;---

; cc.asm

; Copyright 1994, 1995 Eric Smith & Richard Ottosen

;

; Closed Caption Decoder using PIC 16C61 running at 16 MHz

; requires LM1881 sync separator or equivalent

;

; cc.asm is free software; you can redistribute it and/or modify it under the

; terms of the GNU General Public License version 2 as published by the Free

; Software Foundation. Note that I am not granting permission to redistribute

; or modify dtmf.asm under the terms of any later version of the General Public

; License.

;

; This program is distributed in the hope that it will be useful (or at least

; amusing), but WITHOUT ANY WARRANTY; without even the implied warranty of

; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

; Public License for more details.

;

; You should have received a copy of the GNU General Public License along with

; this program (in the file "COPYING"); if not, write to the Free Software

; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

;

; $Header: /usr/home/kolwynia/eric/pic/cc/RCS/cc.asm,v 1.15 1995/08/21 01:05:15 eric Exp eric $

;---

device
pic16c61,hs_osc,wdt_off,protect_off

f
equ
1

; for destination argument

w
equ
0

; for destination argument

ind
equ
0

; used for indirects thru fsr

rtcc
equ
1

; real time clock/counter

pc
equ
2

; program counter

status
equ
3

; status register:

cf
equ
0

; bit 0 = carry bit flag

dcf
equ
1

; bit 1 = digit carry bit flag

zf
equ
2

; bit 2 = zero bit flag

pdf
equ
3

; bit 3 = power down bit flag

tof
equ
4

; bit 4 = time out bit flag

rs0
equ
5

; bit 5 = bank select for pic16c84

; bits 6,7 do not apply to pic16c84

fsr
equ
4

; file select register (index register)

; ascii values

bel
equ
07h

; bell

bs
equ
08h

; back space

tab
equ
09h

; horizontal tab

lf
equ
0ah

; line feed

ff
equ
0ch

; form feed

cr
equ
0dh

; carriage return

xon
equ
11h

; transmit on

xoff
equ
13h

; transmit off

eof
equ
1ah

; end of file

esc
equ
1bh

; escape

sp
equ
20h

; space

porta
equ
5

; i/o port a:

data
equ
0

; bit 0 = data input

Peak
equ
1

; bit 1 = Active low reset for peak detect

;
 (Occurs during line 21)

Restore
equ
2

; bit 2 = Back porch DC restore pulse

csync
equ
3

; bit 3 = composite sync input from sync

; stripper (active low)

; Bit 4 = input (tied to ground)

;*** this does not work
with
; bit 4 is tied to bit 3 in order to allow

;*** PIC16C71 having PA4 bug
; RTCC to count sync pulses

portb
equ
6

; i/o port b:

Pump
equ
0

; bit 0 = Charge pump drive for RS232 -4 Volts

txd
equ
1

; bit 2 = rs232 serial data output

led1
equ
2

; bit 2 = led

debug:

led2
equ
3

; bit 3 = led

debug: field signal

led3
equ
4

; bit 4 = Active caption LED

pzt
equ
4

; bit 4 = pzt speaker output

button0
equ
5

; bit 5 = next mode button input

button1
equ
6

; bit 6 = next mode button input

button2
equ
7

; bit 7 = next mode button input

; (active low)

;---

; ram

;---

rambase
equ
0ch

; start of ram

org
rambase

count
ds
1

; general purpose counter

dlycnt
ds
1

; counter for delays (used in several places)

mscnt
ds
1

; number of milliseconds using delay routine

cycles
ds
1

; number of cycles in a beep

period
ds
1

; period of a click

temp
ds
1

; very temporary storage

temp2
ds
1

serreg
ds
1

; serial output character buffer

bitcnt
ds
1

; serial output bit count

speed
ds
1

; serial speed

mflags
ds
1

; misc. flags

lazycr
equ
0

; bit 0 = lazy cr pending

lastbit
equ
1

; bit 1 = last bit (used in getsbit)

field
equ
2

; bit 2 = odd field

sidx8
ds
1

sidx1
ds
1

trcnt
ds
1

sample
ds
14

; 112 samples at 2 MHz.

