Sherwood Engineering HF Test Results

Model CommRadio CTX-10Serial # 0155		Test Date:	te: 11/24/2020	
Dynamic Range of radio, no prean Dynamic Range 20 kHz	ıp		50	dB
Dynamic Range 10 kHz Dynamic Range 5 kHz			45	dB dB
Dynamic Range 2 kHz				dB
Blocking above noise floor, 1uV see notes below on blocking.	ignal @ 100 kHz, A 0	GC On,	49	dB
Phase noise (normalized) at 2.5 kH	Iz spacing:			dBc
Phase noise (normalized) at 5 kHz spacing:				dBc
Phase noise (normalized) at 10 kHz spacing:				dBc
Phase noise (normalized) at 20 kHz spacing:				dBc
Phase noise (normalized) at 30 kHz spacing:				dBc
Phase noise (normalized) at 40 kHz spacing:				dBc
Phase noise (normalized) at 50 kH	z spacing:			dBc
Phase noise (normalized) at 80 kH	z spacing:			dBc
Phase noise (normalized) at 100 kl	Hz spacing:			dBc
Phase noise (normalized) at 200 kl	Hz spacing:			dBc
Phase noise (normalized) at 300 kl	Hz spacing:			dBc
Phase noise (normalized) at 400 kl	Hz spacing:			dBc
Phase noise (normalized) at 500 kl	Hz spacing:			dBc
Noise floor, SSB bandwidth 14 M	Hz, no preamp		-110	dBm
Noise floor, SSB bandwidth 14 MHz, Preamp 1 On			-120	dBm
Sensitivity SSB at 14 MHz, no pre	amp		5	uV
Sensitivity SSB at 14 MHz, Pream	ip 1 On		1	uV
Noise floor, 500 Hz, 14.2 MHz, no	preamp		-120	dBm
Noise floor, 500 Hz, 14.2 MHz, Pr	reamp 1 On		-134	dBm
Gain of preamp(s)				
Preamp			20	dB
AGC threshold at 3 dB, no preamp)		5.5	uV
AGC threshold at 3 dB, Preamp 1	On		0.7	uV

Notes:

The lowest blocking and the lowest dynamic range I have ever measured.

Dynamic range values are actually the point where blocking begins.

With the preamp ON, there are lots of spurious noises and birdies.

There was no practical reason to try to measure LO phase noise since blocking dominates the entire operation of the radio.

Sensitivity measurements are approximate since the radio does not quiet 10 dB with a strong signal, only about 8 dB.

Preamp gain is estimated at approximately 20 dB.