N-Labor 4 HF-Verhalten von Transistoren

Name:	Jahrgang:	Gruppe:
Namen der Mitarbeiter:		

HN4 - LABOR

Abteilung Elektronik

an der Höheren technischen Bundeslehranstalt 1 Innsbruck, Anichstraße 26 – 28

Übungsnummer:		Ausgeführt am	
Betreuer:	HF-Verhalten von Transistoren	Abgegeben am	

Lehrziele

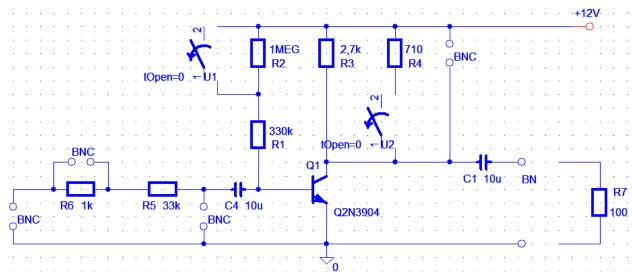
Kennenlernen der typischen Transistorkapazitäten und die Auswirkung der Millerkapazität auf das Grenzfrequenzverhalten einer Emittergrundschaltung

Theorievoraussetzung

Kenntnis des Transistor-HF-Ersatzschaltbildes und der inneren Transistorkapazitäten, Millertheorem, Grundkenntnisse zum Tiefpassverhalten von Schaltungen.

Literatur: Böhmer/Bauelemente der Elektronik, Kapitel "Hochfrequenzverhalten der EGS" und "Kaskode"

Aufgabenstellungen


- Arbeitspunktermittlung am vorliegenden Messobjekt
- Berechnung der Kenngrößen r_{BE} und S
- Aufnahme des Frequenzganges der Kurzschlussstromverstärkung β
- Messung von f_β und Ermittlung von C_{BE}
- Messung der Leerlaufverstärkung und Ermittlung von C_{BC}
- Messung des Basis-Bahnwiderstandes r_{BB}.
- Messung der Grenzfrequenz einer Kaskode-Schaltung

Gerätebedarf

- 1 Netzgerät, 1 DMM, 2 AC-mVM, 1 R-Dekade, 1 Oszilloskop, 1 Funktionsgenerator,
- 1 Frequenzzähler

47-Transistor4.doc Seite 1 von 6 HK/GT

Übungsdurchführung

Angaben bezüglich Betriebsbedingungen erhalten Sie vom Betreuer!

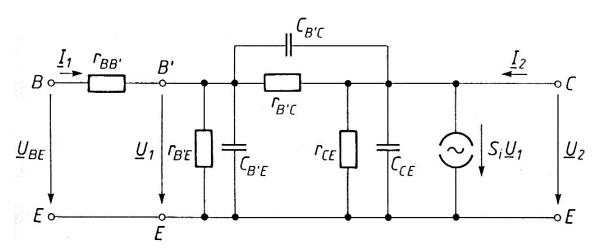
1. Arbeitspunktermittlung

Hinweis: Messen Sie den DC-Spanungsabfall an R_C und erzeugen Sie den gewünschten Arbeitspunkt, indem Sie die Versorgungsspannung U_B auf einen Wert zwischen 6 und 12 Volt entsprechend einstellen.

$$I_C = \frac{U_{RC}}{R_C}$$

$$I_B = \frac{U_B - 0.5}{1.33M}$$

$$B = \frac{I_C}{I_B}$$


2. Berechnung von r_{BE} und S

3.
$$r_{BE} \approx \frac{U_T}{I_B}$$

$$S \approx \frac{I_C}{U_T}$$

$$\beta \approx B$$

HF-Ersatzschaltbild nach Giacoletto (für nicht allzu hohe Frequenzen)

47-Transistor4.doc Seite 2 von 6 HK/GT

4. Messung des Frequenzganges von β

Hinweis: Erzeugen Sie eine "Stromsteuerung" des Transistors, in dem Sie über den eingebauten Vorwiderstand (34 kOhm) eine Signalwechselspannung an die Basis legen. Belasten Sie den Ausgang mit einem R_L = 100 Ohm sodass annähernd eine Kurzschlussbelastung vorliegt.

$$i_B = \frac{u_{FG}}{34K + r_{BE}} \qquad i_C = \frac{u_a}{100\Omega}$$

f/MHz	u _a /mVeff	i _C /mA	$\beta = i_C/i_B$
0,01			
0,02			
0,05			
0,1 0,2 0,5			
0,2			
0,5			
1			
2 5			
10			
f_{β}			

$$\beta = \frac{i_C}{i_B}$$

- Graphische Darstellung von β in Abhängigkeit der Frequenz (doppelt log, Darstellung) und Ermittlung von f_{β}
- Berechnung der Transitfrequenz $f_T = \beta \cdot f_\beta$
- Tragen Sie den Wert von f_T im Diagramm ein und diskutieren Sie das Messergebnis
- Die Grenzfrequenz ist (falls möglich)immer ein eigener Messpunkt!

