get ready to learn how to fish!

We will start out programming the popular 27128 type EPROM. By sticking to just one EPROM, the hookup to the breadboard and the BASIC program necessary to do the job will be simplified. Since EPROMs are designed to interface with computers, this project will be easier than you think. The examples given and the program supplied is in GWBASIC. To simplify the discussion, let's use the slang expression "burn" to signify the programming of the EPROM and "program" to signify the GWBASIC program needed to burn the EPROM.

ADDRESSING the EPROM

| Down Load EPROM breadboard hookup | Up top |

http://www.dage.net/ftp/stwe-128.wri
Diagram referenced above shows the connections between the universal parallel I/O breadboard interface (ST-1) and the 28 pin EPROM. All of the connections required for burning this EPROM are shown. The port numbers represent the decimal values if the PC I/O breadboard is set to the default address. If another set of addresses are selected, then different port designation will have to be substituted. All ports on the interface are used as byte wide ports only (8 bits wide). This means that word (16 bits) or double (32 bits) are not allowed.

The 27128 EPROM is organized as 16K by 8 bits wide memory. The term 1K is equal to 1024, so this chip contains 16384 bytes of memory which are addressed by 14 address lines A0 to A13. Assuming the default settings on the interface, output ports #260 to #263 and input port #260 are used by this program; their selection was arbitrary. Since BASIC uses decimal, these are the values that will appear in the program. Again, please note that if your breadboard is configured differently these values will also be different and must be changed. All eight bits form output port #260 are connected to A0 to A7 while only six bits from output port #261 are connected to A8 to A13. The last two connections on port #261 are left unconnected.

Each byte in this EPROM memory can be addressed sequentially from 0 to 16383 with FOR/NEXT loops. The inside loop counts from 0 to 255 addressing 256 bytes of memory. The outside loop counts from 0 to 63 or 64 groups of 256 memory locations resulting in the full 16383 (64 * 256 = 16383) bytes being addressed. These two loops are shown along with the appropriate output statements in the following BASIC program:

200 for HI = 0 to 63

210 out 261, HI

220 for LO = 0 to 255

230 out 260, LO

 ... useful function

400 next LO

410 next HI

This simple routine can be used for reading, verifying, burning, totaling, or copying the EPROM, by placing these functions inside the loops after line 230. This will be a common occurrence to place useful functions "inside the address loops". Note that the three digit number in front of a BASIC statement is the line number. Compiled BASIC and QBASIC (packaged with DOS 5.0 and 6.0) do not require line numbers.

DATA PATH

Data will also need to be read from and written to the EPROM. The EPROM's data bus is connected to both the output port #262 as well as the input port #260. These connections constitute a mini bus, letting data flow out of the EPROM to input port #260, and into the EPROM from output port #262. Two outputs connected together should never be active at the same time. Fortunately, we can control the data flow with just two pins; the EPROM's "output-enable" (pin 22) and the output port #262's "enable" pin.

To read data from the EPROM, its output must be enabled by bring pin 22 low, while at the same time disabling output port #262 by bring its control pin high. The BASIC input instruction (INP) can now read the data from the EPROM into a selected variable. To output data to the EPROM, output port #262 must be enabled and the EPROM's output changed to an input. Notice that both of these control pins are connected to output port #263. This port will be used to control all the functions of the EPROM through a BASIC program.

To read data from the EPROM after the proper control lines are set, use:

300 V = inp(260) rem current value stored in variable V

and to output data to the EPROM after the proper control lines are set, use:

310 out 262, V rem value V is fed to EPROM

CONTROL LINES

There are three control lines on the EPROM; "output-enable" (pin 22), "chip-enable" (pin 20), and "program-pulse" (pin 27). All three are active low. One final pin, "program-voltage" (pin 1), requires a higher voltage for burning than for normal operation. Before programming takes place, the "program-pulse" is inactive (high) and the "program-voltage" is equal to Vcc. The manufacture's data sheets describe in detail the signal levels and timing for these control lines; when in doubt always refer to them. The general terms used here will be sufficient for writing the program.

The EPROM has two general operating modes; as a read only memory (ROM), and as a write memory we'll call burn (programming). The ROM mode is used to; copy data from an existing EPROM into computer memory, run a checksum on a programmed EPROM, or to check that all addresses contain 1's on an erased or new EPROM. In the burn mode, the program voltage is raised above Vcc, data is placed on the data lines, and then the "program-pulse" is made active (low) for 50 milliseconds. After the "program-pulse" has returned to normal, the data written can be verified even though the "program-voltage" remains above Vcc.

The four control lines are labeled; output port #262 "enable" line, EPROM "output-enable" (OE), "chip-enable" (CE), and the timed "program-pulse" (PGM). Output port #263 will control these lines as follows: D1 for "program-pulse", D3 for "chip-enable", D5 for "output-enable", and D7 for "output-port" #262 enable. In all cases these signals are active low; i.e. to activate the function the signals will change from 5 vdc to ground, or logically from 1 to 0.

Only one control line is not control by the program, "program-voltage" Vpp. This voltage is applied manually by a switch. In reality, on the solderless connector breadboard, simply moving a jumper wire between Vcc and Vpp will suffice. Then the program needs to stop and instruct you to apply this voltage before burning begins and to remove it after.

PROGRAM CONTROL

The drawing shown below, illustrates how the binary byte can be calculated. Since D0, D2, D4, and D6 are not used, they could be set to any arbitrary value. But instead, let's make them the compliment of D1, D3, D5, and D7. Then, if extra hardware is ever needed, the active signals and their compliments are available.

