\NOSIntro

TCP/IP over
Packet Radio

An introduction
to the KA9Q Network
Operating System

'

R

lan Wade
G3NRW

NOSintro

TCPI/IP over
Packet Radio

An Introduction to the KASQ
Network Operating System

lan Wade
G3NRW

NOSintro
TCP/IP over Packet Radio
An Introduction to the KASQ Operating System

Copyright © 1992 Dowermain Ltd
ISBN 1-897649-00-2

All rights reserved. No part of this book may be reproduced, in any
form or by any means, without permission in writing from the
publisher. All rights of translation reserved.

Published by Dowermain Ltd, Maxet House, Liverpool Road, Luton,
Bedfordshire LU1 1RF, United Kingdom.

Printed by Maslands, Edward Neate House,
Unit 12, Howden Industrial Estate, Tiverton, Devon EX16 SHW, UK.

Text set in TrueType with Microsoft Word for Windows, version 2.0.
Graphics produced with Micrografx Windows Draw!, version 3.0.

Cover design by Jim Housego.
First edition. November 1992.

How to contact the author:

AMPRnet [TCP/IP}: g3nrw @ g3nrw.ampr.org [44.131.5.2]
AX.25 Packet Radio: G3NRW @ GB7BIL#27.GBR.EU
Electronic Mail: g3nw @ dircon.co.uk

Post Office Mail: Mr lan Wade
7 Daubeney Close
Harlington
Dunstable
Bedfordshire
LUS5 6NF, United Kingdom

CONTENTS

Chapter

BN

OWO~N®

It to' NOSINIG oaanminwansiesamnsaag 1
NOSVIBWoovnreissesismeistsnsistmaississsovisissimaiis, T
The Ground RUIEScociiviiiiiiiiiieieceevviiaene 11
NOSinaNutshellccooviveiiiiieeieeeeeeiae. 19
Let's Meetthe Localsccocoevvveveeeiieineeeenn. 33
The TNC Revisitedc.coovvvveeiviieierinernnrinnenns 37
A Peek at Protocolscccoovvveeeiiiiciieieiiiieeeens 49
Names, Domains and Addresses 55
O 1= 01 ST A= RO 63
Hands On — Hardware Checkout 71
Hands On — Software Installation 75
NOS File Compendiumc.cccevveveeeeiinnenn. 83
Hands On — Session Manager 95
The NOS Command Set Summary 109
Hands On — autoexec.nosc.cccccceeeeennen 115
Tha flpusers Filec..cimiine 123
Hands Oni—FTP .cocumimsosammmassmss 129
NOS BBS — The Big Picture 141
Setting up the NOSBBSccceeevveeee... 165
The NOS BBS Command Set 161
Hands On — NOS BBS File Server 173
Hands On — Remote Sysopcccceviienenne 181
Forwarding SMTP Mailccoovvvvenirieiennnne 185
Pop Mail Collectionc..ccceeeeevvviieeiieeieeens 211
PBBS Mail Forwardingcccceveeerrinvinnenens 217

26 AX.25 ROULING ...coooiieiieaiiiieee e 231
27 Address Resolution Protocol 235

28 |P Routing .. SO RRPRPUBRID”A 1
29 NET/ROM Routlng 251
30 Going Live: Preparing the Files 263
31 HandsOn—AX25 ..., 267
32 Hands On — NET/ROMccccoevveenieeeeninnnns 275

33 Hands On —Ping and Hopc.ccccveeee... 279
34 Hands On — Domain Name System 287

35 Traling Flag ociminuanssisnsss 293
Appendix1 Where to get the Softwareccoc..... 295
2 NOS Command Set Reference 297

3 NOS Control Files . T T e 1 0 |

4 Character Codes .. PTG . 1 |

5 AMPRnetIP Address Coordmators R

6 REfErenCescooceeeiiiiiiiiiieciiiiiieeririreaersnanes 341

e (= ORI 343

1: INTRO TO NOSintro

Welcome to NOSintro, the beginner’s guide to running TCP/IP over
Packet Radio.

In this book you’ll find a wealth of practical information, hints and tips
for setting up and using the KA9Q Network Operating System (NOS).
The emphasis throughout is on hands-on practicalities. You’ll see
exactly how to install NOS on a PC, how to set up the control files to
suit your local environment, how to check out basic operations off-air
before going live, and how to use NOS commands for transferring files,
logging in to remote systems, sending mail, and so on.

