
Battery Backup & Charger

KX4Z

Draft Version 1.0
May 11 2020

DRAFT 1

Introduction.

Amateur radio operators involved in emergency communication and others often need to have backup
battery power for their station. It is advantageous if that backup power comes on-line immediately if
there is a loss of AC power. There are excellent commercial solutions that accomplish this goal using
P-channel power MOSFETs and associated circuitry. Some also provide for background charging of
the battery.

There were multiple purposes to this project:

• Create an immediate backup battery switching system
• Provide for charging of the backup battery
• Possibly provide for multiple types of backup batteries
• Provide learning opportunities for amateur radio operators in construction
• Provide learning opportunities for amateur radio operators in Arduino programming

Desired specifications

Current handling capacity Up to 25 Amps @ 13.8VDC

Switch-over time <25 m sec

Battery charging Initially for lead acid batteries with
bulk and trickle charging; monitor
battery voltage, and battery current

Display Inexpensive 2-line 16 character
display

Radio current monitoring Optionally – measure radio current

Cost minimize

DRAFT 2

SCHEMATIC

DRAFT 3

HARDWARE NOTES

1. The IRF4905 MOSFETs have an on resistance of 0.02 ohms and will likely drop a lot less
current than even a power Shottky diode. Nevertheless, for high currents (25A) and
CONTINUOUS operation (e.g., FM) they may require a heatsink. The two power mosfets that
would handle this level of current are at one end of the board allowing the addition of some
heatsinking. This is not tested yet.

2. Short segments of wire in the negative leads of the battery and/or radio will be used to allow
measurement of the dropped voltage and therefore series current, in battery and/or radio. It is
important not to exceed negative 0.3VDC to the inputs of the MCP6002 op amp, therefore some
loss in sensitivity for the battery charger shunt was accepted.

3. There is an unavoidable offset voltage (dependent on individual unit) in the MCP6002 of as
much as 4.5 mV in either direction, resulting in an output offset of as much as 450 mV. There

DRAFT 4

is a temperature variation in this as well. If the offset is such that the output remains at 0V
despite significant current flow that should have been measured, this will be a problem.
Solutions include changing the connection of the (grounded) end of R13 and choosing
components for an offset in the desired direction. POSITIVE offsets (those resulting in a
positive op amp output voltage at rest) are easily handled in software.

4. For safety, a fuse should be added in the battery circuit of appropriate value for the WIRING
UTILIZED TO THE BATTERY – and within 6 inches of the battery. 12 or 14 gauge wiring
may be required if continuous currents of 25A or greater are planned.

5. The circuit board is somewhat “tight” and 1/8 watt resistors are encouraged, particularly on the
input side of the Arduino.

6. The 16x2 LCD is designed to be mounted on the underside of the board, and the entire board
mounted on standoffs underneath the panel of the enclosure.

7. Filter capacitors on the board can be anywhere from 25 to 100 uF at 25WVDC or greater.

DRAFT 5

MAJOR FUNCTIONS OF BOARD

Measure output voltage of AC-based power
supply

Accuracy of approximately 25 mV measurement

Measure output voltage of Battery

Measure charging current to battery Gross measurement of charging current,
approximate measurement resolution 50 mA;
based on tapping into a WIRE on the negative side
of the battery so that we don’t waste battery
voltage.

Measure current usage by radio Gross measurement of radio current usage;
approximate measurement resolution 100 mA;
based on tapping into the NEGATIVE WIRE
feeding the radio so that we don’t waste voltage.

Electronically connect/disconnect the AC-based
power supply to the output terminal

We can choose when the AC based power supply is
feeding the load.
(This could also control a relay driving an AC unit
as an alternate use of this system, for example)

Electronically connect/disconnect the DC battery
to the output terminal

We can choose when the battery is feeding the load.

Electronically control charging of the DC battery
by the AC -based power supply

I had to put a diode in this line so the maximum
charging voltage will be about 13.1 VDC but that
should be sufficient for our needs.

Polarity protection Because of the way the MOSFETs are wired for
this system we can’t use them for the polarity
protection (otherwise because of their inherent
diode, we wouldn’t be able to use them to turn the
supplies on and off…) but do provide a reverse-
connected DIODE across the line to blow a series
fuse if a power supply is reverse connected

I2C Connection This offers immense additional functions. For
example, an I2C based display could be controlled.
A frequency synthesizer chip Si5351 can provide
three digitally controlled synthesized frequencies
from this board. I2C based
temperature/humidity/pressure sensors can act as
altimeters, thermostats,, and even explosive gas
detectors.