[image: image7.png]LATCH
o1 |03 | o5 | e | o1 |03 |os |07 | ws
[

o4 s

TYPICAL INFUT FORT TYPICAL QUTFUT FORT

610 11151620 [2 25 [z6-50] o237 |34z |43 47 [52 [sesv | Jsas
ook [e | e [e | e | e | four [our [out oot [our | feur
eL| w7 |58 |35 | wa |53 || w7 |55 | en | ea | m |\lOTA

\o7 | 126 | 1as | 104 | 183 [A| 107 | 125 | 105 | 104 | 123
253 262 | 281 | 260 | 259 |/ | 263 | 262 | 251 | 26m |25

15 [6-18 [12-15]10-20 [21-2s [z0-00] |a-37 |se-42|43-47 |4 -se [sa-sv] |ons

CETE

z | mE w2 |
R | meser WL |
ADCRESS SELECT
AND READ/WRITE SELECT 32 5 = BLFFERED
/ DATA
L2 s 4 f e e e
A | w | s | s |wmmE ol | os |05 | oO°
A | AL | A2 | A3 | Fem0 oo | D2 | D4 | DB
D 0 B EEECEE

BREANDBOARDO HEADER YIEWED FROMA TOP

In the inactive state, all four control signals are inactive when in the high (Vcc) state. To determine what value to send to output port #263, place a "1" in bit positions 1, 3, 5, and 7. Place the compliment "0" in positions 0, 2, 4, and 6. The resulting eight bit binary number 10101010, can be converted into 170 decimal either manually or by using a calculator with a hex mode (use a calculator). Before the EPROM is installed, the value of 170 should be sent to output port #263. In fact, whenever a procedure is completed, always return output #263 to this inactive state: 100 out 263, 170 rem set control inactive

For a read condition, the output enable (OE) and chip enable (CE) must be activated (0). Plugging these two 0's into the number along with their compliments gives 10010110 or 150 decimal. To activate the read mode:

150 out 263, 150 rem set for a read

To burn the EPROM, Vpp needs to be manually switched high. There is no reason why this function could not be implemented by the program, except that a transistor switch circuit capable of switching Vpp would need to be added. Since this will be done manually, the program should print a message to apply the programming voltage and wait for a response. After physically arming the program voltage, the program needs to enable output port #262, and EPROM "chip-enable". Then and only then should a 50 mS pulse be applied to PGM. This is a two step process. To activate output port #262 and "chip-enable" as described would equate to 01100110 or 102. Then this must be changed for 50 mS to 01100101 or 101 and back again to 102.

340 print "APPLY PROGRAMMING VOLTAGE NOW" ... wait for positive response 350 out 262, V rem out value to burn 360 out 263, 102 rem get ready to burn 370 out 263, 101 rem turn on PGM (burn EPROM) ... wait for 50 milliseconds 380 out 263, 102 rem shut off PGM

To verify that the EPROM has changed to the desired value, Vpp can remain on and the current value could be read using the read statement described above. If the value written equals the current value, programming was successful and the next address should be selected.

50 MILLISECOND PULSE

This is the problem; how to generate accurate timing pulses that are guaranteed. There are large variations between platform, e.g. the original 8088 running at 4.7 MHz verses a 486 at 66 MHz. And if DOS interrupts are used, you may place a programming pulse on the EPROM only to have your hard drive take over for a few seconds before you can shut it off. It's not a good idea to lengthen that pulse to a few seconds. BASIC is just not suitable for such a task, but BASIC programmer's have for a long time call short assembly language programs to fill the inadequacies of the language.

The assembly language routine (shown below) combines step 370, the 50 mS pulse and step 280 by doing the following: turns off all interrupts, outputs to port 107 hex (263 dec) the PGM burn command (101), wastes time in two loops, shuts off PGM (102), turns back on the interrupts, and then returns to the BASIC program.

Assembly Language Program

FA CLI ;stop interrupts BA0701 MOV DX,0107 ;control addr in hex B065 MOV AL,65 ;load control for pulse EE OUT DX,AL ;start PGM pulse B81000 MOV AX,0010 ;outer loop start value B90000 OUTLOOP: MOV CX,0000 ;max value on inner loop 49 INLOOP: DEC CX ;start inner loop 75FD JNZ INLOOP 48 DEC AX ;start outer loop 75F7 JNZ OUTLOOP B066 MOV AL,66 ;load off pulse value EE OUT DX,AL ;turn off pulse FB STI ;allow interrupts CB RETF ;return

The data tacked on the end of this BASIC program is this assembly program in machine code that gets loaded into a pseudo variable MC$. The variable BASE is assigned to the start of the assembly routine. To call this program from BASIC all you need to do is:

390 call BASE

As the routine stands now, it will generate a delay of 5 to 6 seconds on a 8088 and much shorter delays on faster machines. The program calculates how many loops/sec it takes to produce a five to ten second time delay on any specific machine. From this value, the variable LM (loops/millisec) is derived. Do not alter your "turbo" mode setting after this variable is calculated.

The desired pulse length (variable PL) in milliseconds is set to 50; however, this routine could be used for any value from 0.1 mS and up by assigning PL to the desire time. The program pokes delay loop variable into the machine code routine to achieve the desired pulse length.

The only down side to this method is that your computer is almost entirely consumed generating this pulse. The DMA functions are still active; however, the only DMA function that should be operating is the memory refresh cycle. The pulse produced by this method is very accurate and stable. The memory refresh causes a one to two microsecond jitter to the pulse but this should only be a concern when viewing it on a scope.