Theoretical coverage is kept to a minimum — there are plenty of other
publications describing the minutiae of TCP/IP and related packet
protocols if you want to dig deeper. In this book there is just enough
theoretical background to provide a framework for the hands-on
sessions, so you get a good understanding of what’s happening without
being submerged in a morass of superfluous detail.

NOS and related packages such as NET run on all of the well-known
families of microcomputers. These include the Apple Macintosh,
Amiga, Archimedes, Atari, DEC VAX, IBM PC and Sun, running
under MS-DOS, 08/2, VMS and various flavours of UNIX. This
book is specifically about the PC version of NOS, but the other
versions work in virtually the same way, so almost everything you read
here is applicable to those versions as well.

NOS is a complex package, and requires you to set up a number of
control files before you can use it. This isn’t a difficult job, but there is
quite a lot of work involved. To help get you on the road, this book
contains full listings of typical NOS control files, which you can
modify to suit your own environment.

Better still, you can obtain a copy of the G3INRW NOSview on-line
documentation package for NOS. NOSview contains not only full
reference documentation for NOS, but also a complete working set of

intro to NOSintro @

NOS software. This includes NOS itself and all of the control files
listed in this book. You should get hold of NOSview if you can and
install it on your PC, as the worked examples in this book relate
directly to the files that come with the package. Full details of how to
get NOSview are in Chapter 2.

I’ve said that this is a book for beginners to TCP/IP. The level is
pitched at people who already know how to drive a PC at the MS-DOS
command line, and how to make “ordinary” AX.25 packet radio
connections with a conventional terminal node controller (tnc).
Experience in sending and receiving messages via an AX.25 packet
bulletin board system (PBBS) is also assumed.

In a book of this kind, it’s impossible to explain everything about NOS.
NOS is a big, complex package, with many more features than most
commercial packages costing hundreds of dollars, and so it’s only
possible to scrape the surface here. My main hope is that there is more
than enough information to get you started, with plenty of clues as we
go along about what to explore next. In fact, the first two drafts of this
book were much longer than originally intended, and savage wielding of
the scalpel was eventually necessary to bring it down to a reasonable
size. Given time, I plan to use some of the excised material in a follow-
up book which will cover the advanced capabilities of NOS in much
more detail.

NOS originally grew up in the world of amateur radio, but in more
recent times it has found its way into “professional” environments as
well. If you are a networking professional reading this book, please
don’t be misled by the word “amateur”. Most of the techniques, the
software and the networking infrastructures described here are the work
of internationally respected professionals and academics, who also
happen to be licensed radio amateurs.

The great attraction of the amateur environment is that people are free
to experiment at will, without the constraints of fixed project goals and
timescales, or bosses looking over their shoulders. Indeed, many of the
techniques which are commonplace in the professional field today were
originally developed by amateurs.

There’s certainly nothing “amateurish” about NOS. You can install
NOS on your PC in the office and connect into your LAN (or WAN or
SLIP link), and you can use ping, ftp, telnet, mail, news, ppp and all
the other well-known Internet services in exactly the same way that you
probably do now. The big advantage of NOS is that it provides much

@ Intro to NOSintro 3

greater functionality than you’ll find in most commercial packages, and
it’s free.

Reading a work of this nature is not a trivial undertaking. The best
way to start is to spend an evening speed-reading the whole book from
cover to cover, just to get the feel of it. Don’t worry if there are parts
you don’t understand — just skip them and move on. Then read the
book again, a little slower this time, perhaps taking a week of evenings
to do so. If there are sections you still don’t understand, skip them and
read on to the end of the chapter. Then go back to the beginning of the
chapter and read it again. Don’t be afraid to dip and dive into different
parts of the book to fill in the blanks — eventually the whole picture
will become clear.

By then you should have a fairly good idea of what TCP/IP and NOS
are about. The next step is a must: you must install NOS (ideally with
NOSview) on your PC, so that you can try out the commands at first
hand. Then read through the book yet again, this time concentrating on
the hands-on sessions. Only at this point, when you type in NOS
commands and see the results of your actions, will you really begin to
understand what’s happening.

All of this takes place with the radio switched off. When you
eventually feel confident that you understand most of the capabilities of
NOS, you are ready to modify the NOS control files to suit your own
environment. You’ll be replacing the dummy radio callsigns, network
addresses and other parameters listed in this book with real callsigns,
etc, and then you can switch the radio on and try out NOS on-air.

