Optoelectronics, Inc.
Digital Scout™
Serial Interface Specification

Interface Version 1.1

February 19, 2002
INTRODUCTION

This document describes the serial interface of the Digital Scout™, a hand-held frequency counter capable of measuring the frequency of pulsed or continuous wave (CW) VHF and UHF transmitters and other signal sources. The Digital Scout™ is also capable of storing up to 1000 frequencies, as well as the number of occurrences, or “hits”, of each frequency. This frequency data can then be downloaded to a personal computer for logging and analysis.

This document was written to assist the programmer in developing computer software applications for the Digital Scout™.

Optoelectronics, Inc. assumes no responsibility for the accuracy of the information contained in this document. Optoelectronics, Inc. is under no obligation to provide technical support on matters pertaining to this document, or to provide notification of changes or corrections to this document. To inquire about possible revisions, or to order copies of this document, contact the factory. A nominal fee may be charged to cover printing and shipping costs.

OPTOELECTRONICS, INC.
5821 N.E. 14th Avenue
Fort Lauderdale, FL 33334
Phone: (954) 771-2050
FAX: (954) 771-2052
www.optoelectronics.com
ABOUT CI-5

The command structure of the Digital Scout™ serial interface conforms to the Icom CI-V interface standard. However, Optoelectronics has added enhancements in the form of additional commands and features. Optoelectronics has, therefore, modified the name of this new enhanced interface to CI-5.

Also, unlike the original Icom CI-V interface, and the CI-5 interface on most Optoelectronics products, the Digital Scout™ serial interface is full-duplex with RS-232C compatible voltage levels. The communications parameters for the serial interface are listed in Table 1 below.

<table>
<thead>
<tr>
<th>DATA RATE</th>
<th>9600 bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>START BITS</td>
<td>1</td>
</tr>
<tr>
<td>DATA BITS</td>
<td>8</td>
</tr>
<tr>
<td>PARITY</td>
<td>NONE</td>
</tr>
<tr>
<td>STOP BITS</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1. Communications Parameters.

To connect the Digital Scout™ to a personal computer, a miniature (3.5 mm) stereo phone jack is provided on the top panel. The Digital Scout™ receives commands on the RING terminal and transmits responses on the TIP terminal of the stereo phone jack. Signal ground is provided on the SHIELD terminal of the phone jack. Since the Digital Scout™ serial interface is compatible with RS-232C voltage levels, no external interface converter box is required to connect the Digital Scout™ to a standard personal computer COM port. An interface cable for connecting the Digital Scout™ to a PC is available.

For ReactionTune™ applications, a subminiature (2.5 mm) phone jack is provided on the top panel. The TIP terminal provides the TTL equivalent of the RS-232 transmit data signal to drive ReactionTune™-capable receivers. Signal ground is provided on the SHIELD terminal of the phone jack.
The Digital Scout™ accepts commands over the CI-5 RS-232 interface when CI-5 COMMAND interface is selected from the front panel. In this section, all CI-5 command and response bytes are expressed in hexadecimal notation. The Digital Scout™ recognizes 14 different commands, which are summarized in Table 2 below.

Following the command summary table is a detailed description of each of the commands, including examples illustrating their use. In the command descriptions, "ra" refers to the RECEIVE ADDRESS, and "ta" refers to the TRANSMIT ADDRESS.

The RECEIVE ADDRESS is the address of the Digital Scout™, which is fixed at 9E. Each CI-5 device has its own unique address. The Digital Scout™ will not process any command in which the RECEIVE ADDRESS is not 9E. However, the Digital Scout™ will process commands with a RECEIVE ADDRESS of 00, but all command responses will be suppressed. A RECEIVE ADDRESS of 00 has special meaning. It provides a means for a device on a CI-5 bus to transmit a command to all other devices simultaneously. However, since several simultaneous responses would cause a collision, the responses are suppressed. Because the Digital Scout™ serial interface is an RS-232C interface, the Digital Scout™ will be the only device connected to the host computer.

