PF0030 Series
MOS FET Power Amplifier

HITACHI
ADE-208-460 (Z)
1st. Edition
July 1996

Features

- High stability: Load VSWR = 20 : 1
- Low power control current: 400 μA
- Thin package: 5 mmt

Ordering Information

<table>
<thead>
<tr>
<th>Type No</th>
<th>Operating Frequency</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF0030</td>
<td>824 to 849 MHz</td>
<td>AMPS</td>
</tr>
<tr>
<td>PF0032</td>
<td>872 to 905 MHz</td>
<td>E-TACS</td>
</tr>
</tbody>
</table>

Pin Arrangement

- RF-B2

1: Pin
2: V_{APC}
3: V_{DD}
4: P_{out}
5: GND
PF0030 Series

Internal Diagram and External Circuit

![Internal Diagram and External Circuit](image)

- C1 = C2 = 0.01 μF (Ceramic chip capacitor)
- C3 = 10 μF (Aluminum Electrolyte Capacitor)
- FB = Ferrite bead BL01RN1-A62-001 (Manufacture: MURATA) or equivalent
- Z1 = Z2 = 50 Ω (Microstrip line)

Absolute Maximum Ratings (Ta = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{DD}</td>
<td>17</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{DD}</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>APC voltage</td>
<td>V_{APC}</td>
<td>±8</td>
<td>V</td>
</tr>
<tr>
<td>Input power</td>
<td>Pin</td>
<td>20</td>
<td>mW</td>
</tr>
<tr>
<td>Operating case temperature</td>
<td>Tc (op)</td>
<td>−30 to +110</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>−40 to +110</td>
<td>°C</td>
</tr>
</tbody>
</table>
Electrical Characteristics (Ta = 25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain cutoff current</td>
<td>IDSS</td>
<td>—</td>
<td>—</td>
<td>500</td>
<td>μA</td>
<td>VDD = 17 V, VAPC = 0 V</td>
</tr>
<tr>
<td>Total efficiency</td>
<td>ηT</td>
<td>35</td>
<td>40</td>
<td>—</td>
<td>%</td>
<td>Pin = 2 mW,</td>
</tr>
<tr>
<td>2nd harmonic distortion</td>
<td>2nd H.D.</td>
<td>—</td>
<td>−50</td>
<td>−30</td>
<td>dB</td>
<td>VDD = 12.5 V, Pout = 6 W (at APC controlled)</td>
</tr>
<tr>
<td>3rd harmonic distortion</td>
<td>3rd H.D.</td>
<td>—</td>
<td>−50</td>
<td>−30</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Input VSWR</td>
<td>VSWR (in)</td>
<td>—</td>
<td>1.5</td>
<td>3</td>
<td>—</td>
<td>Zin = Zout = 50 Ω</td>
</tr>
<tr>
<td>Output VSWR</td>
<td>VSWR (out)</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>—</td>
<td>—</td>
<td>No parasitic oscillation</td>
<td>—</td>
<td>—</td>
<td>Pin = 2 mW, VDD = 12.5 V, Pout = 6 W (at APC controlled), Zin = 50 Ω, Output VSWR = 20:1 All phases, t = 20 sec</td>
</tr>
</tbody>
</table>

Test System Diagram
PF0030 Series

Test Fixture Pattern/ Unit: mm

Grass Epoxy Double sided PCB
(t = 1.6 mm, εr = 4.8)

Mechanical Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Conditions</th>
<th>Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque for screw up the heatsink flange</td>
<td>M3 Screw Bolts</td>
<td>4 to 6 kg•cm</td>
</tr>
<tr>
<td>Warp size of the heatsink flange: S</td>
<td></td>
<td>S = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.3/-0 mm</td>
</tr>
</tbody>
</table>