; Closed caption is just under 104 samples long.

; Extra 8 samples allow some slop for delay to

; start of run-in.

odata
ds
2

;---

; reset and interrupt vectors

;---

org
0

goto
reset

nop

nop

nop

goto
reset

; interrupts not used

;---

; utilities

;---

; delay for w *1ms at 4mhz osc. freq.

delay
movwf
mscnt

; count milliseconds

dly10
movlw
250

movwf
dlycnt

dly20
decf
dlycnt

;

1 cycle

btfss
status,zf
;

1

goto
dly20

;

2 =4 cycles

decfsz
mscnt

; last msec?

goto
dly10

return

; make a "bell" sound

beep
movlw
200

movwf
cycles

movlw
254

; a nice tone???

movwf
period

; (fall into "click")

; make a "click" sound "cycles" number of times.

;
frequency = 1 /(1 /(osc frequency /4) *5 cycles *period *2)

click
bsf
portb,pzt
; click high

movf
period,w
; time for one half of cycle

movwf
dlycnt

; into delay counter

clk10
goto
clk15

; (burn 2 cycles)

2 cycles

clk15
decfsz
dlycnt

;

1

goto
clk10

;

2= 5 cycles

bcf
portb,pzt
; click low

movf
period,w
; time for one half of cycle

movwf
dlycnt

; into delay counter

clk20
goto
clk25

; (burn 2 cycles)

2 cycles

clk25
decfsz
dlycnt

;

1

goto
clk20

;

2= 5 cycles

decfsz
cycles

; another cycle of click?

goto
click

; branch if so

return

;---

; output a byte in binary

;---

outbb:
movwf
temp

movlw
8

movwf
temp2

outbb1:
movlw
'0'

btfsc
temp,7

addlw
1

call
xmit

rlf
temp

decfsz
temp2

goto
outbb1

return

;---

; output a byte in hexadecimal

;---

outhb:
movwf
temp

swapf
temp,w

call
outhd

movf
temp,w

; fall into outhd

;---

; output a hex digit

;---

outhd:
andlw
0fh

addlw
0f6h

btfsc
status,cf

addlw
07h

addlw
3ah

; fall into xmit

;---

; serial output

;---

;Transmit character in W-Reg as 8 bits, no parity, 1 stop.

; This routine has the start, stop and data bits non-inverted because an

; inverting RS-232 buffer is used.

xmit
BCF
PortB,Pump
; Pump some charge into negative 4 Volt supply

movwf
serreg

; save character

movlw
10

; put # of data bits + start bit + # stop bits

movwf
bitcnt

; into counter

bsf
status,cf
; set up the stop bit

bcf
portb,txd
; send start bit

xmt10
movf
speed,w

; delay 1 bit time

movwf
dlycnt

BSF
PortB,Pump
; Pump some charge into negative 4 Volt supply

xd1
nop

;

1 cycle

decfsz
dlycnt

;

1

goto
xd1

;

2 =4 cycles

BCF
PortB,Pump
; Pump some charge into negative 4 Volt supply

;nop

; make sure overhead is an even multiple of

;nop

; xd1 loop time. 16 cycles in this case.

; (no adjustment needed with charge pumping).

decf
bitcnt

; count the data bits

btfsc
status,zf

goto
xmt30

; and exit when done

rrf
serreg

; get data bit into carry

btfsc
status,cf
; if carry is set

bsf
portb,txd
; then xmit a zero

btfss
status,cf
; if carry is clear

bcf
portb,txd
; then transmit a one

goto
xmt10

xmt30
BSF
PortB,Pump
; Pump some charge into negative 4 Volt supply

return

; end of "xmit"

;---

; initialize the hardware

;---

inithw:

clrwdt

; reset watchdog timer

movlw
08h

; external edge to timer

option

; high to low edge for timer

; prescaler assigned to watchdog

; prescaler divide by 128 for now

RestOn
EQU
0FBh

; PortA with the DC Restore clamp on

PeakOn
EQU
0FDh

; PortA with the Peak detect reset on

ClampsOff EQU
0FFh

; PortA with both Peak reset and Restore clamp

; off and not clamping.

