THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

SP8716/8/9

520MHz LOW CURRENT TWO-MODULUS DIVIDERS

SP8716 \div 40/41, SP8718 \div 64/65, SP8719 \div 80/81 are 50mW programmable dividers with a maximum specified operating frequency of 520MHz over the temperature range -40 °C to + 85 °C.

The signal (clock) inputs are biased internally and require to be capacitor coupled. The output stage is of an unusual low power design featuring dynamic pull-up, and optimised for driving CMOS. The 0 to 1 output edge should be used to give the best loop delay performance.

FEATURES

- DC to 520MHz Operation
- -40°C to +85°C Temperature Range
- Control Inputs and Outputs are CMOS Compatible

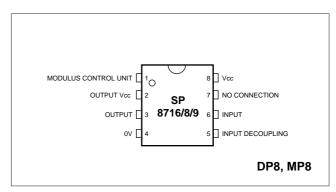


Figure: 1 Pin connections - top view

QUICK REFERENCE DATA

- Supply Voltage 5.0V ± 0.25V
- Supply Current 10.5mA typ.

ABSOLUTE MAXIMUM RATINGS

Supply voltage pin 2 or 8): 8V Storage temperature range: -55° C to $+150^{\circ}$ C Max. Junction temperature: $+175^{\circ}$ C Max. clock I/P voltage: 2.5V p-p

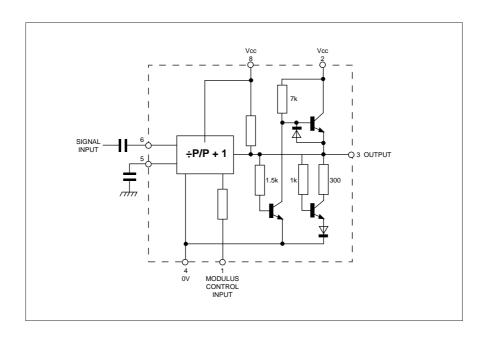
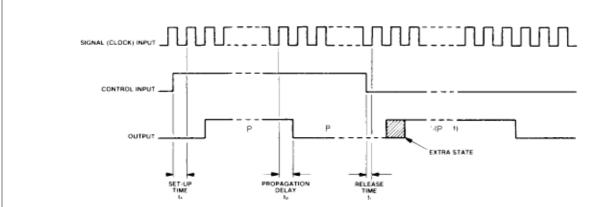


Figure 2 : Functional diagram

ELECTRICAL CHARACTERISTICS


Test conditions (unless otherwise stated):]

Supply voltage: Vcc = +4/95 to 5.45V, Temperature: $T_{amb} = -40$ °C to +85°C

		Value		Units		
Characteristics	Symbol	Min.	Max.		Conditions	Notes
Max. frequency	f _{max}	520		MHz	Input 100-280mV p-p	1
Min. frequency (sinewave input)	fmin		30	MHz	Input 400-800mV p-p	2
Power supply current	Icc		11.9	mA	$C_L = 3pF$; pins 2, 8 linked	1
Output high voltage	Vон	(Vcc - 1.2)		V	I∟ = -0.2mA	1
Output low voltage	Vol		1	V	I∟ = 0.2mA	1
Control input high voltage	VINH	3.3	8	V	÷P	1
Control input low voltage	VINL	0	1.7	V	÷P +1	1
Control input high current	VINH		0.41	mA	VINH = 8V	1
Control input low current	VINL	-0.20		mA	VINL = 0V	1
Clock to output delay	t p		28	ns	C _L = 10pF	2
Set-up time	ts	10		ns	C _L = 10pF	2
Release time	tr	10		ns	C _L = 10pF	2

NOTES

- Tested at 25°C only
- 2. Guaranteed but not tested

NOTE

The set-up time ts is defined as the minimum time that can elapse between a L \rightarrow H transition of the control input and the next L \rightarrow H clock pulse transition to ensure that the \div P mode is obtained.

The release time tr is defined as the minimum time that can elapse between a $H \to L$ transition of the control input and the next $L \to H$ clock pulse transition to ensure that the $\div(P+1)$ mode is obtain

Figure 3: Timing diagram

*Tested as specified in

table of

Electrical

Characteristics

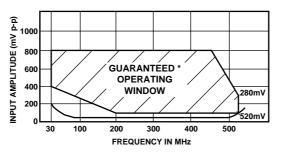


Figure 4: Typical input characteristics

OPERATING NOTES

- 1. The inputs are biased internally and coupled to a signal source with suitable capacitors.
- 2. If no signal is present the devices will self-oscillate. If this is undesirable it may be prevented by connecting a 15k resistor from one input to pin 4 (ground). This will reduce the sensitivity.
- 3. The circuits will operate down to DC but slew rate must be better than 100V/,us.
- 4. The output stage is of an unusual design and is intended to interface with CMOS. External pull-up resistors or circuits must not be used.
- 5. This device is NOT suitable for driving TTL or its derivatives.

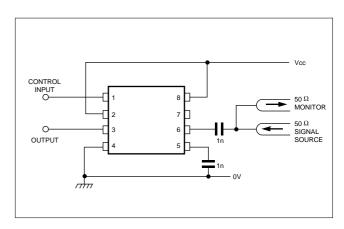


Figure 5: Toggle frequency test circuit

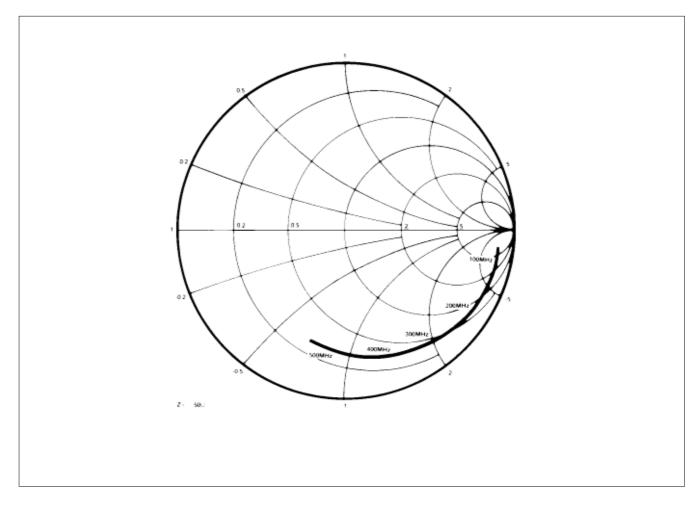


Figure 6: Typical input impedance