DATA STORAGE

The data that will be used to program the EPROM must reside in memory. Where in memory? At absolute address 60000 hex. Interpreted BASIC doesn't permit dynamic memory allocation like "C" or Pascal. If you run BASIC (and only BASIC) from DOS, it will probably reside well below 50000 hex including its stack. And if you have at least 512K of memory, this area (60000 to 70000 hex) will be safe for storage. Not very glamorous, but functional.

The data can come from many sources; the only source discussed here will be from another EPROM. If you have data from others sources, this program requires that the exact data to be burned into a new or erased EPROM be sequentially stored in memory starting at address 60000 hex. After the data is stored in memory, DEBUG can be used to modify it.

Copying data from an existing EPROM is done as follows:

180 def seg = &H60000 rem initialize segment pointer 190 out 262, 150 rem initialize to read EPROM ... then "inside the address loops" 240 V = inp(260) rem read value 250 poke (HI*256 + LO), V rem stores value to memory

After data is poked into memory, it's a simple matter to save it to a file. Then the next time it's needed, it can be loaded to memory without using the original EPROM.

The EPROM burn portion of the program has already been illustrated. The only addition would be to "def seg" and use the address variables HI and LO to read memory for input.

This is all you need to know to write a BASIC program to burn the 27128 using the universal IBM I/O breadboard, assuming that you already have the skills to program in BASIC.

OTHER EPROMS

 Up until now, only the 27128 has been discussed. The 2764, 27128, 27256, and 27512 all use the same size package of a 28 pin DIP. The 2764 can use the same wiring diagram because the only difference is that address line A13 (pin 26) has no internal connection. The next larger EPROM 27256 requires another address pin. Since all the pins are used, this EPROM combines the chip-enable (pin 20) with the program-pulse assigning address A14 to pin 27. The only change to the program is that a read now becomes 149 instead of 150.

The next larger EPROM 27512 requires still another pin. This one combines output-enable (pin 22) with Vpp and assigns address A15 to pin 1. Pin 22 must now cycle between zero volts (output-enable) and Vpp. Additional components must be added to provide this capability under program control. The four parts necessary (IC 7406, 2 resistors 22K each, and transistor MPS4126) combine the output-enable signal with either the Vcc or the Vpp as shown. The read remains the same as on the 27256 but the verify-during-burn procedure must be changed to first lower Vpp to zero. The verify cycles is as follows; 170-150-149-150-170. The burn sequence remains the same for all EPROMs.

The 24 pin EPROMs follow the same pin usage as the ones above with the exception that four less address lines are needed. The 2716 follows the 27256 while the 2732 follows the 27512 requiring the same control signals above and the same extra circuit for the highest density. The only difference lies in the address loops.

Follow the individual hookup drawings for your particular EPROM device and the program will take care of the details. These drawings are not included; drop an Email for details.

PACKAGE BASIC PROGRAM

The program already exists to burn EPROM types; 2716, 2732, 2764, 27128, 27256, and 27512. As with any program, much of the code is concerned with presenting options and letting the user interface with the program. The program could display the options and then scroll off the screen or it could be menu driven with the menu always visible. The packaged program available here is menu driven and incorporates many error trapping routines. You maybe shocked to see all the garbage associated with its presentation. Commands like; locate, csrlin, print space$(n), are there for looks only. The fundamental concepts presented earlier will do the work, the rest is just fluff.

This is a large program. Please download and save. Use this program; try it, modify it, improve it. Learn to fish. The program could be much simpler if written for just one type of EPROM, but it has grown to accommodate these six types.

Note: this program will only run in GWBasic!