Chances are that if you follow these steps — it may take three or four
weeks of spare time before you are ready for live tests — you’ll be
rewarded with almost everything working perfectly first time. Now you
can login to other stations, transfer files, send mail, forward mail onto
the PBBS network, run a NET/ROM node, etc, etc, and very quickly
you’ll be hooked! New avenues of exploration will open up, new
software will come along to experiment with (TCP/IP is the growth
area in networking software development these days), and I guarantee
that there will always be something new to learn and try.

What if you can’t make things work? The best people to help are
obviously your neighbours who are already using TCP/IP, or you can
put out a general bulletin on the PBBS network asking for advice.

If you are still having difficulties, I will be pleased to try to answer
your queries. Full contact details follow immediately after the title
page of this book. In general I would prefer to receive messages by
packet radio or email, but if you write a letter, please enclose an SASE
(and IRCs if appropriate) for your reply.

Note that my experience of NOS is with various MS-DOS
implementations based on original versions from KA9Q. I haven’t run
NOS on any other platform. Therefore if you have specific detailed
questions on the other platforms, please address them elsewhere; I don’t
want to mislead you with second guesses!

Acknowledgements

NOSintro is based on the work of many people. In the list below I
hope I’ve included all of those who have written NOS software and
documentation in the past, and who have played a significant part in the
development of the amateur TCP/IP packet radio network throughout
the world.

The number one acknowledgement goes, of course, to Phil Karn,
KA9Q, the father of NOS. Phil has demonstrated to the world that it’s
possible to build a powerful, fully functional multi-tasking
communications system, conforming to international networking
standards, on the back of a primitive, memory-constrained, single-
tasking operating system. It shouldn’t work, but it does.

What’s more, Phil has made his software freely available to the world,
and several other people have now used it as a starting point for further
development. Without Phil’s contribution, it’s unlikely that the
amateur packet network would be anything like as advanced as it is
today.

© Intro to NOSintro 5

Now the roll call of other major contributors (in last name order):

John Ackermann, AGO9V
Hayden Bate, GRAMD
Dave Brooke, G6GZH
Mike Chace, G6DHU

Tom Clark, W3ITWI

Mike Dent, G6PHF

D R Evans, G4AMIJ/NQOI
Gary Ford, N6GF

Dan Frank, WONK

Bdale Garbee, N3EUA
Fred Goldstein, K110
Gerard van der Grinten, PAOGRI
Allen Gwinn, NK5CKP
Charles Hedricks

Kelvin Hill, GIEMM
Gareth Howell, GGKVK
Pavel Jalocha, SP9VRC
Brian Kantor, WB6CYT
Anders Klemets, SMORGV
Wally Linstruth, WA6JPR
Peter Meiring, GOBSX
Russell Nelson

Johan Reinalda, WG7J/PA3DIS
Bill Simpson

Mike Stockett, WA7DYX
Paul Taylor, GIPLT

Dave Trulli, NN2Z

Stanley Wilson, AKOB

If you are missing from the list and feel you should be there, please
don’t be offended. Treat it as an inadvertant omission on my part. If
you care to drop me a line I’ll be glad to add your name to the credits in
the next edition of NOSintro.

Good luck with TCP/IP. You’ll have fun!
73

Jan Wade, G3ANRW

November 1992

2: NOSview

NOSview is an on-line public domain documentation package for the
KA9Q Network Operating System (NOS). First released in September
1991, NOSview is a complete reference work describing in detail all of
the commands to be found in the major NOS releases. This chapter
outlines its main features, and how to get a copy.

Introducing NOSview

Over the years, many documents have appeared on the networks
describing various features of NOS, but much of that material is
incomplete. Some of it is inaccurate, and, because it was written and
edited by many hands, sometimes very misleading and inconsistent.

In NOSview I have attempted to pull together all the available
documentation and massage it into a consistent whole. The final
product is almost 300 pages long, around 20 percent being new
material. All of the NOS commands are described in detail, and there
is at least one example included with each command. There are also
many examples of display outputs, showing the results of executing the
commands.

Consistency

Because NOS contains software modules originating from several
different sources, the associated documentation inevitably contains
inconsistencies.

For example, the words label and interface apparently describe
different objects, whereas in actuality they are the same thing. On the
other hand, the word address can have different meanings, depending
on the command.

NOSview @

A lot of effort has gone into NOSview to eliminate these
inconsistencies. Command parameter names are now consistent
throughout. Callsigns in the examples follow a set pattern: calls for
NOS stations are in the NS9xxx series, vanilla AX.25 stations are
AX%00x, NET/ROM stations are NR%xoxx, and so on.

