
SOLUTION METHODS 
FOR DIFFERENTIAL 

EQUATIONS 

6-1. INTRODUCTION. 

Application of lumped-parameter models to dynamic analysis of physical systems 
leads to a system description in terms of ordinary differential equations. These 
equations may be solved to find the system behavior by three general methods: 
analytical, analog computer, and digital computer. Analytical methods are essentially 
limited to linear equations with constant coefficients, while computer methods handle 
both linear and nonlinear problems. Analytical methods generally are preferred, since 
they allow general solutions which show the effects of system parameters directly. 
Both analog and digital computers can "solve" only specific numerical problems; thus 
the effects of parameters are revealed only by running many special cases. We will, in 
this chapter, show how all three approaches are used, in the case of digital methods 
concentrating on the popular digital simulation approach. 

6-2. ANALYTICAL SOLUTION OF LINEAR, CONSTANT-COEFFICIENT 
EQUATIONS. 

While certain nonlinear and variable-coefficient linear differential equations have 
closed-form analytical solutions, the majority of these equations 
which arise in engineering practice have no such analytical solution and yield only to 
computer methods. Only for linear equations with constant coefficients do general 
solution techniques exist which "always work." We will here briefly review the 
classical operator method of solution; a condensed treatement of an alternative 
technique, the Laplace transform, is given in the appendix. The general form of 
equation which we treat is: 
 

 
 
where the a's are constants and f(t) is a known function of time. The solution proceeds in three 
steps: 

1. Find the complementary function part of the solution, xc. 
2. Find the particular solution, xp. 
3. Add xc to xp to get the total solution x and apply initial conditions to evaluate the constants 

of integration. 
A method for finding xc which always works is available. Using the operator D ≈ d/dt,  we 

first write Eq. (6-1) as 

 

 
 
is treated as an algebraic equation in the unknown D and we must solve it for its n 
roots s1, s2,.., sn. For n > 4, numerical approximate root-finding methods must be used 
and these require that the coefficients an to ao be known as numbers rather than 



letters. This need to work with specific numbers is undesirable but unavoidable. 
Fortunately, root-finding methods can be implemented on digital computers to reduce 
the time and effort required at this stage of the solution. Once the roots are known, we 
immediately write down the solution xc using a set of rules whose validity is here 
taken for granted but which is proven in most first courses on differential equations. 
For any real root s1 which is not repeated, the solution is C1es

1
t where C1 is a constant 

of integration as yet unknown, and e is the base of natural logarithms. For a double 
root s1, s1 the solution is C1es

1
t + C2tes

1
t, for a triple root, C1es

1
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1
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1
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so forth. If complex roots arise, they always come in pairs of the form a ± ib and the 
solution for such a pair is Ceatsin(bt +N) where C and N are constants of integration. 
If a complex root pair is repeated a ± ib, a ± ib the solution is C1eatsin(bt +N1) + 
C2teatsin(bt +N2); however, this occurs very rarely in practical problems. We thus see 
that once the roots are known, the solution xc follows at once. For example, if the 
roots are -1, +3, +3, -2 ± i4, +3 ± i7, corresponding to a seventh order equation, the 
solution is: 
 

 
 
While the above method for finding xc always works, no such universal method 

exists for finding xp, since it depends on the form of the forcing function f(t) in Eq. (6-
1). No matter what method one might propose, a mathematician can always concoct a 
sufficiently "pathological" f(t) to thwart it. Thus, one must be satisfied with methods 
which handle a certain class of function. Fortunately, a simple method (the method of 
undetermined coefficients) suffices for most f(t)’s of engineering interest. This 
method will work if successive derivatives of f(t) ultimately become zero or repeat 
themselves. For example, if f(t) = 2t3, all derivatives beyond the third will be 
identically zero and the method works. For f(t) == 2 sin 3t successive derivatives give 
rise only to sin 3t and cos 3t functions and the method works. If f(t) = et^2, successive 
differentiation, no matter how far it is carried, continues to produce new functional 
forms and the method will not work. For those cases where the method works, the 
particular solution xp is written down as a sum of terms made up of every different 
kind of function found in f(t) and its derivatives, each multiplied by an undetermined 
coefficient. These coefficients can be found immediately by substituting xp into the 
differential equation. An example illustrates the procedure. 