| eprom102.bas | Up top |

100 REM * EPROM PROGRAMMER version 1.21 Copyright 1992-8 DAGE SCIENTIFIC

110 REM * for ST-1. Purpose: to copy, load, save, debug and program, EPROMs.

120 REM * Hardware: none for 12.5v/ 2764, 27128 & 27256 EPROMs; variable voltage

130 REM * source & programmable voltage switch for others.

140 REM **** special variables ***

150 REM * MC$ machine code, SE selected EPROM, PV program voltage,

160 REM * LM loops/millisec, BASE offset of machine code.

200 REM **** start ***

210 ON ERROR GOTO 6000

220 GOSUB 6400 'inhibit EPROM

230 REM **** opening screen ****

240 CLS:LM=0:CD=0:LD=0 'loops/mS, copy data, load data switches checked at BURN

250 LOCATE 8,14:PRINT"WARNING! REMOVE PROGRAMMING VOLTAGE BEFORE RUNNING!"

260 PRINT STRING$(80,205)

270 PRINT" Breadboard ST-1 should already be connected and prewired for desired EPROM.":PRINT

280 PRINT" It is best to apply programming voltage just before programming begins.":PRINT

290 PRINT STRING$(80,205)

300 PRINT" Your computer's time constant will now be determined. It's necessary to"

310 PRINT"stop all multitasking operations (print spooler, background programs, etc.)"

320 PRINT"before continuing."

330 PRINT:PRINT" ...press any key when conditions are met, or 'Ctrl-Break' to exit..."

340 IF INKEY$="" THEN GOTO 340

350 GOSUB 7000 ' calculate current cmptr loops/second

360 IF INKEY$<>"" THEN 360 ' clear key buffer

370 SOUND 1200,1

380 REM **** select EPROM screen ****

390 CLS

400 LOCATE 2,6:PRINT"PROGRAMMING EPROMs via DAGE SCIENTIFIC's I/O BREADBOARD, Model ST-1"

410 LOCATE 3,6:PRINT STRING$(66,196)

420 LOCATE 4,20:PRINT"EPROM type Program Voltage"

430 LOCATE 5,20:PRINT"1. 27x16 1. 25 volts"

440 LOCATE 6,20:PRINT"2. 27x32 2. 21 volts"

450 LOCATE 7,20:PRINT"3. 27x64 3. 12.5 volts"

460 LOCATE 8,20:PRINT"4. 27x128"

470 LOCATE 9,20:PRINT"5. 27x256"

480 LOCATE 10,20:PRINT"6. 27x512"

490 PRINT STRING$(80,205)

500 LOCATE 13,1 :PRINT SPACE$(79)

510 LOCATE 13,2:INPUT"Select EPROM 1 to 6 ",SE$

520 IF SE$="" THEN GOTO 510 ELSE SE=ASC(SE$)-48

530 IF SE<1 OR SE>6 OR LEN(SE$)>1 THEN SOUND 1200,1:PRINT:PRINT" Please select 1 to 6 to represent EPROMs shown at the top":GOTO 500

540 LOCATE 14,1:PRINT SPACE$(80)

550 LOCATE 15,1 :PRINT SPACE$(79)

560 LOCATE 15,2:INPUT"Enter programming voltage 1 to 3 ",N$

570 N=ASC(N$)-48

580 IF N<1 OR N>3 OR LEN(N$)>1 THEN SOUND 1200,1:PRINT:PRINT" Please select 1 to 3 to represent Program Voltage shown at the top":GOTO 550