MOVLW
ClampsOff
; PortA bits 0 and 3 are inputs

tris
porta

BCF
PortA,Restore
; Use both these pins as open collector outputs

BCF
PortA,Peak

MOVLW
0E0h

; PortB bits 0 through 4 are outputs

tris
portb

clrf
portb

; 0 volts on speaker

movlw
208-4

; 4800 bps w/ 16.000 MHz crystal

movwf
speed

return

;---

; get data samples for the full scan line

;---

getsamp:

rrf
porta,w

; get first bit of sample+0

rlf
sample+0

rrf
porta,w

; get second bit of sample+0

rlf
sample+0

rrf
porta,w

; get third bit of sample+0

rlf
sample+0

rrf
porta,w

; get fourth bit of sample+0

rlf
sample+0

rrf
porta,w

; get fifth bit of sample+0

rlf
sample+0

rrf
porta,w

; get sixth bit of sample+0

rlf
sample+0

rrf
porta,w

; get seventh bit of sample+0

rlf
sample+0

rrf
porta,w

; get eighth bit of sample+0

rlf
sample+0

rrf
porta,w

; get first bit of sample+1

rlf
sample+1

rrf
porta,w

; get second bit of sample+1

rlf
sample+1

rrf
porta,w

; get third bit of sample+1

rlf
sample+1

rrf
porta,w

; get fourth bit of sample+1

rlf
sample+1

rrf
porta,w

; get fifth bit of sample+1

rlf
sample+1

rrf
porta,w

; get sixth bit of sample+1

rlf
sample+1

rrf
porta,w

; get seventh bit of sample+1

rlf
sample+1

rrf
porta,w

; get eighth bit of sample+1

rlf
sample+1

rrf
porta,w

; get first bit of sample+2

rlf
sample+2

rrf
porta,w

; get second bit of sample+2

rlf
sample+2

rrf
porta,w

; get third bit of sample+2

rlf
sample+2

rrf
porta,w

; get fourth bit of sample+2

rlf
sample+2

rrf
porta,w

; get fifth bit of sample+2

rlf
sample+2

rrf
porta,w

; get sixth bit of sample+2

rlf
sample+2

rrf
porta,w

; get seventh bit of sample+2

rlf
sample+2

rrf
porta,w

; get eighth bit of sample+2

rlf
sample+2

rrf
porta,w

; get first bit of sample+3

rlf
sample+3

rrf
porta,w

; get second bit of sample+3

rlf
sample+3

rrf
porta,w

; get third bit of sample+3

rlf
sample+3

rrf
porta,w

; get fourth bit of sample+3

rlf
sample+3

rrf
porta,w

; get fifth bit of sample+3

rlf
sample+3

rrf
porta,w

; get sixth bit of sample+3

rlf
sample+3

rrf
porta,w

; get seventh bit of sample+3

rlf
sample+3

rrf
porta,w

; get eighth bit of sample+3

rlf
sample+3

rrf
porta,w

; get first bit of sample+4

rlf
sample+4

rrf
porta,w

; get second bit of sample+4

rlf
sample+4

rrf
porta,w

; get third bit of sample+4

rlf
sample+4

rrf
porta,w

; get fourth bit of sample+4

rlf
sample+4

rrf
porta,w

; get fifth bit of sample+4

rlf
sample+4

rrf
porta,w

; get sixth bit of sample+4

rlf
sample+4

rrf
porta,w

; get seventh bit of sample+4

rlf
sample+4

rrf
porta,w

; get eighth bit of sample+4

rlf
sample+4

rrf
porta,w

; get first bit of sample+5

rlf
sample+5

rrf
porta,w

; get second bit of sample+5

rlf
sample+5

rrf
porta,w