 

 

 

when t = 0+, dx/dt = 0, x = 2.0 (The symbol t = 0+ refers to a time an  
infinitesimal amount after t = 0 and is the time instant at which "initial" conditions 
must be evaluated when using the classical solution method.) The characteristic 
equation is: 

D2 + 3D + 2 = 0                        (6-6) 
 

with roots s1 = -2, s2 = -1. The complementary function solution is: 
 

xc  = C1e-2t + C2 e-t. 
 
Repeated differentiations of the forcing function 4e-5t clearly give only terms of the 
form Ae-5t so the method of undetermined coefficients will work. The solution xp = 
Ae-5t is substituted into Eq. (6 -5) to give 



 
25Ae-5t - 15Ae-5t + 2Ae-5t ≡ 4e-5t              (6-7) 

12Ae-5t ≡ 4e-5t    (6-8) 
A = 1/3     (6-9) 

 
The complete solution is thus 
 

x = xc + xp = C1e-2t + C2 e-t + (1/3)e-5t           (6-10) 

 

 To find C1 and C2 we apply the initial conditions. 

x(0) = 2 = C1 + C2 + (1/3)   (6-11)  
       dx(0)/dt = 0 = -2C1 - C2 - (5/3)  (6-12) 

C1 = -10/3    C2 = 5 

 

The complete specific solution for the given initial conditions is thus 

x = - (10/3)e-2t + 5e-t + (1/3) e-5t  (6-13) 
 

One nice feature of the topic of differential equations is that there never is any need 
to accept an incorrect answer. If the solution, such as Eq. (6-13), is substituted into 
the original equation (6-5) and makes it an identity, and if it satisfies the initial 
conditions, then it must be the one and only correct solution. 

 
The above simple routines will enable one to solve any ordinary linear differential 

equation with constant coefficients irrespective of its order (the order of the highest 
derivative), as long as f(t) can be handled by the method of undetermined 
coefficients. Two special cases which occur rarely, but should be mentioned, require 
a slightly modified procedure.  If a term in xp has the same functional form as one in 
xc, the term in xp should be multiplied by the lowest power of t which will make it 
different from all the xc terms associated with the root which produced the xc term. 
For example, if the right-hand side of Eq. (6-5) had been 4e-t, then xp would have had 
the form Ae-t the same as C2e-t in xc. We should thus modify xp to be Ate-t before 
finding A. If in addition the left-hand side of Eq. (6-5) had been D2 + 2D + 1, with 
roots s1 = s2 = -1 and xc = C1e-t + C2te-t, then xp would have to be modified to At2e-t. 
The second special case arises if the characteristic equation has the form 

 

 
 
When writing xp for such a situation we must include, in addition to the usual terms, 
terms in the first, second,.. ., mth integral of f(t). 

 
We should at this point mention the important principle of superposition, which 

applies only to linear differential equations.  If the driving function f(t) in Eq. (6-1) is 
composed of a sum of terms, f1(t), f2(t), etc., this principle allows us to find the 
particular solution xp for each term of the driving function separately, and then get 
the total xp by simply adding all the individual solutions.  In addition to its direct 
mathematical utility in getting equation solutions, this principle also has two 
important general consequences relative to the behavior of linear systems.  The first 
might be called the "amplitude insensitivity" of linear systems. By this we mean that 
if we have found the response of a system to a driving function, say, 4e-5t, if we scale 
this driving function up to 8e-5t or down to 2e-5t, the response will similarly scale up 
or down. Nothing "new" is thus found out about the response of linear systems by 