590 IF N=1 THEN PV=25 ELSE IF N=2 THEN PV=21 ELSE IF N=3 THEN PV=12.5 ELSE PV=0

600 REM **** start main menu ***

610 GOSUB 6400 'inhibits EPROM

620 GOSUB 6600 'draws main menu

630 LOCATE 7,1:PRINT "Select function by pressing first letter..."

640 L$=INKEY$:IF L$="" THEN GOTO 640

650 L=ASC(L$)

660 IF L>122 THEN GOTO 600

670 IF L>96 THEN L=L-32 'change to capital letter

680 IF L=67 THEN GOTO 1000 ' copy

690 IF L=76 THEN GOTO 2000 ' load

700 IF L=83 THEN GOTO 2500 ' save

710 IF L=86 THEN GOTO 3000 ' verify

720 IF L=66 THEN GOTO 4000 ' burn

730 IF L=68 THEN GOTO 5000 ' debug

740 IF L=81 THEN GOTO 5500 ' quit

750 GOTO 600

1000 REM **** copies EPROM to memory ***

1010 LOCATE 7,1

1020 PRINT"COPY_EPROM -> Data from master EPROM will be copied to memory."

1030 PRINT STRING$(74,196)

1040 LOCATE 10,1:PRINT" Wire breadboard as shown in schematic, remove power to EPROM location,"

1050 PRINT" install master EPROM, and reconnect power."

1060 INPUT" Check setup and press 'G' to go... ",A$

1070 IF A$<>"G" AND A$<>"g" THEN GOTO 600

1080 PRINT" ...press 'S' to stop <COPY>...

1090 REM **** start read & copy ****

1100 T=0 ' initialize checksum T to zero

1110 PRINT:PRINT"Working... count down":MX=2^(2+SE)

1120 CL=CSRLIN

1130 DEF SEG = &H6000 ' EPROM copied to memory starting at 60000 hex

1140 FOR HI =0 TO MX-1

1150 IF POS(N)>74 THEN LOCATE CL,1:PRINT SPACE$(80):LOCATE CL,1

1160 PRINT MX-HI;:A$=INKEY$

1170 IF A$="S" OR A$="s" THEN PRINT:PRINT"...function discontinued.":GOTO 1270

1180 IF SE=3 OR SE=4 THEN OUT 263,150 ELSE OUT 263,149 'set EPROM to read mode

1190 OUT 261, HI:HC=256*HI

1200 FOR LO =0 TO 255

1210 OUT 260, LO

1220 VI= INP(260)

1230 POKE (HC+LO),VI

1240 T=T+VI

1250 NEXT LO

1260 NEXT HI

1270 DEF SEG:PRINT:CD=1 ' copied data to memory

1280 REM **** end read & copy ****

1290 GOSUB 6400 'inhibits EPROM

1300 GOSUB 6200 'prints CHECKSUM T in dec and hex

1310 PRINT:PRINT"...press any key to continue..."

1320 IF INKEY$="" THEN GOTO 1320 ELSE 600

2000 REM **** loads data ***

2010 LOCATE 7,1

2020 PRINT"LOAD_DATA -> Data for EPROM will be moved from disk file to memory"

2030 PRINT STRING$(68,196)

2040 LOCATE 10,1:PRINT SPACE$(79):LOCATE 10,1

2050 INPUT"Enter filename with ROM extension, or 'L' for list... ",A$

2060 IF A$="" THEN GOTO 600

2070 IF LEN(A$)=1 AND (A$="L" OR A$="l") THEN LOCATE 14,1:FILES "*.ro?":GOTO 2040

2080 DEF SEG = &H6000

2090 BLOAD A$,0

2100 IF SE<>6 THEN GOTO 2140 ' else load 2nd half of data as *.RON

2110 F1$=LEFT$(A$, LEN(A$)-1) + "N"

2120 DEF SEG = &H6400 ' 32K at 6000 and another 32K at 6400 seg

2130 BLOAD F1$,0 ' end else

2140 DEF SEG:LD=1 ' loaded data to memory

2150 PRINT SPACE$(255);SPACE$(255)

2160 LOCATE 12,1:PRINT"Loaded program -> ";A$

2170 IF SE=6 THEN PRINT" and -> "F1$

2180 PRINT"...press any key to continue..."

2190 IF INKEY$="" THEN GOTO 2190 ELSE 600

2500 REM **** saves data ***

2510 LOCATE 7,1

2520 PRINT"SAVE_DATA -> EPROM data in memory will be copied to disk file."

2530 PRINT STRING$(65,196)

2540 LOCATE 10,1:PRINT SPACE$(79)

2550 LOCATE 10,1:INPUT"Enter filename without extension (8 characters max)... ",A$

2560 IF A$="" THEN GOTO 600

2570 IF SE=6 THEN GOTO 2650 ' which will save two 32K files

2580 REM **** save single file 32K or less ****

2590 DEF SEG = &H6000

2600 F$=A$ + ".ROM"

2610 BSAVE F$,0,2^(10+SE)

2620 LOCATE 12,1:PRINT SPACE$(239):LOCATE 12,1

2630 PRINT"Program saved as -> ";F$

2640 GOTO 2760 ' **** end of single file save ****

2650 REM **** program too large, split in two ****

2660 DEF SEG = &H6000

2670 F$=A$ + ".ROM"

2680 BSAVE F$,0,32768!

2690 DEF SEG = &H6400

2700 F1$=A$ + ".RON"

2710 BSAVE F1$,0,32768!

2720 LOCATE 12,1:PRINT SPACE$(239):LOCATE 12,1

2730 PRINT"Program saved as -> ";F$

2740 PRINT" and as -> ";F1$

2750 REM **** end of split file save ****

2760 DEF SEG

2770 PRINT:PRINT"...press any key to continue..."

2780 IF INKEY$="" THEN GOTO 2780 ELSE 600

3000 REM **** verify EPROM or memory ***

3010 LOCATE 7,1

3020 PRINT"VERIFY -> CHECKSUM can be made on EPROM or memory storage."

3030 PRINT STRING$(65,196)

3040 LOCATE 10,1:PRINT SPACE$(79)

3050 LOCATE 10,1:INPUT" Enter 'E' for EPROM check or 'M' for Memory check... ",A$

3060 IF A$="E" OR A$="e" THEN GOTO 3080

3070 IF A$="M" OR A$="m" THEN GOTO 3280 ELSE GOTO 600

3080 REM **** EPROM check ****

3090 PRINT" ...press 'S' to stop <EPROM check>...

3100 T=0 ' initialize checksum T to zero

3110 PRINT:PRINT"Working... count down":MX=2^(2+SE)

3120 CL=CSRLIN

3130 FOR HI =0 TO MX-1

3140 PRINT MX-HI;:A$=INKEY$

3150 IF A$="S" OR A$="s" THEN PRINT:PRINT"...function discontinued.":GOTO 3250

3160 IF SE=3 OR SE=4 THEN OUT 263,150 ELSE OUT 263,149 'set EPROM to read mode

3170 OUT 261, HI:HC=256*HI

3180 FOR LO =0 TO 255

3190 OUT 260, LO

3200 VI= INP(260)

3210 T=T+VI

3220 NEXT LO

3230 IF POS(N)>74 THEN LOCATE CL,1:PRINT SPACE$(80):LOCATE CL,1

3240 NEXT HI

3250 GOSUB 6400 'inhibits EPROM

3260 REM **** end EPROM check ****

3270 GOTO 3440 ' end verify

3280 REM **** memory check ****

3290 PRINT" ...press 'S' to stop <Memory check>...

3300 T=0:DEF SEG = &H6000 ' initialize checksum & memory segment

3310 PRINT:PRINT"Working... count down":MX=2^(2+SE)

3320 CL=CSRLIN

3330 FOR HI =0 TO MX-1

3340 PRINT MX-HI;:HC=256*HI:A$=INKEY$

3350 IF A$="S" OR A$="s" THEN PRINT:PRINT"...function discontinued.":GOTO 3420

3360 FOR LO =0 TO 255

3370 VI=PEEK(HC+LO)

3380 T=T+VI

3390 NEXT LO

3400 IF POS(N)>74 THEN LOCATE CL,1:PRINT SPACE$(80):LOCATE CL,1

3410 NEXT HI

3420 DEF SEG:PRINT

3430 REM **** end memory check ****

3440 GOSUB 6200 'prints CHECKSUM T in dec and hex

3450 PRINT:PRINT"...press any key to continue..."

3460 IF INKEY$="" THEN GOTO 3460 ELSE 600

4000 REM **** EPROM burn ***

4010 LOCATE 7,1:IF LM*(CD+LD)=0 THEN BEEP:PRINT "Data must first be stored in memory! ...press any key to continue...":GOTO 4870