The TRANSMIT ADDRESS is the address of the device which is transmitting the command to the Digital Scout™. In most cases, this device is a personal computer executing application software, usually referred to as the CONTROLLER. The standard address for the CONTROLLER is E0, but most any address can be used for the TRANSMIT ADDRESS. However, the TRANSMIT ADDRESS must be in the range 01 to EF. Also, the Digital Scout™ will not process any command in which the TRANSMIT ADDRESS matches its own address, 9E.

It is important to remember that the values specified are not ASCII characters, but are bytes expressed in hexadecimal notation. For example, “FE” represents a single byte with a value of 0xFE (hexadecimal), or 254 (decimal). It does not represent the ASCII character “F” followed by the ASCII character “E”, a two-byte sequence.

Table 2. Digital Scout™ CI-5 Interface Command Summary.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>SUB-COMMAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>-</td>
<td>Read Frequency</td>
</tr>
<tr>
<td>04</td>
<td>-</td>
<td>Read Mode</td>
</tr>
<tr>
<td>06</td>
<td>-</td>
<td>Write Mode</td>
</tr>
<tr>
<td>15</td>
<td>01</td>
<td>Read Squelch Status</td>
</tr>
<tr>
<td>15</td>
<td>02</td>
<td>Read Signal Strength</td>
</tr>
<tr>
<td>7F</td>
<td>09</td>
<td>Read Identification</td>
</tr>
<tr>
<td>7F</td>
<td>12</td>
<td>Read Squelch Setting</td>
</tr>
<tr>
<td>7F</td>
<td>13</td>
<td>Write Squelch Setting</td>
</tr>
<tr>
<td>7F</td>
<td>20</td>
<td>Read Configuration</td>
</tr>
<tr>
<td>7F</td>
<td>21</td>
<td>Write Configuration</td>
</tr>
<tr>
<td>7F</td>
<td>22</td>
<td>Read Frequency Memory</td>
</tr>
<tr>
<td>7F</td>
<td>23</td>
<td>Read Hits Memory</td>
</tr>
<tr>
<td>7F</td>
<td>24</td>
<td>Clear Memory</td>
</tr>
<tr>
<td>7F</td>
<td>25</td>
<td>Write Frequency Memory</td>
</tr>
</tbody>
</table>
READ FREQUENCY

Command:

```
FE  FE  ra  ta  03  FD
```

Example:

```
FE  FE  9E  E0  03  FD
```

Response:

```
FE  FE  ta  ra  03  frequency  FD
```

Examples:

- **162.550000 MHz**

  ```
  FE  FE  E0  9E  03  00  00  55  62  01  FD
  ```

- **1045.725000 MHz**

  ```
  FE  FE  E0  9E  03  00  50  72  45  10  FD
  ```

Error

```
FE  FE  E0  9E  FA  FD
```

Description:
This command instructs the unit to send the current frequency measurement result. This command is only valid when FREQUENCY mode is selected.

The frequency data is in the form of 5 bytes, each consisting of 2 BCD digits. The order of the 10 BCD digits is as follows: 10 Hz digit, 1 Hz digit, 1 kHz digit, 100 Hz digit, 100 kHz digit, 10 kHz digit, 10 MHz digit, 1 MHz digit, 1 GHz digit, 100 MHz digit. See the examples shown above.

If the command length is incorrect, or if FREQUENCY mode is not selected, then the command is ignored, and the error response is returned.
READ MODE

Command:
FE FE ra ta 04 FD

Example:
FE FE 9E E0 04 FD

Response:
FE FE ta ra 04 ms FD

ms is a BCD value representing the selected operating mode. BCD values are encoded as follows:

00: FREQUENCY mode
01: SIGNAL STRENGTH mode
02: MEMORY mode
03: CLEAR MEMORY mode
04: AUTO STORE mode
05: RESOLUTION mode
06: MIN PULSE WIDTH mode
07: FILTER mode
08: FREQ DISPLAY mode
09: INTERFACE mode
10: RECEIVER mode
11: PCR1000 VOLUME mode
12: PCR1000 SQUELCH mode
13: APO mode
14: BEEPER mode
15: VIBRATOR mode

Examples:
MEMORY mode
FE FE E0 9E 04 02 FD

RESOLUTION mode
FE FE E0 9E 04 05 FD

RECEIVER mode
FE FE E0 9E 04 10 FD

Error
FE FE E0 9E FA FD

Description:
This command instructs the unit to send the current operating mode.