Also, to distinguish between IP hostnames and AX.25 callsigns,
hostnames are shown in lower case (ns9bob), whereas AX.25 callsigns
are in upper case (NS9BOB-3).

These seemingly simple rules make a tremendous difference to the
readability of the documentation. There is now no doubt about whether
a parameter should be an IP hostname or an AX.25 callsign, or whether
you need an IRQ number or an interrupt vector address, and so on.

rcute add default tncO
route add ns%jim tncl
route add 1922.3.4.5 sl0 (no gatew

point-to-p

route addprivate <target host>[/bits] | default
[<gateway host> [<metric>]

The 'route addprivate' command is identical to !
that it also marks the new entry as private; it
included in ocutgoing RIP updates.

>> Example: route addprivate regiondl/24 ns9bob

route drop <target host>[/bits]

The 'route drop' command deletes an entry from t
packet arrives for the deleted address and a def
effect, it will be used.

Fig 2-1: On-line NOS documentation with NOSview. There is a
separate help file for each NOS command, selected from the
pop-up FILES menu.

® NOSview 9

NOSview On-line

But this is only half the story. The real power of NOSview comes into
its own when used with VIEW, a public domain file viewer which is
included with NOSview. VIEW lets you hot-key to the NOSview
documentation without breaking out of NOS, providing instant on-line
help whenever you need to know what to do next.

Figure 2-1 opposite shows an example of the VIEW screen. To take
full advantage of VIEW, NOSview is supplied as a set of over 90
individual help files, one file for ecach NOS command. This provides
immediate access to the command of interest, saving time and effort
when searching for detailed information.

A further benefit of supplying NOSview as individual files, rather than
as one monolithic document, is that you can place the files in your NOS
public directory. Then when someone logs into your system, they can
download selected NOSview information in manageable pieces, rather
than saturate the network for hours on end trying to download one
enormous file.

NOSgas: The NOS Get-Away Special

Yet another feature of NOSview is that it contains a complete working
set of NOS software, dubbed NOSgas — the NOS Get-Away Special.
NOSgas incorporates a complete set of supporting files (such as
autoexec.nos, fipusers and so on) which you can use on your system.
The templates are accompanied by full descriptions of their formats,
plus warnings about the “gotchas” which can cause lots of frustration
if you are unaware of them.

All you have to do is edit these templates to match your system (by
modifying callsigns, etc), and you have a ready-made environment to
try out NOS.

How to get NOSview

The current release of NOSview is version 244; i.e. released in 1992,
week 44. By now, NOSview should be available on the major
telephone bulletin boards worldwide, and also on Internet host ucsd.edu

10 NOSview @

in directory hamradio/packet/icpip/docs. Look for the files
NOSVIEW.ZIP and NOSVW244.ZIP.

Alternatively, you can get a free copy by sending me a clean DOS-
formatted diskette (any size except 360K) and return mailer to the
address on the reverse of the title page of this book. Note that 1 can
only supply NOSview for DOS machines (i.e. running under DR-DOS,
MS-DOS or PC-DOS).

Please enclose return postage with your mailer as follows:

United Kingdom: UK postage stamps
Europe: 3 IRCs
The Americas: 7IRCs
Rest of World: 9IRCs

Any unused IRCs will of course be returned.

Other Versions of NOS

Appendix 1 contains a list of people you can contact to obtain other
versions of NOS for non-DOS platforms.

1

3: THE GROUND RULES

This book contains many abbreviations and acronyms, and a lot of
networking and computer jargon. Many of these terms mean different
things to different people, and even the experts use the same words in
quite different ways. So to pull everything together, this chapter
presents a unified description of these words and abbreviations,
explaining how they are used in the book. Having defined the
terminology and the ground rules here, the rest of the book should then
be much easier to read.

Abbreviations and Acronyms

PC: Personal Computer, in the widest sense, not just an IBM PC
running DOS. Although this book specifically describes the IBM
PC environment for NOS, most of what you see is equally
applicable to the other popular machines such as Apple Macintosh,
Amiga, Atari, and so on.

DOS: Disk Operating System. This means Digital Research’s
DR-DOS, Microsoft’'s MS-DOS or IBM’s PC-DOS, or any of the
many vendor-specific work-alikes.

NOS: Network Operating System. This is the basic TCP/IP software
package and the subject of this book. Earlier PC versions were
known as NET, and some versions for other platforms are still
known as NET. The examples in this book are based on PAOGRI’s
NOS version 2.0m released in Summer 1992, which is in turn based
on KA9Q’s version of 29 December 1991. Other currently
available DOS versions of NOS include WNOS and JNOS.

