CLS PRINT "INTEGRAL EVALUATION BY MEANS OF " PRINT "A MODIFIED SIMPSON METHOD" PRINT PRINT INPUT "KEY IN LOWER LIMIT = ";A INPUT "KEY IN UPPER LIMIT = ";B [ONNIZE] PRINT "TYPE 5 FOR A TOL OF 1E-5, ETC." INPUT "KEY IN TOLERANCE (USE INTEGER)= ";E E=1/10^E M = (A+B)/2 H1 = (B-A)/40 GOSUB [THNIZE] REM ==EVALUATE PRINCIPAL TERMS OF DEFINITE INTEGRAL== N = ((B-A)^5*D/E/180)^.25 N = 2*INT(N/2+1) S = 0 X = A H = (B-A)/N FOR I = 1 TO N/2 GOSUB [THSEZE] S = S + F X = X + H GOSUB [THSEZE] S = S + 4 * F X = X + H GOSUB [THSEZE] S = S + F NEXT I PRINT PRINT ANS=S*H/3 PRINT "FOR A TOLERANCE OF "; E; " , ";" I("; N;")= ";ANS PRINT PRINT "DO YOU WANT A NEW TOLERANCE" PRINT "(1 = YES, 0 = NO) "; INPUT " ";W IF W = 1 THEN [ONNIZE] GOTO [FOSEZE] [THSEZE] REM ******************************************* REM ==SUBROUTINE WHICH DEFINES USER FUNCTION= F = X/(9+X*X)^.5 REM ******************************************* RETURN REM ==SUBROUTINE TO EVALUATE ERROR== [THNIZE] D = 0 X = M -2 * H1 GOSUB [THSEZE] D = D + F X = M -H1 GOSUB [THSEZE] D = D -4 * F X = M GOSUB [THSEZE] D = D + 6 * F X = M + H1 GOSUB [THSEZE] D = D -4 * F X = M + 2 * H1 GOSUB [THSEZE] D = D + F D = ABS(D)/H1^4 RETURN [FOSEZE] END