CLS DIM A(40,40) DIM C(40) DIM X(40) PRINT "FREDHOLM INTEGRAL EQUATION" PRINT "enter K and G IN subroutines" PRINT PRINT "VALUES OF A, B, AND N" PRINT INPUT "KEY IN A, THE LOWER LIMIT: ";A INPUT "KEY IN B, THE UPPER LIMIT: ";B INPUT "# OF INTERVALS (MUST BE EVEN): ";N PRINT PRINT H = (B -A) /N X = A T = A FOR I=1 TO N + 1 GOSUB [NIZEZE] A(I,1) = K IF I <> 1 THEN [TWZEZE] A(I,1) = 1 + K [TWZEZE] X = X + H NEXT I T = A + H FOR J = 2 TO N X = A FOR I = 1 TO N + 1 GOSUB [NIZEZE] IF INT(J / 2)* 2 <> J THEN [THTHZE] A(I,J) = 4 * K IF I= J THEN [THONZE] GOTO [THSEZE] [THONZE] A(I,J) = 1 + 4 * K GOTO [THSEZE] [THTHZE] A(I,J) = 2 * K IF I = J THEN [THSIZE] GOTO [THSEZE] [THSIZE] A(I,J) = 1 + 2 * K [THSEZE] X = X + H NEXT I T = T + H NEXT J X = A T = B FOR I = 1 TO N + 1 GOSUB [NIZEZE] A(I,N + 1) = K GOSUB [NITWZE] C(I) = G IF I <> N + 1 THEN [FONIZE] A(I,N + 1) = 1 + K [FONIZE] X = X + H NEXT I FOR Z = 1 TO N + 1 A(Z,N + 2) = C(Z) NEXT Z N = N + 1 M = N + 1 L = N -1 FOR K = 1 TO L JJ = K B1 = ABS(A(K,K)) KP = K + 1 FOR I = KP TO N A1 = ABS(A(I,K)) IF (B1-A1) >= 0 THEN [SIONZE] B1 = A1 JJ = I [SIONZE] NEXT I IF (JJ -K) = 0 THEN [SISEZE] FOR J = K TO M TE = A(JJ,J) A(JJ,J) = A(K,J) A(K,J) = TE NEXT J [SISEZE] FOR I = KP TO N QU = A(I,K) / A(K,K) FOR J = KP TO M A(I,J)= A(I,J) -QU * A(K,J) NEXT J NEXT I FOR I = KP TO N A(I,J) = 0 NEXT I NEXT K X(N)= A(N,M) / A(N,N) FOR NN = 1 TO L SU = 0 I = N -NN IP = I + 1 FOR J = IP TO N SU = SU + A(I,J) * X(J) NEXT J X(I)=(A(I,M)-SU) / A(I,I) NEXT NN PRINT X = A FOR I = 1 TO N PRINT "X = ";X PRINT "F(X) = ";X(I) PRINT X = X + H NEXT I GOTO [NIFOZE] [NIZEZE] REM ENTER K HERE **************** K = 2 * H *LOG(X* X + T * T) / 3 REM ***************************** RETURN [NITWZE] REM ENTER G HERE **************** G = 4 + SIN(.5 * X) REM ***************************** RETURN [NIFOZE] END