NET/ROM: This is the networking software for switching nodes
from Software 2000, or work-alike packages such as TheNet.

12

The Ground Rules ©

Networking Protocols

The world of data communications is overflowing with abbreviations,
acronyms and protocols. Here is a checklist of the protocols used in
NOS:

AMPRnRet: Amateur TCP/IP Packet Radio Network.

ARP: Address Resolution Protocol. Handles the association between
IP hostnames and AX.25 callsigns or Ethernet adapter addresses.

AX.25: Amateur X.25 Link Layer Protocol. Handles level 2 frame
transfer between stations.

AXIP: AX.25 over IP protocol. Used for encapsulating AX.25 packet
frames for transmission through an IP “wormhole”.

BOOTP: Boot Protocol. Used for bootstrapping NOS.

FINGER: Finger Protocol. Allows users to find out about other
users.

FTP: File Transfer Protocol. The principal protocol for transferring
ASCII and binary files between stations.

ICMP: Internet Control Message Protocol. Handles IP transmission
errors.

IP: Internet Protocol. The workhorse network protocol in the TCP/IP
combination.

KISS: “Keep It Simple, Stupid!” Protocol. Handles data transfer
between the host computer and the tnc.

NET/ROM: Handles Transport Layer data transfer.

NNTP: Network News Transfer Protocol. Handles distribution of
news files.

NRS: NET/ROM control protocol for managing an external (non-
NOS) NET/ROM node.

PING: Packet Internet Groper protocol. Used for checking the
availability of other stations.

POP, POP2, POP3: Post Office Protocols. Handle reverse
forwarding of SMTP mail.

PPP: Point-to-Point Protocol. Handles serial link data transfers.

® The Ground Rules 13

RIP: Routing Information Protocol. Handles IP routing table
broadcasts.

RLOGIN: Remote login. Allows login to remote computers.

RSPF: Radio Shortest Path First protocol. Another protocol for
handling IP routing table broadcasts.

SLIP: Serial Link Internet Protocol. Another point-to-point serial
link protocol.

SLFP: Serial Link Frame Protocol. Handles serial link compression.
SMTP: Simple Mail Transfer Protocol. Handles the forwarding and
reception of mail.

TCP: Transmission Control Protocol. Handles reliable virtual
circuits between stations, flow control and error recovery (e.g.
duplicate or missing packets).

TELNET: Remote login. In NOS systems, handles login to the NOS
BBS.

TIP: Terminal Interface Protocol. Handles direct communication
with a serial port, character-by-character, with no additional
protocol overhead. Can be used for initialising a tnc or modem.

TTYLINK: Chat Protocol. Handles interactive character-by-
character conversations.

UDP: User Datagram Protocol. Handles one-shot data transfers
(which may get lost en-route).

UUENCODE: Encodes binary files into ASCII prior to transmission.
UUDECODE: Decodes uuencoded files from ASCII back to binary.

Conventions

NOS is based on software which has been around for a long time in the
UNIX world. This means that many of the UNIX conventions apply.

NOS commands are case-sensitive. That is, they consist entirely of
lower-case letters; for example, NOS understands the command session
but doesn’t understand SESSION or Session or SeSsIoN, or any other
variation containing capital letters.

14 The Ground Rules ©

Unlike UNIX or DOS, NOS understands abbreviated commands. You
can abbreviate most commands down to one or two letters, provided the
abbreviation is still unique. For example, NOS understands sess or ses
or even se to mean session, but s by itself is ambiguous, as there are
several other commands beginning with the letter s.

In this book, command names are given in full for clarity.

NOS file paths use forward slashes (/), not backslashes (\) like DOS.
Thus you will see NOS filenames written like /spool/mail/sysop.xt, not
\spool\mail\sysop.txt. Also, NOS filenames are in shown in lower-
case.

All NOS directories are rooted on DOS drive letter N: — thus the NOS
file /spool/mail/sysop.txt corresponds to the DOS file
NASPOOL\MAII\SYSOP.TXT. In this book, we define the NOS root
with the command:

|! SUBST NW: C:\NOS !I

and so the NOS file /spool/mail/sysop.txt is really the DOS file
C:\NOS\SPOOL\MAIL\SYSOP.TXT,

For the few DOS-specific files described in this book, the usual DOS
conventions apply. That is, they are written in upper-case and with
backslashes; e.g. C:\DOS\ANSILSYS.

