Name:	Jahrgang:	Gruppe:
Namen der Mitarbeiter:		

HN3 - LABOR

Abteilung Elektronik

an der Höheren technischen Bundeslehranstalt 1 Innsbruck, Anichstraße 26 – 28

Übungsnummer:		Ausgeführt am	
Betreuer:	Arbeitspunkteinstellung	Abgegeben am	

Lehrziele

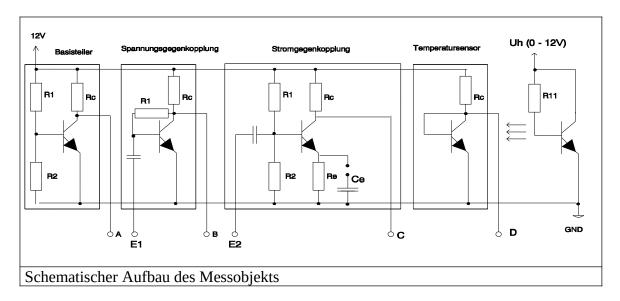
Kennenlernen verschiedener Methoden zur Arbeitspunkteinstellung. Untersuchung der Arbeitspunktstabilität.

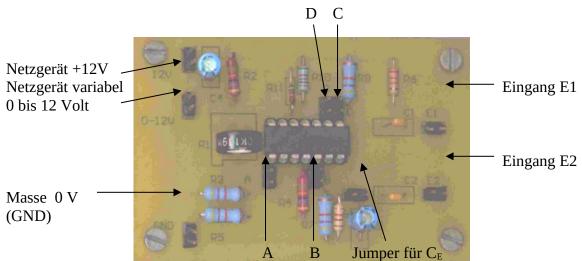
Aufgabenstellungen

- 1. Berechnung einer Tabelle für Temperatureinstellung im Messobjekt.
- 2. Untersuchung der Temperaturabhängigkeit verschiedener Arbeitspunktschaltungen.
- 3. Untersuchung der Versorgungsspannungshängigkeit verschiedener Arbeitspunktschaltungen
- 4. Messung von I_{CEO} und I_{CES} des in "Transistor 1" verwendeten Bipolartransistors
- 5. Dimensionierung und Aufbau einer Arbeitspunktschaltung mit Gegenkopplung.
- 6. Beurteilung der Arbeitspunktstabilität.
- 7. Dimensionierung und Aufbau einer Arbeitspunkteinstellung für einen FET.

Gerätebedarf

2 NG (15 V), DMM, 1Oszilloskop, 1 Bipolar-Transistor, 1 FET,


31-Transistor2.doc Seite 1 von 10 YU


Allgemeine Erklärungen zu den Aufgabenstellungen

Stabilitätsüberprüfungen am Messobjekt

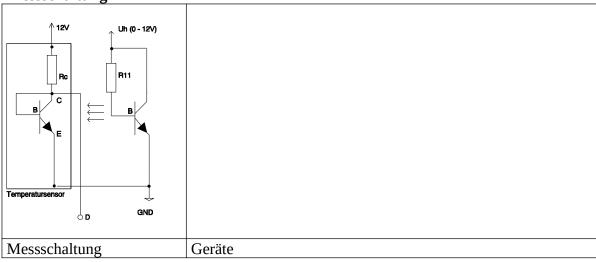
Drei (theoretisch) mögliche Schaltungen zur Einstellung des Arbeitspunktes eines Bipolartransistors sollen bezüglich ihrer Stabilität (Temperatur, Versorgungsspannung, Parameterschwankungen) miteinander verglichen werden.

Die im Messobjekt enthaltenen 5 Transistoren sind auf einem Chip integriert (Dual – Inline – Gehäuse). Sie nehmen damit **dieselbe Temperatur** an.

Drei Transistoren dienen als Messobjekt, der vierte als Temperatursensor (gemessen wird seine Basis-Emitterspannung).

Ein weiterer (übersteuerter) Transistor der an der Heizspannung $U_{\rm H}$ liegt, wirkt als Wärmequelle.