DRAFT 6

SOFTWARE

At the time of this writing, the software is very much in development stage

Libraries that must be included – utilize Arduino reference information to find and add these to your
integrated development environment

Arduino Pin Assignments
Outputs (to the MOSFETs)
Inputs (both voltage and current measurements)

Control Constants
MILLISECONDINTERVAL – sets the reponse time of the system to power loss
SECONDSINTERVAL – sets the interval on which charging will be monitored

Structures and Variables
Pin numbers for the LCD display – system can be utilized on the GLG board and on others

Global variables (note line wrapping in this word processing document)
float zero_current_voltage; // the voltage we measure at BATTCURRENT pin
 // when no current is flowing.
 // Note: we may have a problem if it is
negative....
float battery_voltage; // The voltage on the battery
float AC_supply_voltage; // The voltage from the AC Supply
unsigned long current_milliseconds; // the current number of milliseconds since
starting
unsigned long next_millisecond_time; // time to make next measurements
unsigned long next_seconds_time; // time to make next charging check
unsigned long next_resting_voltage_time; // next time to make a voltage
measurement of the battery
int desired_battery_charge_ma= 0;
int battery_charge_pwm = 0 ; // 0 to 255

Function Declarations
void read_battery_voltage(); // function that reads the global variable
battery_voltage
void read_AC_supply_voltage(); // function that reads the global
AC_supply_voltage
void configure_charger(); // function to control charging
void MyMicroSecondsDelay(int microseconds); // microsecond non blocking delay
void MyDelay(int msec); // non-blocking milliseconds delay

Setup

Set the Digital pins that will control the MOSFETs to “output”

DRAFT 7

Turn OFF all the outputs so no current flows until the software is ready to go.
Initialize the Serial connection
Initialize the LCD display
Initialize the global variables
sets up a “watchdog timer” (an available function from a library) that if not called within every two
seconds….will restart the code.

LOOP
(Note that in the Arduino environment, the LOOP function is repetitively executed; you don’t need to
write it into a loop as it will loop on its own.)

Software actions are carried out on time intervals.

• A call to wdt_reset() is made so that this timer gets reset. If the code hangs, this call will
fail to be made, causing the watchdog timer to reset the processor.

• If the time has advanced to the next_millisecond_time, the AC-based supply voltage, and the
battery voltage are both measured; if the AC-based supply voltage has declined unacceptably,
the MOSFETS are switched to connect the battery to the output terminal, and a message is sent
to the LCD and the serial monitor. using_battery is set to 1 if powering from the battery;
0 if using the AC powered supply.

• If the time has advanced to the (slower) time interval at which the charging system should be
checked, the battery voltage (which may be in charging mode) is measured, and displayed on
the top line of the display.

• Then, if we are using the AC-based power supply, it is appropriate to consider charging and thus
the following is carried out:

Based on the measured battery voltage, the desired_battery_charge_ma is chosen.

The current charging current is then measured by making a number of measurements of
the voltage from the current shunt in the negative lead of the battery.

Changes are then made to the pulse-width-command to be sent to the PWM output pin
driving the charging MOSFET; this number can vary between 0 (0% duty cycle) and
255 (100% duty cycle).

A series of rules are used to slowly advance the actual charging toward the desired
number; note that the effects of these choices will be evaluated only on the SECONDs
intervals

if(instant_current_reading>desired_battery_charge_ma + 100)
battery_charge_pwm = battery_charge_pwm/2; // cut it way down

If we are more than 100 mA above the desired charging current, the duty cycle is
cut in half.

DRAFT 8

if(instant_current_reading>desired_battery_charge_ma)battery_charge_pwm
=battery_charge_pwm-3; // decrease by 1% of our range

If we are above the desired charge level, but by less than 100 mA, the charging
duty cycle is reduced by 1%

if(instant_current_reading<desired_battery_charge_ma)battery_charge_pwm
=battery_charge_pwm+3; // incease by 1% of our range

If the charging current is below the desired charging current, the duty cycle is
increased by 1%. It may take several cycles of this hunting algorithm, but within
a few minutes the charging should be very close to the desired charging.

A couple of sanity checks finish out the control

 if(battery_charge_pwm <0) battery_charge_pwm = 0;
 if(battery_charge_pwm >255) battery_charge_pwm = 255; // can't go
beyond these limits!

 This desired PWM modulation is then sent to the CHARGER pin control using

analogWrite(CHARGER ,battery_charge_pwm);

The next moment in time at which the battery needs to be measured and charging possibly adjusted is
then set.

The loop is now done and repeats. Recognize that the arduino moves through this loop at FULL
SPEED, hundreds of thousands of times per second, but only stops to carry out our orders at the
appointed discrete time intervals, which are adjustable. Why? Because we wish to minimize radio
frequency interference created by this switching system, and by using slower decision making
intervals, we can reduce the repetitive base frequency of the interference, thus reducing the strength of
harmonics that make it to our radio.

DRAFT 9