Station Identification

To run NOS you will need to choose an IP hostname. This is the name
of your system by which other TCP/IP stations will know you, and will
normally be your callsign. In this book, IP hostnames are in lower-
case; e.g. ns9bob.

To distinguish between IP hostnames and AX.25 callsigns, the latter
are in upper-case; .g. NS9BOB-5.

©® The Ground Rules 15

Almost all callsigns in this book are fictitious. The following prefixes
apply to make it easier to distinguish between different types of station:

e ns9.. NOS (TCP/IP) station
e NR9.. NET/ROM node

o AX9.. AX.25 end-user station
e BB7.. AX.25 PBBS station

NET/ROM aliases in this book are of the form #<suffix>. For
example, ns9bob has the alias #BOB. (In reality, the choice of alias is
largely a matter of personal preference, but usually it begins with # or
the letters IP or TCP, to distinguish it from ordinary NET/ROM
aliases).

Keyboard Characters
The following abbreviations apply:

e CR carriage-return (enter)

e \r carriage-return (enter)

e LF line-feed (newline)

o A the CTRL key (e.g. *Z means control-Z)

e CTRL the CTRL key
e SHIFT the SHIFT key

o ALT the ALT key
e ESC the ESCAPE key
e Fn Function Key n

Mail and Bulletin Boards

The generic word mail encompasses personal messages and public
bulletins.

PBBS: The PBBS is the traditional packet bulletin board system,
featuring the familiar AX 25 mailer (using commands like SP to
send mail, R to read it, and so on).

16 The Ground Rules ®

NOS BBS: The NOS BBS is the bulletin board system built into
NOS. This handles AX.25 mail in the same way as a PBBS, and
also handles SMTP mail for AMPRnet/Internet.

External mailers (such as PCElm, ELM and BM) are alternative
programs to handle SMTP mail. You can run these programs
completely separately from NOS, or you call them from within
NOS with the mail command.

PMS: A PMS is the Personal Messaging System built in to
conventional tncs.

The Terminal Node Controller
The tnc operates in three basic modes:

Native Mode is the normal mode for which the tnc was originally
designed. That is, it lets you access the packet network directly
from the keyboard, by giving commands in response to the familiar
cmd: prompt. The tnc controls everything to do with sending and
receiving AX .25 packets, and does not even need a host computer
(all that is required is a dumb terminal).

Host Mode requires the use of a host computer with the tnc. The host
computer takes over virtually all of the functionality of the tnc,
allowing a much greater degree of control, but is still restricted to
sending and receiving AX.25 packets.

KISS (Keep it Simple, Stupid!) Mode is a variation of host mode.
The host computer runs almost all of the network software, and
communicates with the tnc using the KISS protocol. In KISS mode,
the tnc can handle all the protocols supported by AMPRnet,
Internet, NET/ROM and AX.25.

Origin/Target and Source/Destination

When sending information via intermediate stations, it is important to
understand the distinction between terms like origin, source,
destination and target. In this book, these terms are used as follows
(see Fig 3-1):

® The Ground Rules 17

Origi
Target
Source 3
Destination §

Fig 3-1: Origin and Target refer to the extreme end-points of
communication. Source and Destination refer immediate
neighbours.

Origin: is the station originating the information. If you are sending a
message to somebody else, your station is the origin.

Target: is the final intended recipient of your information.
Source: is the station transmitting the information at this point.
Destination: is the station receiving the information at this point.

Thus, referring to Fig 3-1, station A is the origin of the information,
and station D is the final target. For the path between A and B, A is
the source and B is the destination, and for the path between B and C,
B is the source and C is the destination, and so on:

We’ll see that the situation can get quite complicated when considering
a multi-layer path between NOS stations, where the end-to-end path
may take in IP gateways, NET/ROM nodes and AX.25 digipeaters. In
this situation it’s very important to keep a clear head when referring to
source and destination, as these terms may refer to different stations at
the different network layers.

Routers and Gateways

TCP/IP has been around for several years, and a whole vocabulary has
grown up around it. More recently, the International Standards
Organisation (ISO) has formulated the Open Systems Interconnection
(OSI) model — the so-called 7-layer model —to describe network
communications, and this too has its own vocabulary and jargon.

It turns out that there is some commonality between the TCP/IP and
OSI models, but there is also a lot of overlap and conflict, with the

18 The Ground Rules ©

same terms having quite different meanings in the two models.
Predictably, this can cause a lot of confusion. This is not the place to
compare the two models; instead we will say here that the TCP/IP
terminology will be used throughout most of this book, with just
occasional references to the OSI model for comparison.