Stabilitätsüberprüfungen an einer diskret aufgebauten Schaltung


Eine geeignete Schaltung soll diskret am Steckbrett aufgebaut werden, ihre Stabilität ist zu überprüfen.

31-Transistor2.doc Seite 2 von 10 YU

Übungsdurchführung

1. Bestimmung des Zusammenhangs U_T und der Transistortemperatur

Messschaltung

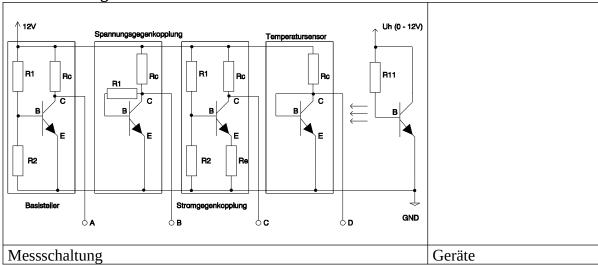
Messanweisung

Die Spannung U_{BE20} ist (ohne Heizung !!) am Messobjekt zu bestimmen, sie entspricht damit der Umgebungstemperatur (20°C).

Messwerttabelle

Gemäß der angegebenen Formel sind die, den weiteren Messtemperaturen entsprechenden Temperaturspannungen zu berechnen und in die Tabelle einzutragen.

$U_{BE}[mV]$					
T[°C]	20	25	30	35	40


Verwendete Formel:
$$U_{BE20}[mV] - 2\frac{mV}{^{\circ}C}(T[^{\circ}C] - 20^{\circ}C)$$

Diskussion

31-Transistor2.doc Seite 3 von 10 YU

2.Untersuchung der Temperaturabhängigkeit der verschiedenen Arbeitspunkteinstellungen

Messanweisung

Durch Veränderungen der Heizspannung sind nacheinander die angegebenen Chiptemperaturen (U_{BE}) einzustellen und das Kollektorpotential zu messen.

Messwerttabelle

Die Ergebnisse sind in der Tabelle einzutragen und der Verlauf von $V_{\text{C}}\,$ über der Temperatur ist für alle 3 Fälle graphisch darzustellen.

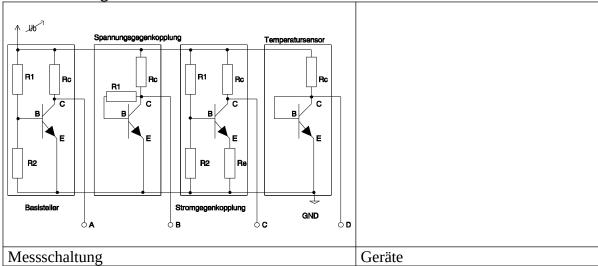
	Basisteile	er	Spannungs - Ggk		Strom - Ggk	
T [°C]	$V_{C}[V]$	$I_{C}[mA]$	$V_{C}[V]$	$I_{C}[mA]$	$V_{C}[V]$	$I_{C}[mA]$
20						
25						
30						
35						
40						

Verwendet e Formel:
$$I_C = \frac{U_B - V_C}{R_C}$$
, $R_C = 10k\Omega$

Graphische Darstellung

31-Transistor2.doc Seite 4 von 10 YU


Beschreibung des Messvorgangs


Diskussion

Welche der Schaltungen weist die geringste, welche die größte Temperaturabhängigkeit auf? Wie lassen sich die Messergebnisse theoretisch erklären?

31-Transistor2.doc Seite 5 von 10 YU

3. Untersuchung der Abhängigkeit der verschiedenen Arbeitspunkteinstellungen von der Versorgungsspannung.

Messanweisung

Für die angegebenen Versorgungsspannungen sind für alle 3 Schaltungen V_{C} und I_{C} zu bestimmen und in die Tabelle einzutragen.

Messwerttabelle

Die Ergebnisse sind in der Tabelle einzutragen und der Verlauf von $V_{\text{C}}\,$ über der Temperatur ist für alle 3 Fälle graphisch darzustellen.