; get third bit of sample+5

rlf
sample+5

rrf
porta,w

; get fourth bit of sample+5

rlf
sample+5

rrf
porta,w

; get fifth bit of sample+5

rlf
sample+5

rrf
porta,w

; get sixth bit of sample+5

rlf
sample+5

rrf
porta,w

; get seventh bit of sample+5

rlf
sample+5

rrf
porta,w

; get eighth bit of sample+5

rlf
sample+5

rrf
porta,w

; get first bit of sample+6

rlf
sample+6

rrf
porta,w

; get second bit of sample+6

rlf
sample+6

rrf
porta,w

; get third bit of sample+6

rlf
sample+6

rrf
porta,w

; get fourth bit of sample+6

rlf
sample+6

rrf
porta,w

; get fifth bit of sample+6

rlf
sample+6

rrf
porta,w

; get sixth bit of sample+6

rlf
sample+6

rrf
porta,w

; get seventh bit of sample+6

rlf
sample+6

rrf
porta,w

; get eighth bit of sample+6

rlf
sample+6

rrf
porta,w

; get first bit of sample+7

rlf
sample+7

rrf
porta,w

; get second bit of sample+7

rlf
sample+7

rrf
porta,w

; get third bit of sample+7

rlf
sample+7

rrf
porta,w

; get fourth bit of sample+7

rlf
sample+7

rrf
porta,w

; get fifth bit of sample+7

rlf
sample+7

rrf
porta,w

; get sixth bit of sample+7

rlf
sample+7

rrf
porta,w

; get seventh bit of sample+7

rlf
sample+7

rrf
porta,w

; get eighth bit of sample+7

rlf
sample+7

rrf
porta,w

; get first bit of sample+8

rlf
sample+8

rrf
porta,w

; get second bit of sample+8

rlf
sample+8

rrf
porta,w

; get third bit of sample+8

rlf
sample+8

rrf
porta,w

; get fourth bit of sample+8

rlf
sample+8

rrf
porta,w

; get fifth bit of sample+8

rlf
sample+8

rrf
porta,w

; get sixth bit of sample+8

rlf
sample+8

rrf
porta,w

; get seventh bit of sample+8

rlf
sample+8

rrf
porta,w

; get eighth bit of sample+8

rlf
sample+8

rrf
porta,w

; get first bit of sample+9

rlf
sample+9

rrf
porta,w

; get second bit of sample+9

rlf
sample+9

rrf
porta,w

; get third bit of sample+9

rlf
sample+9

rrf
porta,w

; get fourth bit of sample+9

rlf
sample+9

rrf
porta,w

; get fifth bit of sample+9

rlf
sample+9

rrf
porta,w

; get sixth bit of sample+9

rlf
sample+9

rrf
porta,w

; get seventh bit of sample+9

rlf
sample+9

rrf
porta,w

; get eighth bit of sample+9

rlf
sample+9

rrf
porta,w

; get first bit of sample+10

rlf
sample+10

rrf
porta,w

; get second bit of sample+10

rlf
sample+10

rrf
porta,w

; get third bit of sample+10

rlf
sample+10

rrf
porta,w

; get fourth bit of sample+10

rlf
sample+10

rrf
porta,w

; get fifth bit of sample+10

rlf
sample+10

rrf
porta,w

; get sixth bit of sample+10

rlf
sample+10

rrf
porta,w

; get seventh bit of sample+10

rlf
sample+10

rrf
porta,w

; get eighth bit of sample+10

rlf
sample+10

rrf
porta,w

; get first bit of sample+11

rlf
sample+11

rrf
porta,w

; get second bit of sample+11

rlf
sample+11

rrf
porta,w

; get third bit of sample+11

