VK5DJ's YAGI CALCULATOR

Yagi design frequency $=2422.00 \mathrm{MHz}$
Wavelength $=124 \mathrm{~mm}$
Parasitic elements fastened to a non-metallic or separated from boom
Folded dipole fully insulated from boom
Director/reflector diam $=1.5 \mathrm{~mm}$
Radiator diam $=1.5 \mathrm{~mm}$
REFLECTOR
60 mm long at boom position $=30 \mathrm{~mm}$ ($\mathrm{IT}=22.5 \mathrm{~mm}$)
RADIATOR
Single dipole 57 mm tip to tip, spaced 25 mm from reflector at boom posn 55 mm (IT = 21.0 mm)
Folded dipole 59 mm tip to tip, spaced 25 mm from reflector at boom posn 55 mm ($\mathrm{IT}=22.0 \mathrm{~mm}$)

DIRECTORS						
Dir	Length	Space	Boom position		Gain	Gain
(no.)	(mm)	(mm)	(mm)	(mm)	(dBd)	(dBi)
1	52	9	64	18.5	-2.5	-0.3
2	51	22	86	18.0	3.9	6.1
3	51	27	113	18.0	6.3	8.4
4	50	31	144	17.5	7.8	10.0
5	50	35	179	17.5	9.0	11.2
6	49	37	216	17.0	9.9	12.1
7	49	39	255	17.0	10.7	12.8
8	48	41	296	16.5	11.3	13.5
9	48	43	338	16.5	11.9	14.0
10	47	45	383	16.0	12.4	14.5
11	47	46	429	16.0	12.9	15.0
12	47	48	477	16.0	13.3	15.4
13	46	48	525	15.5	13.6	15.8
14	46	49	574	15.5	14.0	16.1

COMMENTS

The abbreviation "IT" means "Insert To", it is the construction distance from the element tip to the edge of the boom for through boom mounting

Spacings measured centre to centre from previous element
Tolerance for element lengths is $+/-0 \mathrm{~mm}$
Boom position is the mounting point for each element as measured from the rear of the boom and includes the 30 mm overhang. T
total boom length is 604 mm including two overhangs of 30 mm
The beam's estimated 3dB beamwidth is 32 deg
A half wave $4: 1$ balun uses 0.66 velocity factor RG-174 (PE) and is 41 mm long plus leads
FOLDED DIPOLE CONSTRUCTION
Measurements are taken from the inside of bends
Folded dipole length measured tip to tip $=59 \mathrm{~mm}$
Total rod length $=141 \mathrm{~mm}$
Centre of rod=70mm
Distance $B C=C D=17 \mathrm{~mm}$
Distance $\mathrm{HI}=\mathrm{GF}=14 \mathrm{~mm}$
Distance HA=GE=34mm
Distance HB=GD=54mm
Distance HC=GC=70mm
Gap at $\mathrm{HG}=5 \mathrm{~mm}$
Bend diameter $\mathrm{BI}=\mathrm{DF}=25 \mathrm{~mm}$
If the folded dipole is considered as a flat plane (see ARRL Antenna Handbook) then its resonant frequency is less than the flat plane algorithm's range of 10:1