The mode data is in the form of 1 byte, consisting of 2 BCD digits. See the examples shown above.

If the command length is incorrect, then the command is ignored, and the error response is returned.
WRITE MODE

Command:

FE FE ra ta 06 ms FD

ms is a BCD value representing the selected operating mode. BCD values are encoded as follows:

00: FREQUENCY mode
01: SIGNAL STRENGTH mode
02: MEMORY mode
03: CLEAR MEMORY mode
04: AUTO STORE mode
05: RESOLUTION mode
06: MIN PULSE WIDTH mode
07: FILTER mode
08: FREQ DISPLAY mode
09: INTERFACE mode
10: RECEIVER mode
11: PCR1000 VOLUME mode
12: PCR1000 SQUELCH mode
13: APO mode
14: BEEPER mode
15: VIBRATOR mode

Examples:

FREQUENCY mode
FE FE 9E E0 06 00 FD

SIGNAL STRENGTH mode
FE FE 9E E0 06 01 FD

APO mode
FE FE 9E E0 06 13 FD

Response:

FE FE ta ra FB or FA FD

Examples:

OK
FE FE E0 9E FB FD

Error
FE FE E0 9E FA FD

Description:

This command selects the operating mode.

The mode select data is in the form of 1 byte, consisting of 2 BCD digits. See the examples shown above.

If the command length is incorrect, or if the mode select code is not valid, then the command is ignored, and the error response is returned.
READ SQUELCH STATUS

Command:
FE FE ra ta 15 01 FD

Example:
FE FE 9E E0 15 01 FD

Response:
FE FE ta ra 15 01 sd FD

sd is a BCD value representing the current squelch status. BCD values are encoded as follows:

00: Squelch CLOSED
01: Squelch OPEN
02: Squelch PULSED

Examples:
Squelch closed
FE FE E0 9E 15 01 00 FD

Squelch open
FE FE E0 9E 15 01 01 FD

Error
FE FE E0 9E FA FD

Description:
This command instructs the unit to send the current squelch status. This command is only valid when FREQUENCY mode is selected.

The squelch status data is in the form of 1 byte, consisting of 2 BCD digits. See the examples shown above.

If the command length is incorrect, or if FREQUENCY mode is not selected, then the command is ignored, and the error response is returned.
READ SIGNAL STRENGTH

Command:
FE FE ra ta 15 02 FD

Example:
FE FE 9E E0 15 02 FD

Response:
FE FE ta ra 15 02 ss FD

Examples:
-6.2 dBm
FE FE E0 9E 15 02 00 62 FD

-21.7 dBm
FE FE E0 9E 15 02 02 17 FD

-53.4 dBm
FE FE E0 9E 15 02 05 34 FD

Error
FE FE E0 9E FA FD

Description:
This command instructs the unit to send the current signal strength. This command is only valid when SIGNAL STRENGTH mode is selected.

The signal strength data is in the form of 2 bytes, each consisting of 2 BCD digits. The signal strength is reported in units of absolute dBm at 0.1 dB resolution, as measured at the antenna connector. The reported signal strength ranges from a maximum signal level of 0.0 dBm to a minimum signal level of –70.0 dBm. A minus sign is implied. See the examples shown above.

If the command length is incorrect, or if SIGNAL STRENGTH mode is not selected, then the command is ignored, and the error response is returned.
READ IDENTIFICATION

Command:

FE FE ra ta 7F 09 FD

Example:

FE FE 9E E0 7F 09 FD

Response:

FE FE ta ra 7F 09 id sv iv FD

Example:

Digital Scout™, software version 2.6, interface version 1.1

FE FE E0 9E 7F 09 44 53 43 26 11 FD

Error

FE FE E0 9E FA FD

Description:
This command instructs the unit to send the identification information.