rlf
sample+11

rrf
porta,w

; get fourth bit of sample+11

rlf
sample+11

rrf
porta,w

; get fifth bit of sample+11

rlf
sample+11

rrf
porta,w

; get sixth bit of sample+11

rlf
sample+11

rrf
porta,w

; get seventh bit of sample+11

rlf
sample+11

rrf
porta,w

; get eighth bit of sample+11

rlf
sample+11

rrf
porta,w

; get first bit of sample+12

rlf
sample+12

rrf
porta,w

; get second bit of sample+12

rlf
sample+12

rrf
porta,w

; get third bit of sample+12

rlf
sample+12

rrf
porta,w

; get fourth bit of sample+12

rlf
sample+12

rrf
porta,w

; get fifth bit of sample+12

rlf
sample+12

rrf
porta,w

; get sixth bit of sample+12

rlf
sample+12

rrf
porta,w

; get seventh bit of sample+12

rlf
sample+12

rrf
porta,w

; get eighth bit of sample+12

rlf
sample+12

rrf
porta,w

; get first bit of sample+13

rlf
sample+13

rrf
porta,w

; get second bit of sample+13

rlf
sample+13

rrf
porta,w

; get third bit of sample+13

rlf
sample+13

rrf
porta,w

; get fourth bit of sample+13

rlf
sample+13

rrf
porta,w

; get fifth bit of sample+13

rlf
sample+13

rrf
porta,w

; get sixth bit of sample+13

rlf
sample+13

rrf
porta,w

; get seventh bit of sample+13

rlf
sample+13

rrf
porta,w

; get eighth bit of sample+13

rlf
sample+13

return

;---

; get a single sample bit from the sample buffer

; return it in the C flag

; return with Z flag set if out of bits

;---

getsbit:

bcf
status,cf
; advance bit position

rrf
sidx1

btfss
status,cf

goto
getsb2

movlw
80h

movwf
sidx1

incf
sidx8

movf
sidx8,w

; test for end of buffer

xorlw
sample+14

btfss
status,zf

goto
getsb2

bsf
status,zf
; out of bits

return

getsb2:

movf
sidx8,w

movwf
fsr

movf
ind,w

andwf
sidx1,w

; polarity of raw sample data is inverted, so zero flag ends up true

btfsc
status,zf

goto
getsb1

btfsc
mflags,lastbit
; got a zero bit, increment trcnt if lastbit

incf
trcnt

; was a one

bcf
mflags,lastbit

bcf
status,cf

bcf
status,zf

return

getsb1:

btfss
mflags,lastbit
; got a one bit, increment trcnt if lastbit

incf
trcnt

; was a zero

bsf
mflags,lastbit

bsf
status,cf

bcf
status,zf

return

;---

; check parity

;---

parity:

movwf
temp

movlw
8

movwf
bitcnt

clrw

par1:
xorwf
temp,w

rrf
temp

decfsz
bitcnt

goto
par1

andlw
01h

return

;---

; output one character as ascii, or as in hexadecimal as [xx] if unprintable

;---

aout:

andlw
07fh

; strip parity (sigh)

movwf
temp

movf
temp

; don't output nulls

btfsc
status,zf

return

addlw
0e0h

; values from 00 to 1f show hex

btfss
status,cf

goto
aouth

movf
temp,w

; 7f show hex

xorlw
07fh

btfsc
status,zf

goto
aouth

movf
temp,w

goto
xmit

aouth:
movlw
'['

call
xmit

movf
temp,w

call
outhb

movlw
']'

goto
xmit

;---

; process the raw samples

;---

process:

BCF
PortB,Pump
; Pump some charge into negative 4 Volt supply

bsf
portb,led3
; assume the worst

clrf
odata

clrf
odata+1

movlw
sample-1

movwf
sidx8

movlw
01h

movwf
sidx1

clrf
trcnt

; transition counter

bcf
mflags,lastbit

; Find start of run-in

WalkUp:
call
getsbit

btfsc
status,cf
; First sample must be a 0 if closed caption

return

movlw
6

; Limit how far we look

movwf
bitcnt

WU10
call
getsbit

btfsc
status,cf

goto
pone

; Found the first one bit of the run-in

decfsz
bitcnt

goto
WU10

return

; Run-in not found... no closed caption

; look for the gap between the leadin and the start bit

pone:
movlw
6

; count down zero bits

movwf
bitcnt

pzero:
call
getsbit

btfsc
status,zf

goto
errno0

; ran out of bits

btfsc
status,cf

goto
pone

; darn, it's a one, start counting all over

decfsz
bitcnt

goto
pzero

BSF
PortB,Pump
; Pump some charge into negative 4 Volt supply

; now find a one bit

fone:
call
getsbit

btfsc
status,zf

goto
errno1

; ran out of bits

btfss
status,cf

goto
fone

; darn, it's a zero, look some more

BCF
PortB,Pump
; Pump some charge into negative 4 Volt supply

; $$$ DEBUG - output transition count

;
movf
trcnt,w

;
call
outhb

;
movlw
' '

;
goto
xmit

; test the transition counter to make sure leadin was present

tmin
equ
10-1

;****debug to allow for slow comparator (LM393)

;***tmin
equ
14

tmax
equ
16-1

movf
trcnt,w

addlw
256-tmin

addlw
255+tmin-tmax

btfsc
status,cf

return

bcf
portb,led3
; indicate valid leadin and start bit found

call
getsbit

; skip the second and third samples

btfsc
status,zf
; of the start bit

goto
toofewbits

call
getsbit

btfsc
status,zf

goto
toofewbits

movlw
16

movwf
bitcnt

pl:
call
getsbit

; skip three samples and get fourth

btfsc
status,zf

goto
toofewbits

call
getsbit

btfsc
status,zf

goto
toofewbits

call
getsbit

btfsc
status,zf

goto
toofewbits

call
getsbit

btfsc
status,zf

goto
toofewbits

rrf
odata+1

rrf
odata

decfsz
bitcnt

goto
pl

movf
odata,w

; check parity of first byte

call
parity

btfsc
status,zf

goto
perror

movf
odata,w

call
parity

btfsc
status,zf

goto
perror

movf
odata,w

; strip parity from first byte

andlw
7fh

movwf
odata

movf
odata+1,w
; strip parity from second byte

andlw
7fh

movwf
odata+1

movf
odata,w

; if the first byte is >= 20h, handle

addlw
0e0h

; it normally

btfsc
status,cf

goto
p8

movf
odata,w

; if the first byte isn't 14h, throw it

xorlw
014h

; away

btfss
status,zf

return

movf
odata+1,w
; if the second byte isn't 2dh, throw it

xorlw
02dh

; away

btfss
status,zf

return

bsf
mflags,lazycr
; remember to do a <cr> later

return

p8:

btfss
mflags,lazycr

goto
p9

bcf
mflags,lazycr

movlw
cr

call
xmit

movlw
lf

call
xmit

p9:

movf
odata,w

call
aout

movf
odata+1,w

call
aout

return

toofewbits:

movlw
'B'

goto
error

errno0:

movlw
'0'

goto
error

errno1:

movlw
'1'

goto
error

perror:

movlw
'P'

error:

movwf
temp

movlw
'['

call
xmit

movf
temp,w

call
xmit

movlw
']'

call
xmit

return

;---

; program entry point

;---

reset:
call
inithw

; initialize hardware

call
beep

; indicate special mode

clrf
mflags

; clear the misc. flags

;---

; main loop

;---

main:

call
waiteq

; wait for a field

movlw
22

; wait for line 20

movwf
temp

wait21:

;Sync up to do DC restore

wn1
btfss
porta,csync
; if we're already in a sync pulse

goto
wn1

; we have to wait for the next one

BSF
PortB,Pump
; Pump some charge into negative 4 Volt supply

ws1:
btfsc
porta,csync
; wait for start of sync pulse

goto
ws1

BCF
PortB,Pump
; Pump some charge into negative 4 Volt supply

movlw
5

; delay to end of hsync pulse

hd1:
addlw
0ffh

btfss
status,zf

goto
hd1

BCF
PortA,Restore
; Make sure output is still low

MOVLW
RestOn

; Clamp video for DC restore

tris
porta

; Pulse 2uS in center of blanking

NOP

NOP

NOP

NOP

NOP

BSF
PortB,Pump
; Pump some charge into negative 4 Volt supply

MOVLW
ClampsOff
; Turn the DC restore clamp off

tris
porta

decfsz
temp

goto
wait21

btfss
mflags,field
; if it's not an odd field, try again

goto
main

BCF
PortA,Peak
; Make sure output is still low

MOVLW
PeakOn

; Reset peak detector

tris
porta

; Re-sync for accurate start of line 21

ws2:
btfsc
porta,csync
; wait for start of sync pulse

goto
ws2

BCF
PortB,Pump
; Pump some charge into negative 4 Volt supply

movlw
7

; delay 7 uS to get within 7 samples of

hd2
addlw
0ffh

; begining of start of run-in

btfss
status,zf

goto
hd2

NOP

NOP

NOP

MOVLW
ClampsOff
; Release peak detect clamp

tris
porta

BSF
portb,led1
;***debug

call
getsamp

BCF
portb,led1
;***debug

call
process

BSF
PortB,Pump
; Pump some charge into negative 4 Volt supply

goto
main

;---

; sync separator that mimics the lm1881 logic (at 16mhz oscillator frequency).

;---

; wait for the equilizing pulses

waiteq
movlw
10

; if sync is active for more than 12us or so

movwf
temp

; then it is a serrated vertical pulse

we00
btfss
porta,csync
; wait for sync to be inactive

goto
we00

BSF
PortB,Pump
; Pump some charge into negative 4 Volt supply

we02
btfsc
porta,csync
; wait for sync to be active

goto
we02

BCF
PortB,Pump
; Pump some charge into negative 4 Volt supply

we05
btfsc
porta,csync
; is sync inactive yet?

goto
we10

; yes, it must really be an hsync or equal.

decfsz
temp

; has it been too long?

goto
we05

; no, keep watching it

goto
waiteq

; must be a serrated vertical pulse, start over

we10
BSF
PortB,Pump
; Pump some charge into negative 4 Volt supply

movlw
38

; time for more than half of a line

movwf
temp

; (about 47us /250ns = 188 cycles)

we20
btfss
porta,csync
; sync active?

2

goto
we30

; yes, found an equalizing pulse
0

decfsz
temp

; no, out of time?

1

goto
we20

; no, keep watching for it

2 =5

goto
we02

; it's more than half a line, try again

we30
btfss
porta,csync
; wait for sync to be inactive

goto
we30

; we've now found either the second equalizing pulse of an odd field, or the

; first equalizing pulse of an even field, but we don't yet know which.

; fall into code to separate the vertical sync

;---

; separate the vertical sync and determine which field we're in

;---

clrf
count

movlw
12

; time for half of a wide equalizing space

movwf
temp

; (about 16us / 250ns = 64 cycles)

sv10
btfsc
porta,csync
; wait for sync to be active

goto
sv10

BCF
PortB,Pump
; Pump some charge into negative 4 Volt supply

; now measure the width of the pulse

incf
count

sv20
btfsc
porta,csync
; sync still active?

2 cycle

goto
sv10

; no, it was an equalizing pulse
0

decfsz
temp

; yes, has it been wide enough?

1

goto
sv20

; no, keep watching it

2 =5

; now we've gotten a wide (vertical) sync pulse

sv30
btfss
porta,csync
; wait for sync to go inactive

goto
sv30

BSF
PortB,Pump
; Pump some charge into negative 4 Volt supply

; the count of equalizing pulses preceding the first vetical sync pulse

; determines whether it is an even or odd field

bcf
mflags,field

btfsc
count,0

; copy "temp" lsb as odd/even field

bsf
mflags,field

;**** debug

btfsc
count,0

;Field signal

bsf
portb,led2

btfss
count,0

bcf
portb,led2

return

; return with sync inactive

end