HITACHI
Note for Use

- Unevenness and distortion at the surface of the heatsink attached module should be less than 0.05 mm.
- It should not be existed any dust between module and heatsink.
- MODULE should be separated from PCB less than 1.5 mm.
- Soldering temperature and soldering time should be less than 230°C, 10 sec.
 (Soldering position spaced from the root point of the lead frame: 2 mm)
- Recommendation of thermal joint compounds is TYPE G746.
 (Manufacturer: Shin-Etsu Chemical, Co., Ltd.)
- To protect devices from electro-static damage, soldering iron, measuring-equipment and human body etc. should be grounded.
- Torque for screw up the heatsink flange should be 4 to 6 kg·cm with M3 screw bolts.
- Don’t solder the flange directly.
- It should make the lead frame as straight as possible.
- The module should be screwed up before lead soldering.
- It should not be given mechanical and thermal stress to lead and flange of the module.
- When the external parts (Isolator, Duplexer, etc.) of the module are changed, the electrical characteristics should be evaluated enough.
- Don’t washing the module except lead pins.
- To get good stability, ground impedance between the module GND flange and PCB GND pattern should be designed as low as possible.
Characteristics Curve

PF0030

Pout, η_T vs. V_{DD} (1)

Output Power P_{out} (W) vs. Supply Voltage V_{DD} (V)

- $f = 824$ MHz
- $P_{in} = 2$ mW
- $V_{APC} = 4$ V

Pout, η_T vs. V_{DD} (2)

Output Power P_{out} (W) vs. Supply Voltage V_{DD} (V)

- $f = 849$ MHz
- $P_{in} = 2$ mW
- $V_{APC} = 4$ V

HITACHI
PF0030 Series

PF0030 (cont)

\[V_{\text{APC}}, \eta_T, \text{VSWR (in)} \text{ vs. Frequency} \]

\[\eta_T \]

\[V_{\text{APC}} \]

\[V_{\text{SWRin}} \]

\[\text{Frequency } f \text{ (MHz)} \]

\[\text{Efficiency } \eta_T \text{ (%)} \]

\[\text{Output Power } P_{\text{out}} \text{ (W)} \]

\[\text{Pin} = 2 \text{ mW} \]

\[V_{DD} = 12.5 \text{ V} \]

\[P_{\text{out}} = 6 \text{ W} \]
PF0030 Series

PF0030 (cont)

Pout, η_T vs. Pin (1)

Input Power Pin (mW)

Output Power Pout (W)

Efficiency η_T (%)

Input Power Pin (mW)

Fanout $= 824$ MHz

$V_{DD} = 12.5$ V

$V_{APC} = 4$ V

Pout, η_T vs. Pin (2)

Input Power Pin (mW)

Output Power Pout (W)

Efficiency η_T (%)

Input Power Pin (mW)

Fanout $= 849$ MHz

$V_{DD} = 12.5$ V

$V_{APC} = 4$ V
PF0030 Series

PF0030 (cont)

\[P_{\text{out}}, \eta_T \text{ vs. } V_{\text{APC}} \ (1) \]

- Output Power: \(P_{\text{out}} \) (W)
- Efficiency: \(\eta_T \) (%)
- Apc Voltage: \(V_{\text{APC}} \) (V)

- Parameters:
 - \(f = 824 \text{ MHz} \)
 - \(P_{\text{in}} = 2 \text{ mW} \)
 - \(V_{\text{DD}} = 12.5 \text{ V} \)

\[P_{\text{out}}, \eta_T \text{ vs. } V_{\text{APC}} \ (2) \]

- Output Power: \(P_{\text{out}} \) (W)
- Efficiency: \(\eta_T \) (%)
- Apc Voltage: \(V_{\text{APC}} \) (V)

- Parameters:
 - \(f = 849 \text{ MHz} \)
 - \(P_{\text{in}} = 2 \text{ mW} \)
 - \(V_{\text{DD}} = 12.5 \text{ V} \)
PF0030 Series

PF0030 (cont)

η_T vs. T_C (1)

- f = 824 MHz
- V_DD = 12.5 V
- Pin = 2 mW
- Pout = 6 W

η_T vs. T_C (2)

- f = 849 MHz
- V_DD = 12.5 V
- Pin = 2 mW
- Pout = 6 W
PF0030 Series

PF0030 (cont)

Pout vs. T\(_C\) (1)

- \(f = 824\) MHz
- \(V_{DD} = 12.5\) V
- \(P_{in} = 2\) mW
- \(V_{APC} = 7.0\) V

Pout vs. T\(_C\) (2)

- \(f = 849\) MHz
- \(V_{DD} = 12.5\) V
- \(P_{in} = 2\) mW
- \(V_{APC} = 7.0\) V
Pout, η_T vs. V_{DD} (1)

- $f = 872$ MHz
- $P_{in} = 2$ mW
- $V_{APC} = 4$ V

Pout, η_T vs. V_{DD} (2)