The identification data is in the form of 5 bytes, each consisting of 2 digits. The first 6 digits uniquely identify the device. The next 2 BCD digits indicate the current software version. The last 2 BCD digits indicate the current interface version.

If the command length is incorrect, then the command is ignored, and the error response is returned.
READ SQUELCH SETTING

Command:

FE FE ra ta 7F 12 FD

Example:

FE FE 9E E0 7F 12 FD

Response:

FE FE ta ra 7F 12 squelch FD

Examples:

Squelch 0

FE FE E0 9E 7F 12 00 00 FD

Squelch 37

FE FE E0 9E 7F 12 00 37 FD

Squelch 100

FE FE E0 9E 7F 12 01 00 FD

Error

FE FE E0 9E FA FD

Description:
This command instructs the unit to send the current squelch setting. This command is only valid when FREQUENCY mode is selected.

The squelch setting data is in the form of 2 bytes, each consisting of 2 BCD digits. The squelch setting will be in the range 0 to 100. See the examples shown above.

If the command length is incorrect, then the command is ignored, and the error response is returned.
WRITE SQUELCH SETTING

Command:

FE FE 7F 13 squelch FD

Examples:

Squelch 0
FE FE 9E E0 7F 13 00 00 FD

Squelch 37
FE FE 9E E0 7F 13 00 37 FD

Squelch 100
FE FE 9E E0 7F 13 01 00 FD

Response:

FE FE ta ra FB or FA FD

Examples:

OK
FE FE E0 9E FB FD

Error
FE FE E0 9E FA FD

Description:
This command selects the squelch setting. This command is only valid when FREQUENCY mode is selected.

The specified squelch setting data is in the form of 2 bytes, each consisting of 2 BCD digits. The specified squelch setting must be in the range 0 to 100. See the examples shown above.

If the command length is incorrect, or if the squelch setting data is not valid, then the command is ignored, and the error response is returned.
READ CONFIGURATION

Command:

```
FE FE ra ta 7F 20 FD
```

Example:

```
FE FE 9E E0 7F 20 FD
```

Response:

```
FE FE ta ra 7F 20 as rs pw fm fd ap bp vb FD
```

- `as` indicates the current AUTO STORE setting as follows:
 - 00: Disabled
 - 01: Enabled

- `rs` indicates the current RESOLUTION setting as follows:
 - 00: 1 kHz (FAST)
 - 01: 100 Hz (SLOW)

- `pw` indicates the current MIN PULSE WIDTH setting as follows:
 - 00: 500 uS (SLOW)
 - 01: 1300 uS (MEDIUM)
 - 02: 8300 uS (FAST)

- `fm` indicates the current FILTER MODE setting as follows:
 - 00: Disabled
 - 01: Enabled

- `fd` indicates the current FREQ DISPLAY setting as follows:
 - 00: Measured
 - 01: Channel

- `ap` indicates the current AUTO POWER OFF setting as follows:
 - 00: Disabled
 - 01: Enabled

- `bp` indicates the current BEEPER setting as follows:
 - 00: Disabled
 - 01: Enabled

- `vb` indicates the current VIBRATOR setting as follows:
 - 00: Disabled
 - 01: Enabled

Examples:

AUTO STORE = Disabled, RESOLUTION = 1 kHz (FAST), MIN PULSE WIDTH = 500 uS (SLOW), FILTER MODE = Enabled, FREQ DISPLAY = Channel, AUTO POWER OFF = Disabled, BEEPER = Disabled, VIBRATOR = Disabled

```
FE FE E0 9E 7F 20 00 00 00 01 01 00 00 FD
```