4020 PRINT"BURN_EPROM -> Data stored in memory will be copied to EPROM"

4030 PRINT STRING$(74,196)

4040 LOCATE 10,1:PRINT"1. Breadboard should be wired as shown in schematic."

4050 PRINT"2. POWER OFF, install EPROM to be programmed, then turn power on."

4060 INPUT"3. Press 'C' to check EPROM for all 1's, or 'S' to skip this check... ",A$

4070 IF A$<>"C" AND A$<>"c" AND A$<>"S" AND A$<>"s" THEN GOTO 600

4080 IF A$="S" OR A$="s" THEN N=1:GOTO 4280

4090 LOCATE 10,1:PRINT STRING$(235,32)

4100 LOCATE 13,1:PRINT STRING$(235,32)

4110 N=3 ' 1=skip, 2-pass, 3=fail

4120 REM **** read EPROM for all 1's ****

4130 LOCATE 10,1:PRINT"Checking EPROM for all 1's. Hit 'S' to skip this test"

4140 PRINT"Working... count down":MX=2^(2+SE)

4150 CL=CSRLIN

4160 FOR HI =0 TO MX-1

4170 PRINT MX-HI;

4180 A$=INKEY$:IF A$="S" OR A$="s" THEN N=1:GOTO 4280

4190 IF SE=3 OR SE=4 THEN OUT 263,150 ELSE OUT 263,149

4200 OUT 261, HI

4210 FOR LO = 0 TO 255

4220 OUT 260, LO

4230 IF INP(260)<>255 THEN N=3:AD=HI*256+LO:GOTO 4280

4240 NEXT LO

4250 IF POS(N)>74 THEN LOCATE CL,1:PRINT SPACE$(80):LOCATE CL,1

4260 NEXT HI

4270 N=2 ' passed

4280 GOSUB 6400 ' **** inhibit EPROM ****

4290 LOCATE 10,1:PRINT STRING$(235,32):LOCATE 10,1:SOUND 1200,1

4300 ON N GOTO 4310,4320,4330

4310 PRINT"EPROM verification BYpassed. Prepare for EPROM burn.":GOTO 4380

4320 PRINT"EPROM passed, all 1's. Prepare for EPROM burn.":GOTO 4380

4330 PRINT"... EPROM failed at address";AD;"(decimal)..."

4340 INPUT"press 'A' to try again, or press 'S' to skip this test... ",A$

4350 IF A$="A" OR A$="a" THEN GOTO 4090

4360 IF A$="S" OR A$="s" THEN N=1:GOTO 4280

4370 GOTO 600

4380 PRINT"NOTE -> APPLY PROGRAMMING VOLTAGE (";PV;"volts) now!"

4390 INPUT"=====> press 'B' to begin programming <===== ",A$

4400 IF A$<>"B" AND A$<>"b" THEN GOTO 4850

4410 REM LOCATE 10,1:PRINT STRING$(235,32):LOCATE 10,1

4420 PRINT"Program burns one byte, then verifies. Will stop on failure."

4430 PRINT"Program can be stopped at any time by pressing 'S'."

4440 PRINT"PROGRAMMING * * * count down":MX=2^(2+SE)

4450 CL=CSRLIN:IF SE<1 OR SE>6 THEN GOTO 600

4460 IF SE=2 OR SE=6 THEN GOTO 4650 ' different burns for EPROM's 2732 & 27512

4470 REM **** burn 2716, 2764, 27128, & 27256 **********************************

4480 T=0 ' reset checksum

4490 FOR HI=0 TO MX-1:PRINT MX-HI;:OUT 261,HI:HC=HI*256

4500 FOR LO=0 TO 255:AD=HC+LO:OUT 260,LO

4510 OUT 263,102 ' set burn mode

4520 DEF SEG = &H6000 :VM=PEEK(AD)

4530 DEF SEG : OUT 262,VM ' send data to EPROM

4540 IF VM<>255 THEN CALL BASE ' burn EPROM unless already FF

4550 OUT 263,150 ' set verify mode

4560 VI=INP(260):OUT 263,170 ' return to inhibit mode

4570 IF VI<>VM THEN PRINT:PRINT"FAILED at address";AD;"(dec)":GOTO 4850

4580 T=T+VI

4590 NEXT LO

4600 IF POS(N)>74 THEN LOCATE CL,1:PRINT SPACE$(80):LOCATE CL,1

4610 A$=INKEY$:IF A$="S" OR A$="s" THEN PRINT"Halted at address";AD:GOTO 4850

4620 NEXT HI

4630 REM **** end burn 2716, 2764, 27128, & 27256 ******************************

4640 GOTO 4820 ' skip other EPROM burns

4650 REM **** burn 2732 & 27512 **

4660 T=0 ' reset checksum

4670 FOR HI=0 TO MX-1:PRINT MX-HI;:OUT 261,HI:HC=HI*256

4680 FOR LO=0 TO 255:AD=HC+LO:OUT 260,LO

4690 OUT 263,102 ' set burn mode

4700 DEF SEG = &H6000 :VM=PEEK(AD)

4710 DEF SEG : OUT 262,VM ' send data to EPROM

4720 IF VM<>255 THEN CALL BASE ' burn EPROM unless already FF

4730 OUT 263,170:OUT 263,150:OUT 263,149 ' set verify mode