5. Ermittlung von C_{BE}

Durch Berechnung:
$$C_{BE} \approx \frac{I_C}{2\pi f_T U_T}$$

Aus der Messung :
$$C_{BE} \approx \frac{1}{2\pi r_{BE} f_{\beta}}$$

6. Messung von C_{BC}

Hinweis: Verstärke ist unbelastet. Die Grenzfrequenz f_q der Spannungsverstärkung v_u = u_a/u_e ist dann wegen der Millerkapazität $(1-v_u)\cdot C_{BC}$ kleiner als f_{β} . Die Eingangsspannung u_e wird an Basis gemessen und so klein, dass. Ausgangsspannung dass u_a unverzerrt! (Kleinsignalverhalten!)

•	(AKHPAh	ւչգի ր Veff	$u_{\rm e}/mV_{\rm eff}$	$v_u = u_a/u_e$	
	1				und

Darstellung

d Ermittlung von f_g.

-V CI SIC	ich mit uc	III DCICCIIII	CICII VV CIL IL
5 Ermit 0	tlung von C	_{BC} aus:	
20			
40			
60			
50			
80			
100			
120			
140			
160			
180			
200			
220			
240			
f.			

$$f_g = \frac{1}{2\pi r_{_{BE}}(C_{_{BE}} + C_{_{BC}}(1 - v_u))}$$

$$f_{g} = \frac{1}{2\pi r_{BE}(C_{BE} + C_{BC}(1 - v_{u}))}$$

$$C_{BC} = \frac{\frac{1}{2\pi r_{BE}f_{g}} - C_{BE}}{1 - v_{u}}$$

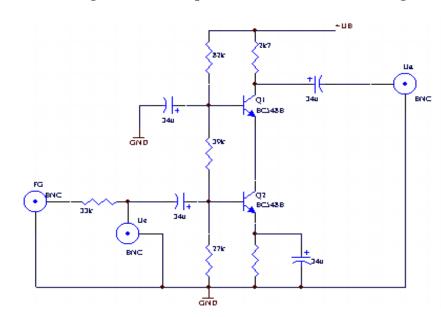
Beachte: Bei dieser Messung auch die Kapazitäten des Messkabels und der Messgeräte am Transistoreingang berücksichtigen $(C_{BE} + ca.120 pF)!$

47-Transistor4.doc HK/GT Seite 3 von 6

N-Labor 4 HF-Verhalten von Transistoren

6. Ermittlung des Basis-Bahnwiderstandes r_{BB}·

Hinweis: Durch Nachregeln der Spannung am Funktionsgenerator wird bei Frequenzgangmessung die u_e an der Basis konstant gehalten (Spannungssteuerung!) Dadurch wird bei EGS am Transistoreingang der Basis-Bahnwiderstand r_{BB} parallel zum r_{BE} für die Grenzfrequenz wirksam.


	f/kHz	u _a /mVeff	u _e /mVeff	$v_u = u_a/u_e$	
•	Graph	ische			Darstellung
	2				und Ermittlung von f _s .
	5				
	10				
•	2 © rmit	tlung von r	_{B`} aus:		
	40				
	60				1
	50				$f_g = \frac{1}{2\pi r (r_{BE} // r_{BB})(C_{BE} + C_{BC}(1 - v_u))}$
	80				C BE BB / C BE - BC C U//
	100				
	120				
	140				
	160				
	180				
	200				
	220				
	240				7 Valle double bound double by the construction of the
	f_{gvu}				7. Wiederholung der Messungen 1 bis
					für einen anderen Arbeitspunkt

Hinweis: Stellen Sie einen anderen Arbeitspunkt ein (Schalterstellung 2) und ermitteln Sie für diesen wiederum die charakteristischen Messwerte.

1 bis 6

47-Transistor4.doc Seite 4 von 6 HK/GT N-Labor 4 HF-Verhalten von Transistoren

7. Messung der Grenzfrequenz einer Kaskode-Schaltung

Messen Sie die Verstärkung und Grenzfrequenz der gegebenen Kaskodeschaltung.

Diskutieren und vergleichen Sie das Messergebnis mit den bei der EGS gefundenen Werten.

f/kHz	u _a /mVeff	u _e /mVeff	$v_u = u_a/u_e$
1			
2 5			
5			
10			
20			
40			
60			
50			
80			
100			
120			
140			
160			
180			
200			
220			
240			

• Graphische Darstellung von v_u in Abhängigkeit der Frequenz (doppelt log, Darstellung) und Ermittlung von f_g .

47-Transistor4.doc Seite 5 von 6 HK/GT

N-Labor 4 HF-Verhalten von Transistoren

9. Auswertung der gemessenen Diagramme

Die in den Diagrammen dargestellten Ergebnisse aller Messungen sind in der Diskussion zu vergleichen, zu bewerten und es ist die Übereinstimmung mit den theoretischen Überlegungen zu überprüfen.

	EGS: I _C =	EGS: I _C =	Kaskode
B_0			
S/mS			
r _{BE} /kOhm			
$rR_{BB^{`}}/kOhm$			
C _{BE} /pF			
C _{BC} /pF			
β_0			
f_{β} /kHz			
f_{T}/kHz			
$V_{\rm u}$			
$f_{\rm g}/kHz$			

47-Transistor4.doc Seite 6 von 6 HK/GT