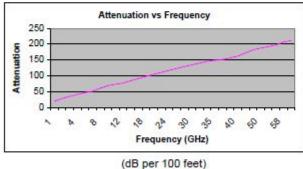
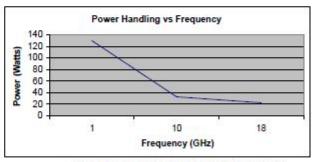

RG405 Cable Specifications M17/133-RG405

DOCUMENT No: CABLE-RG405

SHEET 1 OF 2


.086 diameter is the most common size Semi-Rigid cable. This size matches well with miniature high frequency connectors such as 2.4mm and SMP. The use of an cooper jacket will allow final shaping at the installation site. Florida RF Labs cable assemblies are Space Qualified and available unbent or shaped to your specifications.



Electrical Data			
Frequency, Max (GHz)	60.0		
Impedance, nominal (Ω)	50	1 -2	Ti and the second secon
Velocity of Propagation (%)	69.5	3	
Shielding Effectiveness, 1 GHz (dB/ft)	>100	-3	
Capacitance (pF/ft)	32		
Delay (ns/ft), (ns/meter)	1.463	4.80	THE RESERVE OF THE PARTY OF THE
Attenuation k1 (db/100ft) @ 23 deg C	0.569		Attenuation (typical) at any Frequency
Attenuation k2 (db/100ft) @ 23 deg C	0.0012		=k1 x SqRt (FMHz) + k2 x (FMHz)

Mechanical Data			
Weight (lbs/100ft), (Kg/100m)	1.53	2.30	
Temperature Range (°C)	-40 to 125	messes de	_
Minimum Bend Radius (inch), (mm)	0.17	4.27	

Construction Data			1211111	2111535-11122-11123-11124
Inner Conductor (inch)	Α	Solid	0.020	Silver Covered Copper Clad Steel
Dielectric (inch)	В	Solid	0.066	Polyetrafluoroethylene
First Outer Shield (inch)	С		0.086	Bare Copper Tube
Second Outer Shield (inch)	D			
Third Outer Shield (inch)	E		0.0000000000000000000000000000000000000	1602
Jacket (inch O.D.)	F		0.086	None

*CW Power in watts at sea level and 23°C

QUICK SPEC

Max Frequency	Loss @ 5 GHz	Cable Diameter	Shielding Effect.		
60 GHz	46 dB	0.086"	>100		

RG405 Cable Specifications M17/133-RG405

DOCUMENT No: CABLE-RG405

SHEET 2 OF 2

Standard Connectors:

Cable Code	Connector Code	Series	Gender	200	Туре	C-Nut Style*	Body Material*	Body Finish*	Loss per GHz	Frequency Max GHz
RG405	MMS	2.4 mm	(Male)	plug	Straight	Н	SS	G	0.01	50
RG405	MMSR ²	2.4 mm	(Male)	plug	R/A	Н	SS	G	0.01	50
RG405	MFS	2.4 mm	(Female)	jack	Straight	Н	SS	G	0.015	50
RG405	MFBS	2.4 mm	(Female)	bulkhead	Straight	Н	SS	G	0.01	50
RG405	KMS	2.9 mm	(Male)	plug	Straight	Н	SS	G	0.01	40
RG405	KMSR ²	2.9 mm	(Male)	plug	R/A	Н	SS	G	0.01	40
RG405	KFS	2.9 mm	(Female)	jack	Straight	Н	SS	G	0.01	40
RG405	KFBS	2.9 mm	(Female)	bulkhead	Straight	Н	SS	G	0.01	40
RG405	SMPFS	GPO (SMP	(Female)	jack	Straight	N/A	Ве	G	0.01	40
RG405	SMPFR	GPO (SMP	(Female)	jack	R/A	N/A	Be	G	0.01	40
RG405	SMS	SMA	(Male)	plug	Straight	Н	SS	G	0.01	26
RG405	SMSR ²	SMA	(Male)	plug	R/A	Н	SS	G	0.01	26
RG405	SMR	SMA	(Male)	plug	R/A	Н	SS	G	0.015	12
RG405	SMSAT	SMA	(Male)	plug	Straight	Н	SS	G	0.01	18
RG405	SFS	SMA	(Female)	jack	Straight	N/A	SS	G	0.01	18
RG405	SFBS	SMA	(Female)	Bulkhead	Straight	N/A	SS	G	0.01	18
RG405	OSSPMBS	OSSP	(Female)	Bulkhead	Straight	N/A	SS	G	0.01	18
RG405	OSPMBS	OSP	(Male)	Bulkhead	Straight	Н	SS	G	0.01	18
RG405	NMS	TYPE N	(Male)	plug	Straight	Н	В	N	0.01	12
RG405	NFBS	TYPE N	(Female)	Bulkhead	Straight	N/A	В	N	0.01	12
RG405	TMS	TNC	(Male)	plug	Straight	Н	В	N	0.01	12
RG405	TMR	TNC	(Male)	plug	R/A	Н	В	N	0.01	12
RG405	TFBS	TNC	(Female)	Bulkhead	Straight	N/A	В	N	0.01	12
RG405	MCXMR	MCX	(Male)	plug	R/A	Н	В	G	0.015	6
RG405	MCXMS	MCX	(Male)	plug	Straight	Н	В	G	0.01	6
RG405	MMCXMS	MMCX	(Male)	plug	Straight	Н	В	G	0.01	6
RG405	MMCXMR	MMCX	(Male)	plug	R/A	Н	В	G	0.015	6
RG405	SMBFS	SMB	(Female)	jack	Straight	N/A	В	G	0.01	4
RG405	BMS	BNC	(Male)	plug	Straight	Н	В	G	0.01	4
RG405	BFBS	BNC	(Female)	Bulkhead	Straight	N/A	В	G	0.01	4

^{*} C-Nut Style: H=Hex Nut, K=Knurled, HK=Hex Nut & Knurled

SMSSAT' = Anti-Torque

Sex of the connector is determined by center pin.

Standard Options:

Cable Code	Option Code	Option Description	Option Details
RG405	W	Weatherized Protective Covering	Polyolefin shrink tube cover
RG405	RP	Phase Matched in sets	Cable matched to each other to +/- 2.8PS
RG405	AP	Phase Matched to an electrical length	Absolute electrical length +/- 2.8PS
RG405	RoHS	RoHS Compliant Cable Assembly	per EU directive 2002/95/EC
		A DaliC annuliant Cable Assembly	per EO directive 2002/93/EC

Standard Product is not RoHS compliant

For RoHS complaint assemblies (-ROHS) is required to be added to end of standard part number ex. KMS-RG405-12.0-KMS-ROHS

Custom Options:

The above connectors and options the most common types used. Florida RF Labs offers a wide range of cables, connectors and options. If you do not see what you need please consult the factory.

^{*} Body Materials: B=Brass, SS=Stainless Steel, Be= Beryllium Copper

^{*} Body Finish: N=Nickel, S=Silver, G=Gold, P=Passivated, T=Tri-Metal

^{2 =} Connector pre-bent cable to form right angle