4740 VI=INP(260):OUT 263,150:OUT 263,170 ' return to inhibit mode

4750 IF VI<>VM THEN PRINT:PRINT"FAILED at address";AD;"(dec)":GOTO 4850

4760 T=T+VI

4770 NEXT LO

4780 IF POS(N)>74 THEN LOCATE CL,1:PRINT SPACE$(80):LOCATE CL,1

4790 A$=INKEY$:IF A$="S" OR A$="s" THEN PRINT"Halted at address";AD:GOTO 4850

4800 NEXT HI

4810 REM **** end burn 2732 & 27512 **

4820 GOSUB 6400 '**** inhibit EPROM ****

4830 PRINT:PRINT"EPROM programmed successfully.";

4840 GOSUB 6200 'displays CHECKSUM

4850 PRINT:BEEP:COLOR 23,0:PRINT" -> REMOVE PROGRAMMING VOLTAGE NOW!":COLOR 7,0

4860 PRINT:PRINT"...press any key when ready..."

4870 IF INKEY$="" THEN GOTO 4870 ELSE 600

5000 REM **** call debug ***

5010 LOCATE 7,1

5020 PRINT"DEBUG -> Invoke DEBUG to examine/alter EPROM data in memory."

5030 PRINT STRING$(74,196)

5040 LOCATE 10,1:PRINT" Remember when in DEBUG to exit with 'Q'."

5050 LOCATE 12,1:INPUT" To switch to DEBUG, enter 'D' again... ",A$

5060 IF A$<>"D" AND A$<>"d" THEN GOTO 600

5070 CLS:PRINT"EPROM data starts at 6000:0000. To dump data, use -d6000:0"

5080 PRINT"You are now in DEBUG..."

5090 SHELL "debug"

5100 CD=1:RESTORE:GOSUB 7000

5110 GOTO 600

5500 REM **** quit ***

5510 LOCATE 7,1:X=0

5520 PRINT"QUIT -> Exit program... "

5530 PRINT STRING$(68,196)

5540 PRINT:INPUT"press 'return' to return to program, 'Q' to quit... ",A$

5550 IF A$<>"Q" AND A$<>"q" THEN GOTO 600

5560 LOCATE 12,1

5570 PRINT STRING$(80,177)

5580 PRINT" For additional DAGE SCIENTIFIC Phone"

5590 PRINT" information P.O.Box 144 209 772-2076"

5600 PRINT" call or write: Vly Sprgs, CA 95252 * * * * * * *"

5610 PRINT

5620 PRINT STRING$(80,177)

5630 PLAY "MB T90 03 L16 CFFGAFAGCFFGA F8 E8"

5640 LOCATE 23,1

5650 T = TIMER

5660 IF TIMER - T < .35 THEN GOTO 5660

5670 PRINT:X = X+1:IF X<20 THEN GOTO 5650

5680 CLS

5690 END

6000 REM **** error trap ***

6010 IF ERR=52 OR ERR=53 OR ERR=64 OR ERR=75 OR ERR=76 THEN GOTO 6020 ELSE ON ERROR GOTO 0

6020 PRINT"Error #";ERR;", i.e. file, filename or path; please try again."

6030 IF ERL=2090 THEN RESUME 2040

6040 IF ERL=2610 THEN RESUME 2540

6050 RESUME 600

6200 REM **** prints CHECKSUM in dec and hex ***********************************

6210 REM Receives T (decimal) prints to screen HX$ hex equal. Var N$, M, R, X

6220 PRINT:PRINT"EPROM or memory verification checksum is";T;"decimal, or ";

6230 HX$="":N$=""

6240 M=INT(T/16):R=T-M*16:T=M

6250 IF R<10 THEN N$=N$+CHR$(R+48) ELSE N$=N$+CHR$(R+55)

6260 IF T>0 GOTO 6240

6270 FOR X=LEN(N$) TO 1 STEP -1

6280 HX$=HX$+MID$(N$,X,1)

6290 NEXT X

6300 PRINT HX$;" hex."

6310 IF INKEY$<>"" THEN GOTO 6310 ' flush keyboard buffer

6320 SOUND 1200,1

6330 RETURN

6400 REM **** inhibit EPROM **

6410 FOR X= 260 TO 262

6420 OUT X,0

6430 NEXT X

6440 OUT 263,170 'initializes control & disables chip

6450 RETURN

6600 REM **** draws menu ***

6610 CLS 'enter with SE and PV selected

6620 LOCATE 2,25:COLOR 2:PRINT 2^(SE+3);"at";PV;:COLOR 7:PRINT"volts."

6630 LOCATE 2,5:PRINT"PROGRAM for EPROM ";:COLOR 2:PRINT"27x":COLOR 7

6640 PRINT" ...to change values, restart program..."

6650 PRINT STRING$(80,205);

6660 COLOR 0,7:PRINT"C";:COLOR 7,0:PRINT"OPY_EPROM ";:COLOR 0,7:PRINT"L";:COLOR 7,0:PRINT"OAD_DATA ";:COLOR 0,7:PRINT"S";:COLOR 7,0:PRINT"AVE_DATA ";

6670 COLOR 0,7:PRINT"V";:COLOR 7,0:PRINT"ERIFY ";:COLOR 0,7:PRINT"B";:COLOR 7,0:PRINT"URN_EPROM ";:COLOR 0,7:PRINT"D";:COLOR 7,0:PRINT"EBUG ";:COLOR 0,7:PRINT"Q";:COLOR 7,0:PRINT"UIT"