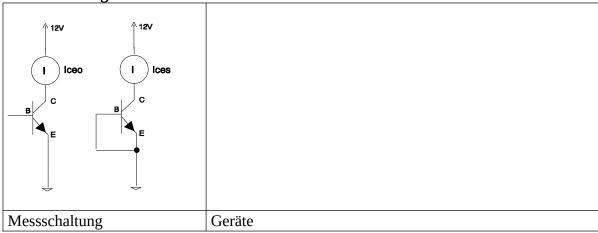
	Basisteiler		Spannungs - Ggk		Strom - Ggk	
$U_{B}[V]$	$V_{C}[V]$	$I_{C}[mA]$	$V_{C}[V]$	$I_{C}[mA]$	$V_{C}[V]$	$I_{C}[mA]$
8						
10						
12						
14						
16						

Verwendet e Formel:
$$I_C = \frac{U_B - V_C}{R_C}$$
, $R_C = 10k\Omega$

Graphische Darstellung

31-Transistor2.doc Seite 6 von 10 YU

Beschreibung des Messvorgangs


Diskussion

Welche der Schaltungen weist die geringste, welche die größte Abhängigkeit von der Versorgungsspannung auf? Wie lassen sich die Messergebnisse theoretisch erklären?

31-Transistor2.doc Seite 7 von 10 YU

4. Messung von I_{CE0} und I_{CES} des in "Transistor 1" verwendeten Bipolartransistors

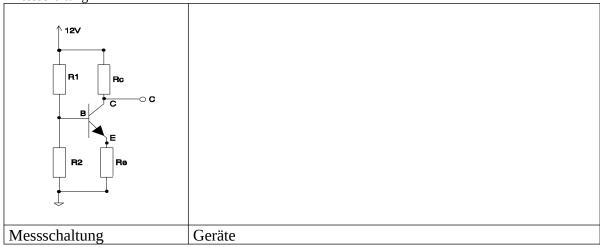
Messschaltung

Messwerttabelle

$U_B[V]$	$I_{CE0}[uA]$	I _{CES} [uA]
12		

Beschreibung des Messvorgangs

Diskussion


31-Transistor2.doc Seite 8 von 10 YU

5. Untersuchung der Arbeitspunktstabilität einer diskret aufgebauten Verstärkerschaltung mit Bipolartransistor.

Vorgabe
$$U_B = (12V)$$
 $U_{CEA} = (5V)$ $I_{CA} = (2mA)$

Zur Bestimmung des Arbeitspunktes sind die in der Übung "Transistor 1" aufgenommenen Kennlinien zu verwenden

Messschaltung

Berechnung der Widerstände

Bestimmung der relativen Arbeitspunktabweichung abhängig von der Erwärmung Die Schaltung ist mit einem Föhn zu erwärmen und die relative Arbeitspunktabweichung ist zu messen.

$$\Delta U_{\text{CE}}/U_{\text{CE}} =$$
 [%](Messung) $\Delta I_{\text{C}}/I_{\text{C}} =$ [%](Rechnung)

Berechnung der Arbeitspunktestabilität: $\Delta U_{CE}/\Delta T = [V/K](Rechnung)$

Verwendete Formel:
$$\Delta I_{C} = \Delta U_{CE} / R_{C} = B * \frac{\Delta U_{BE}}{R *} = B * \frac{2mV * \Delta T}{R_{1} \parallel R_{2} + (B+1) * R_{e}}$$

31-Transistor2.doc Seite 9 von 10 YU

Diskussion

Bestimmung der relativen Arbeitspunktabweichung abhängig von der Versorgungsspannung

Die Versorgungsspannung der Schaltung ist um 20% zu erhöhen bzw. zu erniedrigen und die relative Arbeitspunktabweichung ist zu messen.

 $\Delta U_B/U_B = 20[\%]$: $\Delta U_{CE}/U_{CE} =$ [%] $\Delta I_C/I_C =$ [%] $\Delta I_C/I_C =$ [%] $\Delta I_C/I_C =$ [%]

Diskussion

31-Transistor2.doc Seite 10 von 10 YU