The main candidate for confusion is the word gateway. In the TCP/IP
world it is referred to as an IP gateway, which corresponds roughly to
an OS] Router (and is nothing to do with an OSI gateway).

19

4: NOS IN A NUTSHELL

This chapter provides a brief overview of the KA9Q Network
Operating System (NOS).

NOS is a multi-tasking operating system that provides an extremely
flexible and powerful set of communications services for use on packet
radio networks, telephone lines and local area networks. NOS supports
most of the commonly used Internet protocols such as TCP, IP,
TELNET, FTP, SMTP and so on, plus the packet radio protocols
AX.25, NET/ROM and PBBS mail.

With NOS you can communicate with virtually any kind of computer
(Fig 4-1). An Amstrad can talk to an Apple, an Amiga can talk to an
IBM mainframe, a laptop PC can talk to a Cray, and so on. What’s
more, you can send electronic mail via worldwide networks, and you
can even log into remote systems, just as if you were directly connected
to them.

NOS supports the AMPRnet (Amateur Packet Radio network), which
rides on the back of the Internet protocols. These protocols are
operating system independent. This means, for example, that you can
run NOS en a PC running DOS or UNIX/XENIX, or a DEC VAX
running VMS, or a Sparc workstation running SunOS. You can send
binary or ASCII files between them, handle mail, and set up gateways
to link different types of network.

Probably the most important aspect of NOS is that all of these
protocols and services conform to internationally agreed standards,
and are available in one form or another on virtually every micro, mini
and mainframe system in use today. This means that you are not
locked into non-standard software (such as YAPP or 7PLUS) that
nobody outside the amateur world understands, and you can
communicate with almost any type of computer in the world in exactly
the same way. NOS is truly an Open System.

20

NOS in a Nutshell @

UNIX

—

st

VMS AMPRnet

SunOS

lntémet

NET/ROM

nio1]

Fig 4-1: NOS provides connectivity with AMPRnet, Internet,

NET/ROM and AX.25

© NOS in a Nutshell 21

There’s more. As well as supporting TCP/IP and AX.25, NOS also
understands NET/ROM. You can even set up your own NET/ROM
node if you want to.

Why support NET/ROM? Well, in the ideal world, all NOS systems
would talk TCP/IP directly to each other, and would handle node-to-
node routing at the IP level. Unfortunately we have yet to reach this
ideal state, so in most cases we have to rely on existing networks to
carry our TCP/IP traffic instead. The most widespread packet radio
network which already exists is NET/ROM, so that is why NOS
supports it.

Thus when you monitor TCP/IP traffic, you may see AX.25 frames
which contain NET/ROM packets which contain IP packets which
contain TCP packets — see Fig 4-2. Sounds complicated, but once
you’ve read this book you’ll see that it’s really quite straightforward to
set up, provided you keep a clear head and understand the functions of
the different network layers.

Fig 4-2: A Muiti-protocol NOS Packet.

And there’s even more. NOS also supports PBBS forwarding and
reverse forwarding, allowing us to communicate with the established
PBBS mail network. NOS stores the PBBS mail files in the same
directories as TCP/IP mail files, and you can read and send mail in
either format.

Thus we have the best of both worlds. We can choose to send our mail
either via the AMPR network or via the AX.25 PBBS network, and we
can read mail from both of those networks as well.

NOS in a Nutshell @

T

| NOS BBS
| MAILER

1 send/receive
1 list/kill etc

| INTERFACE

| SUPPORT

L . i serial ports

i amp O L i device cards
ax25 route | | 5

| domain

{ IP/RIP/RSPF § : £ i Ethemet
. ; i modems
ee—

Fig 4-3: NOS — The Big Picture

© NOS in a Nutshell 23

The Basic Requirements
To run NOS in a DOS environment, you need the following:

e aPC

¢ atnc capable of KISS operation (most are today)

e acopy of the NOS software

¢ NOS documentation (e.g. the NOSview documentation package)
e an Internet (IP) Address.

The PC can be almost any model in the 80x86 family, with at least
IMB of memory. Obviously the machine should be the fastest you can
afford, at least 8 MHz. With a full set of run-time software and on-line
documentation, you will need about 2.5MB of hard disk space
(although you can run a bare-bones system on a laptop with just dual
720K diskette drives at a pinch).

NOS software and full reference documentation are available in the
NOSview package, already described in the Chapter 2.

Internet addressing is explained below.