AUTO STORE = Enabled, RESOLUTION = 100 Hz (SLOW), MIN PULSE WIDTH = 1300 uS (MEDIUM), FILTER MODE = Disabled, FREQ DISPLAY = Measured, AUTO POWER OFF = Enabled, BEEPER = Enabled, VIBRATOR = Disabled

```
FE FE E0 9E 7F 20 01 01 01 00 00 01 00 FD
```

AUTO STORE = Enabled, RESOLUTION = 100 Hz (SLOW), MIN PULSE WIDTH = 8300 uS (FAST), FILTER MODE = Disabled, FREQ DISPLAY = Measured, AUTO POWER OFF = Enabled, BEEPER = Disabled, VIBRATOR = Enabled

```
FE FE E0 9E 7F 20 01 01 02 00 00 01 00 01 FD
```
Error

FE FE E0 9E FA FD

Description:
This command instructs the unit to send the current configuration data.

The configuration data is in the form of 8 bytes, each consisting of 2 BCD digits, and specifies the settings of the various configuration parameters. See the examples shown above.

If the command length is incorrect, then the command is ignored, and the error response is returned.
WRITE CONFIGURATION

Command:

```
FE FE ra ta 7F 21 as rs pw fm fd ap bp vb FD
```

- **as** indicates the desired AUTO STORE setting as follows:
 - 00: Disabled
 - 01: Enabled

- **rs** indicates the desired RESOLUTION setting as follows:
 - 00: 1 kHz (FAST)
 - 01: 100 Hz (SLOW)

- **pw** indicates the desired MIN PULSE WIDTH setting as follows:
 - 00: 500 uS (SLOW)
 - 01: 1300 uS (MEDIUM)
 - 02: 8300 uS (FAST)

- **fm** indicates the desired FILTER MODE setting as follows:
 - 00: Disabled
 - 01: Enabled

- **fd** indicates the desired FREQ DISPLAY setting as follows:
 - 00: Measured
 - 01: Channel

- **ap** indicates the desired AUTO POWER OFF setting as follows:
 - 00: Disabled
 - 01: Enabled

- **bp** indicates the current BEEPER setting as follows:
 - 00: Disabled
 - 01: Enabled

- **vb** indicates the current VIBRATOR setting as follows:
 - 00: Disabled
 - 01: Enabled

Examples:

- AUTO STORE = Disabled, RESOLUTION = 1 kHz (FAST), MIN PULSE WIDTH = 500 uS (SLOW), FILTER MODE = Enabled, FREQ DISPLAY = Channel, AUTO POWER OFF = Disabled, BEEPER = Disabled, VIBRATOR = Disabled
  ```
  FE FE 9E E0 7F 21 00 00 00 01 01 00 00 00 FD
  ```

- AUTO STORE = Enabled, RESOLUTION = 100 Hz (SLOW), MIN PULSE WIDTH = 1300 uS (MEDIUM), FILTER MODE = Disabled, FREQ DISPLAY = Measured, AUTO POWER OFF = Enabled, BEEPER = Enabled, VIBRATOR = Disabled
  ```
  FE FE 9E E0 7F 21 01 01 01 00 00 01 01 00 FD
  ```

- AUTO STORE = Enabled, RESOLUTION = 100 Hz (SLOW), MIN PULSE WIDTH = 8300 uS (FAST), FILTER MODE = Disabled, FREQ DISPLAY = Measured, AUTO POWER OFF = Enabled, BEEPER = Disabled, VIBRATOR = Enabled
  ```
  FE FE 9E E0 7F 21 01 01 01 02 00 00 01 01 00 01 FD
  ```

Response:

```
FE FE ta ra FB or FA FD
```

Example:

OK
```
FE FE E0 9E FB FD
```
Error

| FE | FE | E0 | 9E | FA | FD |

Description:
This command selects the configuration data.

The configuration data is in the form of 8 bytes, each consisting of 2 BCD digits, and specifies the settings of the various configuration parameters. See the examples shown above.

