N - Labor3 Transistor 1

Name:	Jahrgang:	. Gruppe:
Namen der Mitarbeiter:		

HN3 - LABOR

Abteilung Elektronik

an der Höheren technischen Bundeslehranstalt 1 Innsbruck, Anichstraße 26 – 28

Übungsnummer:		Ausgeführt am	
Betreuer:	Transistor 1	Abgegeben am	

Lehrziele

Kennenlernen der typischen Kennwerte von Bipolaren Transistoren durch Aufnahme der jeweiligen Kennlinienfelder.

Aufgabenstellungen

1. Aufnahme der Kennlinienfelder $I_C = I_C(U_{CE})$ und $I_B = I_B(U_{BE})$ eines NPN-Transistors und Ermittlung der typischen Kennwerte B, ß, r_{BE} , r_{CE} für einen gegebenen Arbeitspunkt.

Gerätebedarf

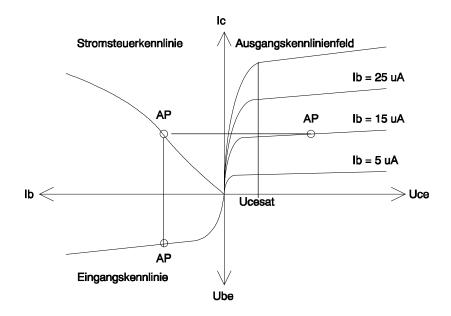
2 NG (15 V), 4 DMM, 1 Vorwiderstand 470 kOhm, 1 Si-Transistor, 1 FET, 1 MOSFET

Allgemeine Erklärungen zu den Aufgabenstellungen

Bei den einzelnen Messungen soll bei einem bipolaren NPN-Transistor die Steuerkennlinie am Eingang sowie für mehrere Steuerwerte als Parameter das Ausgangskennlinienfeld aufgenommen werden.

Für einen bestimmten Arbeitspunkt sollen jeweils aus den aufgenommenen Kennlinien die differenziellen Kenngrößen für den Kleinsignalbetrieb ermittelt und diskutiert werden.

30-Transistor1.doc Seite 1 von 4 HK

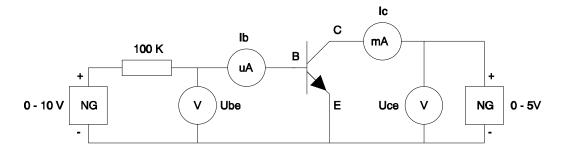

N - Labor3 Transistor 1

Übungsdurchführung

1. Aufnahme der Kennlinienfelder $I_C = I_C(U_{CE})$ und $I_B = I_B(U_{BE})$ eines bipolaren Transistors und Ermittlung der typischen Kennwerte B, ß, r_{BE} , r_{CE} für einen gegebenen Arbeitspunkt.

Einen bipolaren Transistor kann man grundsätzlich als eine *stromgesteuerte Stromquelle* $I_C = \mathbf{B} * I_B$ betrachten, wobei der I_C in einem Bereich von $U_{CEsat} \sim 0,1$ Volt bis U_{CEmax} nahezu unabhängig von der Kollektorspannung U_{CE} ist.

Der Basisstrom I_B fließt über die BE-Diode. Die Eingangskennlinie $I_B = I_B$ (U_{BE}) ist deshalb eine *Diodenkennlinie*.


Im Datenblatt eines Transistors werden Grenzwerte für den Betrieb angegeben: I_{Bmax} (z.B. 5 mA), I_{Cmax} (z.B. 200 mA), U_{CEmax} (z.B. 45 Volt), P_{Vmax} (z.B. 200 mW) Wobei der Arbeitspunkt innerhalb der sogenannten "Verlustleistungshyperbel" liegen darf: $P_V = U_{CE} * I_C < P_{Vmax}$

Für einen gegebenen Arbeitspunkt können aus dem Kennlinienfeld die differenziellen Kenngrößen für AC-Aussteuerung: r_{BE} , ß und r_{CE} als die Steigung einer Tangente im Arbeitspunkt ermittelt werden.

30-Transistor1.doc Seite 2 von 4 HK

N - Labor3 Transistor 1

Messschaltung:

• Stelle eine Kollektorspannung $U_{CE} = 5$ Volt ein und messe die Abhängigkeit der Gleichstromverstärkung $\mathbf{B} = \mathbf{I}_{\mathbf{C}}/\mathbf{I}_{\mathbf{B}}$ vom Kollektorstrom: $\mathbf{B} = \mathbf{B}(\mathbf{I}_{\mathbf{C}})$

I _C / mA	5	10	15	20	25	30	35	40	45	50
I _B / μA										
$B = I_C/I_B$										

! Beachte bei dieser Messung, dass die Verlustleistung < 250 mW bleibt !

 Stelle eine Kollektorspannung U_{CE} = 5 Volt ein und nehme die Eingangskennlinie auf: I_B = I_B(U_{BE})

$I_B/\mu A$	5	10	15	20	25	30	35	40	45	50
$U_{\rm BE}/mV$										
$B = I_C/I_B$										

• Nehme für verschiedene Werte von I_B als Parameter das Ausgangskennlinienfeld $I_C = I_C(U_{CE})$ auf

$I_B/\mu A$		0,05	0.1	0,15	0,2	0,5	1	2	5	
0	I _C / mA									
	I_C / mA								0,5	
	I_C / mA								1	
	I_C / mA								2	
	I_C / mA								4	
	I_C / mA								6	
	I_C / mA								8	
	I_C / mA								10	

Auswertung:

Stelle die Messwerte im Vier-Quadranten-Kennlinienfeld dar und ermittle daraus für einen bestimmten Arbeitspunkt die differenziellen Kenngrößen: β , \mathbf{r}_{BE} , \mathbf{r}_{CE}

30-Transistor1.doc Seite 3 von 4 HK

N - Labor3

Gewählter Arbeitspur	ıkt für die Berechnung de	er differenziellen K	Kenngrößen:
U _{CE} =	$I_C = \dots$		
Aus der Stromsteuerk	ennlinie ergibt sich:		
$\Delta I_C = \dots$	$\Delta I_B = \dots$	$\beta = \Delta I_{C} / \Delta I_{B} =$	
Aus der Eingangsken	nlinie ergibt sich:		
$\Delta U_{BE} = \dots$	$\Delta I_B = \dots$	$r_{\mathrm{BE}} = \Delta U_{\mathrm{BE}} / \Delta I_{\mathrm{B}} =$	=
Aus dem Ausgangske	nnlinienfeld ergibt sich:		
ΔU_{CE} =	$\Delta I_C = \dots$	$r_{CE} = \Delta U_{CE} / \Delta I_{C} =$	

2. Vergleiche die gemessenen Kenngrößen mit den Datenblattwerten des verwendeten Transistors.

30-Transistor1.doc Seite 4 von 4 HK