6680 RETURN

7000 REM **** calc loops/mS **

7010 CLS:V=16:MC$=""

7020 PRINT"Program is calculating loops/millisec which will be used in setting"

7030 PRINT"the programming pulse duration."

7040 PRINT:PRINT"This may take up to 20 seconds; please be patient.":PRINT

7050 FOR X=1 TO 30 '# of code bytes to read

7060 READ N

7070 MC$=MC$+CHR$(N) 'generates string of machine code

7080 NEXT X

7090 PTR=VARPTR(MC$) 'use to find address of code

7100 BASE=PEEK(PTR+1)+PEEK(PTR+2)*256 'start address of assembly program

7110 NOINT=BASE+1 'skip 1st instr which disables interrupts

7120 PRINT "Working...test time- ";

7130 T=TIMER

7140 CALL NOINT

7150 DT=TIMER-T:PRINT DT,V 'loop took dt seconds

7160 IF DT>5 THEN GOTO 7240 ' time loop is now >5 sec

7170 V=PEEK(BASE+8)+PEEK(BASE+9)*256 'outer time loop constant

7180 V=V*2 'double outer loop constant

7190 IF V>65535! THEN PRINT"incorrect time loop":STOP

7200 HI=INT(V/256) 'replace code for outer loop constant

7210 LO=V-HI*256

7220 POKE BASE+8,LO:POKE BASE+9,HI 'note: 8 is LO while 9 is HI

7230 GOTO 7120 'repeat till over 5 sec

7240 LM=INT(V*65.536/DT) ' LM = loops/millisec

7250 PL=50 ' **** pulse length is set to 50 mS ****

7260 REM **** program could RETURN here, set new PL & call "pulse gen" next ****

7400 REM **** pulse generator **

7410 REM Must enter with PL set to desired pulse length in millisec

7420 TC=LM*PL:N=1

7430 V=TC

7440 IF V>65535! THEN N=N+1:V=TC/N:GOTO 7440

7450 IF N>255 THEN PRINT "loop overload failure ":STOP

7460 POKE BASE+8,N:POKE BASE+9,0 ' outer loop is limited 1 to 255

7470 HI=INT(V/256) 'replace code for inner loop constant

7480 LO=INT(V-HI*256) 'that's right, inner loop

7490 POKE BASE+11,LO:POKE BASE+12,HI

7500 RETURN

7600 **** DATA statements **

7610 DATA 250 , 186 , 7 , 1 , 176 , 101 , 238 , 184 , 16 , 0

7620 DATA 185 , 0 , 0 , 73 , 117 , 253 , 72 , 117 , 247 , 176

7630 DATA 102 , 238 , 251 , 203 , 244 , 244 , 42 , 60 , 52 , 0

7640 END

Before starting the program, the ST-1 breadboard should be wired for the type of EPROM to be burned. Do not install the EPROM at this time. Make a directory for EPROM burning and copy the three programs; EPROM102.BAS, (DOS) DEBUG.EXE and (DOS) GWBASIC.EXE into that directory. Make this your current directory and then run GWBASIC EPROM102.

The program begins by calculating loops/mS for your machine. This may take up to 20 seconds, be patient. After these values are determined and poked into the machine code, do not alter your turbo mode.

You are then presented with a menu to choose the type (size) of EPROM and the burn voltage. The size will effect the addressing loop while the burn voltage is only displayed as a reference. The EPROM type and the burn voltage will appear at the top of the screen. This has no bearing on the actual burn voltage; you must provide this voltage when the program requests its application. Note that for EPROMs which require 12.5 volts, the 12 volts available on the breadboard should be sufficient.

The next menu is called the main menu and will allow the selection of the following options:

COPY_EPROM

LOAD_EPROM

SAVE_EPROM

VERIFY

BURN_EPROM

DEBUG

QUIT

Pressing the first (highlighted) letter will immediately position that sub menu with its functions. At this level, not only must you press the highlighted letter, but must confirm with a carriage return. Typing incorrect values or no value at all will return the main menu.

All programming values (data) must be stored in computer memory at address 60000 HEX. The usual method of obtaining these data would be to copy them from an existing EPROM using COPY_EPROM. Follow the screen commands by installing the master EPROM and press GO. The complete data will be copied into memory and a simply arithmetic checksum will be displayed in decimal and hex.

These values could be altered by using DEBUG. It is necessary to have DEBUG.EXE installed in the current directory. The program will pass control to debug. Follow the debug procedures found in your DOS manual. Upon completion, type "Q" to quit debug and fall back into the main menu.

Data stored in memory can be saved to a file by pressing SAVE_EPROM. Enter filename without extension, the program will add extension ROM. BASIC can only save 64K bytes of data; unfortunately, it also adds a few bytes for header information. When saving the 27512 EPROM (which equates to 64K bytes), BASIC cannot handle it as a single file. The program will automatically split the data into two files; one with extension ROM and another with extension RON.

After data has been saved to a file, it can be recalled with the LOAD_EPROM command. Enter the filename with a ROM extension or press "L" to list all files on the current directory ending with ROM. If a program has been split, entering only the ROM extension will load both parts.

At any time during this process, a verification checksum of either the currently installed EPROM, or the current date in memory, can be obtained by pressing VERIFY.

Now that data is stored in memory, an EPROM can be burned by selecting BURN_EPROM. The final check of all 1's can be skipped if desired. The program will beep and request that the selected burn voltage now be applied. When applied, press "B" for burn. The program begins by writing the number of 256 byte segments that are to be burned. It then burns the first byte and checks for success. If successful, the remaining bytes will be burned and checked. After each 256 bytes are burned the remaining number of segments will be written to the screen. This gives an indication that everything is working and will give some idea of how long it will take. The program can be stopped only between these segments by pressing "S". At the completion of the burn or when manually shopped, a second beep will signal to remove the burn voltage. Additional EPROMs may be burned using only this menu selection.

WHAT NEXT?

The 50 mS pulse programming method has its down side. Neglecting the computer overhead, it could take seven minutes to burn a 2764 and up to an hour for the 27512. When burning the 27010 (128K by 8), the time extends to two hours. This may be acceptable if only one or two units need to be burned, but doing 50 or a 100 by tomorrow morning is impossible.

Most manufactures recommend a faster programming procedure and then register its name. Many EPROM programmers have a generic name of "High Performance Programming" They all amount to using a series of shorter pulses of 0.1 to 1 mS with the number of pulses depending on whether or not the value changed. Higher voltages and closer tolerances are required for Vcc and Vpp. Writing the necessary loops is an easy matter, and generating these pulses of 0.1 to 1 mS using the procedure developed here poses no problem, but the slow running interpreted BASIC becomes the limiting factor.