If the command length is incorrect, or if any of the configuration parameters is invalid, then the command is ignored, and the error response is returned.
READ FREQUENCY MEMORY

Command:

FE FE ra ta 7F 22 memory FD

Examples:

Memory location 000

FE FE 9E E0 7F 22 00 00 FD

Memory location 563

FE FE 9E E0 7F 22 05 63 FD

Memory location 999

FE FE 9E E0 7F 22 09 99 FD

Response:

FE FE ta ra 7F 22 frequency FD

Examples:

162.550000 MHz

FE FE E0 9E 7F 22 00 00 55 62 01 FD

1045.725000 MHz

FE FE E0 9E 7F 22 00 50 72 45 10 FD

Error

FE FE E0 9E FA FD

Description:

This command instructs the unit to send the frequency stored in the specified memory location.

The specified memory location data is in the form of 2 bytes, each consisting of 2 BCD digits. The specified memory location must be in the range 0 to 999. The frequency data is in the form of 5 bytes, each consisting of 2 BCD digits. The order of the 10 BCD digits is as follows: 10 Hz digit, 1 Hz digit, 1 kHz digit, 100 Hz digit, 100 kHz digit, 10 kHz digit, 10 MHz digit, 1 MHz digit, 1 GHz digit, 100 MHz digit. See the examples shown above.

If the command length is incorrect, or if the specified memory location is not in the range 0 to 999, then the command is ignored, and the error response is returned.
READ HITS MEMORY

Command:

FE FE ra ta 7F 23 memory FD

Examples:

Memory location 000

FE FE 9E E0 7F 23 00 00 FD

Memory location 563

FE FE 9E E0 7F 23 05 63 FD

Memory location 999

FE FE 9E E0 7F 23 09 99 FD

Response:

FE FE ta ra 7F 23 hits FD

Examples:

214 Hits

FE FE E0 9E 7F 23 00 02 14 FD

21,583 Hits

FE FE E0 9E 7F 23 02 15 83 FD

Error

FE FE E0 9E FA FD

Description:

This command instructs the unit to send the number of hits stored in the specified memory location.

The specified memory location data is in the form of 2 bytes, each consisting of 2 BCD digits. The specified memory location must be in the range 0 to 999. The hits data is in the form of 3 bytes, each consisting of 2 BCD digits. The number of hits will be in the range 0 to 65,535. See the examples shown above.

If the command length is incorrect, or if the specified memory location is not in the range 0 to 999, then the command is ignored, and the error response is returned.
CLEAR MEMORY

Command:

FE FE ra ta 7F 24 FD

Example:

FE FE 9E E0 7F 24 FD

Response:

FE FE ta ra FB or FA FD

Example:

OK

FE FE E0 9E FB FD

Error

FE FE E0 9E FA FD

Description:

This command clears all frequency and hits memory locations.

Once this command is executed, all memory locations are set to zero. This command has the same effect as clearing the memory from the front panel.

If the command length is incorrect, then the command is ignored, and the error response is returned.
WRITE FREQUENCY MEMORY

Command:
```
FE FE ra ta 7F 25 frequency FD
```

Examples:
- 162.550000 MHz
  ```
  FE FE 9E E0 7F 25 00 00 55 62 01 FD
  ```
- 1045.725000 MHz
  ```
  FE FE 9E E0 7F 25 00 50 72 45 10 FD
  ```

Response:
```
FE FE ta ra FB or FA FD
```

Example:
OK
```
FE FE E0 9E FB FD
```

Error
```
FE FE E0 9E FA FD
```

Description:
This command writes a frequency to the next available memory location. The corresponding number of hits is set to zero, to indicate that the frequency was uploaded instead of captured.

The frequency data is in the form of 5 bytes, each consisting of 2 BCD digits. The order of the 10 BCD digits is as follows: 10 Hz digit, 1 Hz digit, 1 kHz digit, 100 Hz digit, 100 kHz digit, 10 kHz digit, 10 MHz digit, 1 MHz digit, 1 GHz digit, 100 MHz digit. See the examples shown above.

If the command length is incorrect, or if all memory locations are full, then the command is ignored, and the error response is returned.