changing the size of the driving inputs; as 
 
long as the form of the driving input remains the same, the responses all are directly 
proportional. This follows from the superposition principle by noting that, for 
example, 8e-5t can be written as (4e-5t + 4e-5t); thus the xp for 8e-5t is just twice that for 
4e-5t. Such statements cannot be made for nonlinear systems; the response to an input 
of doubled size may be entirely different inform from the response to the original 
input. The other general consequence of superposition is that if we know how a 
system responds to each of two different inputs when they are separately applied, then 
there will be no "surprises" when they are simultaneously applied. That is, the 
behavior for the combined inputs is just the sum of the responses to the individual 
inputs. Again, nonlinear systems do not behave so simply; the response to a 
combination of inputs may show features found in none of the individual responses. 
In nonlinear systems which can go unstable, for instance, the system may be stable for 
each input applied separately, but unstable when they are applied together. 

6-3. SIMULTANEOUS EQUATIONS. 

A physical system need not be very complex for its description to require several 
simultaneous equations (rather than a single equation). In Fig. 6-1 a, application of 
Newton's law to each mass in turn leads to 

 

 
Neither of these equations can be solved separately since each contains both of the 
unknowns x1 and x2.  The pair of equations can, however, be solved simultaneously. 
Similarly, in Fig. 6-1b we get 
 

 
 
and again the equations must be solved simultaneously. Whether the classical or 
Laplace transform method is used, the procedure in solving simultaneous equations 
basically involves reducing a set of n equations in n unknowns to a single equation in 
one unknown. When the classical method is used, the equations are written in 
operator form, whereupon they may be treated as a set of simultaneous algebraic 
equations and reduced to one equation in one unknown by any valid algebraic 
method, determinants being the most systematic. 
 

 



 
 

An example will illustrate the procedure. Suppose we have two equations in two 
unknowns as shown in 6-19 and 6-20. 

 
 
When t = 0+, x1 = 1, x2 = -2. 
 
 In operator form these become 
 

(D + 2)x1 + (-2D + 3)x2 = 4    (6-21) 

  (2D +1)x1 +(D - 1)x2 = 2t      (6-22) 

We now treat these as algebraic equations in the unknowns x1 and x2. with the D 
operator carried along as if it were an ordinary parameter. We wish to reduce the set 
of equations to a single equation in x1 and another single equation in x2.  Using 
determinants as in algebra we get 

 

 
 
Note that in the numerator the (D-1) term operates on the constant 4 giving -4 and   
-(-2D+3) operates on 2t giving (+4-6t). Cross-multiplying Eq. (6 23) gives 

 
(5D2-3D-5)x1 = -6t             (6-24) 

the desired single equation in x1.   Similarly, for x2 

 



 
 

Note that the characteristic equation 5D2 - 3D -5 = 0 is the same no matter which 
unknown, x, or x,, is being solved for. We can see that this will be true for the general 
case of n equations in n unknowns since the denominator determinant is the same no 
matter which unknown is being considered. Since the physical system is described by 
the whole set of equations, this means a linear system, no matter how complex, has 
only one characteristic equation. To complete the solution we find the characteristic 
equation roots to be 1.34 and –0.74 and thus 
 

 

 
x1p= -(6/5)t-(18/25) and x2p=(4/5)t+(22/25) 

 
It appears we have four constants of integration to be found and only two initial 
conditions; however, the four constants of integration are not really all independent, 
so the problem is solvable. Perhaps the easiest way to find the needed constants is to 
generate additional initial conditions from those given and the system equations. That 
is, the basic equations (6-19) and (6-20) are true at every instant of time, including t = 
0, and can be used to find the needed initial conditions. At t = 0, (6-19) and (6-20) 
give 
 

 
 
and these yield dx2(0)/dt=-3.8 and dx1(0)/dt=0.4. We now have sufficient initial 
conditions to solve for C1, C2, C3, and C4 and get the complete specific solutions for 
x1 and x2. 
 

 
 
 
 