- $f = 905$ MHz
- $P_{in} = 2$ mW
- $V_{APC} = 4$ V
PF0032 (cont)

V\textsubscript{APC}, \eta\textsubscript{T}, VSWR (in) vs. Frequency

- **Parameters:**
 - Pin = 2 mW
 - V\textsubscript{DD} = 12.5 V
 - Pout = 6 W

Output Power Pout (W), \eta\textsubscript{T}, VSWR (in) vs. Frequency

- **Parameters:**
 - Pin = 2 mW
 - V\textsubscript{DD} = 12.5 V
 - V\textsubscript{APC} = 4 V
PF0030 Series

PF0032 (cont)

\[P_{out}, \eta_T \text{ vs. } P_{in} \]

Two graphs are shown, one for each frequency:

1. **Graph 1 (f = 872 MHz)**
 - Output Power \(P_{out} \) (W)
 - Input Power \(P_{in} \) (mW)
 - Efficiency \(\eta_T \) (%)
 - Specifications:
 - \(V_{DD} = 12.5 \text{ V} \)
 - \(V_{APC} = 4 \text{ V} \)

2. **Graph 2 (f = 905 MHz)**
 - Output Power \(P_{out} \) (W)
 - Input Power \(P_{in} \) (mW)
 - Efficiency \(\eta_T \) (%)
 - Specifications:
 - \(V_{DD} = 12.5 \text{ V} \)
 - \(V_{APC} = 4 \text{ V} \)
PF0032 (cont)

- **PF0030 Series**
- **Output Power** P_{out}, **Efficiency** η_T vs. **Apc Voltage** V_{APC}

Curve 1
- Frequency: $f = 872$ MHz
- Input Power: $P_{in} = 2$ mW
- Supply Voltage: $V_{DD} = 12.5$ V

![Graph 1](image1.png)

Curve 2
- Frequency: $f = 905$ MHz
- Input Power: $P_{in} = 2$ mW
- Supply Voltage: $V_{DD} = 12.5$ V

![Graph 2](image2.png)
PF0030 Series

PF0032 (cont)

\[f = 872 \text{ MHz} \]
\[V_{DD} = 12.5 \text{ V} \]
\[P_{in} = 2 \text{ mW} \]
\[P_{out} = 6 \text{ W} \]

\[
\eta_T vs. T_C (1)
\]

\[
\eta_T vs. T_C (2)
\]

\[f = 905 \text{ MHz} \]
\[V_{DD} = 12.5 \text{ V} \]
\[P_{in} = 2 \text{ mW} \]
\[P_{out} = 6 \text{ W} \]
PF0030 Series

PF0032 (cont)

PF0032

- **f** = 872 MHz
- **V_DD** = 12.5 V
- **Pin** = 2 mW
- **V_APC** = 7.0 V

Pout vs. T_C (1)

- **f** = 872 MHz
- **V_DD** = 12.5 V
- **Pin** = 2 mW
- **V_APC** = 7.0 V

Pout vs. T_C (2)

- **f** = 905 MHz
- **V_DD** = 12.5 V
- **Pin** = 2 mW
- **V_APC** = 7.0 V
PF0030 Series

Package Dimensions/ Unit: mm

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitachi code</td>
<td>RF-B2</td>
<td></td>
</tr>
<tr>
<td>EIAJ code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JEDEC code</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions:
- Width: 60.5 ± 0.5 mm
- Length: 57.5 ± 0.5 mm
- Height: 0.5 ± 0.3 mm
- Thickness: 2.3 ± 0.2 mm
- Height at 1: 13.0 ± 1 mm
- Height at 3: 22.0 ± 1 mm
- Width at 1: 127 ± 0.5 mm
- Width at 3: 11.0 ± 0.3 mm
- Width at 4: 57.5 ± 0.5 mm
- Width at 5: 5.0 ± 0.6 mm
- Width at 6: 3.3 mm
- Width at 7: 5 ± 1 mm
- Width at 8: 6.35 ± 0.5 mm
- Radius: R1.6 mm
- Height at 1: 49.8 ± 0.5 mm
- Height at 3: 9.2 ± 1 mm
- Height at 5: 8.0 ± 1 mm
When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.
2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi’s permission.
3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user’s unit according to this document.
4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.