The Internet Protocols

Figure 4-3 opposite shows the main building blocks of NOS. The two
networking protocols at the heart of NOS are the Transmission Control
Protocol (TCP) and the Internet Protocol (IP), at the bottom of the
diagram. These protocols were developed under the aegis of the
Defense Advanced Research Projects Agency (DARPA) in the United
States, and have been in general use in data networks throughout the
world for many years.

However, the raw TCP and IP protocols are not of very much interest
by themselves, at least not while you’re still learning how to set up
NOS. Much more important are the network services that use TCP/IP,
which you will use to transfer files, send mail and so on.

24

NOS in a Nutshell ©

The five main classes of network services which you will use are (again
see Fig 4-3):

e Chat

e Remote Login

o File Transfer

e Mailers

¢ Network Connectivity

Chat

The chat service lets you do just that, using the NOS command ttylink
(or chat in some versions of NOS). Thus if you want to chat to
NS9KEN, you give the command ttylink ns9ken, and once you are
connected you can converse in exactly the same way as in vanilla
AX.25. NOS saves keystrokes in a buffer as you type, and then
transmits the buffer when you hit CR.

Remote Login

There are two different remote login services provided in NOS. The
one you are most likely to use is TELNET. When you give a command
such as telnet ns9ken, you will normally be connected to his NOS
BBS, where you can read and send mail, and use various network
gateways if you have permission.

The alternative login service is rlogin. This command lets you perform
a login to a remote computer which supports the RLOGIN protocol.

File Transfer

The NOS command for file transfer is ftp. To transfer files between
your systtm and NSO9KEN’s system, you give the command
ftp ns9ken, and when you are connected you can give the get command
to fetch a file from NS9KEN (e.g. get yourfile.txt), or use put to send
a file to NS9KEN (e.g. put myfile.txt).

You can transfer ASCII or binary files, simply by giving the ascii or
binary command before starting the transfer. You don’t need to worry
about lost packets or duplicate packets; FTP takes care of error

© NOS in a Nutshell 25

detection and correction, so when the transfer is done you can be
confident that it was successful.

Mailers

The basic function of a mailer program is to let you compose messages
and bulletins ready for forwarding, and to read incoming mail. There
are no less than four mailers which you are likely to come across in
NOS systems:

BM

ELM

PCEIm

NOS BBS

The first three of these mailers are not actually part of NOS, but are
separate programs which you can call from NOS when you want to
access your mailbox. Alternatively you can use them completely
independently of NOS, starting them from the DOS command line.

The fourth mailer, the NOS BBS, is built in to NOS, and has several
extra features in addition to handling mail.

Why so many mailers? It’s really a matter of history. In early versions
of NOS there was no built-in mailer, and BM (“Bdale’s Messy Mailer”
from N3EUA) was provided instead. This had very basic functionality
and was cumbersome to use, but it served its purpose at the time.

Next in line came ELM, which provides a much nicer full-screen menu
environment. With ELM you can compose mail using your favourite
text editor, include files in your messages, set up mailing lists and so
on. Many people use this mailer today.

PCElm is a more recent mailer which looks and works very much like
ELM, but is in fact unrelated. As well as providing all the facilities of
ELM, PCEIlm also has a built-in text editor and lets you set up screen
colours, define message file name extensions and delimiters, filter out
unwanted message headers and so on.

The built-in NOS BBS contains a simple mailer which works in a very
similar way to the familiar AX.25 PBBS. You give commands like L
to list mail, SP or SB to send it, R to read it and so forth. However,
the NOS BBS also provides a set of gateway commands which let

26 NOS in a Nutshell @

users break out into the NET/ROM network or telnet into another NOS
BBS, or even take over control of your station as a remote sysop — but
you’ll be glad to hear they can’t do any of these things unless you give
them permission!

Use of the NOS BBS is not restricted to TCP/IP users. An ordinary
AX.25 user can connect to your NOS BBS, read and send mail just like
a TCP/IP user, and can use the gateway commands as well if they have
permission. In other words, this gives an ordinary AX.25 user the
capability of accessing the NET/ROM network and AMPRnet if they
want.

So which of these four mailers do you use? If you are logging into
someone else’s system, you have no choice: the built-in NOS BBS on
that system is the only mailer you can access. On your own system
you can use the NOS BBS if you want, but you’ll probably prefer to
use PCEIm (or perhaps ELM) as it has 2 much nicer user interface.

Mail Forwarding

The main function of the mailers just described is to let you read and
compose mail. To send and receive this mail, NOS provides three mail
forwarding services:

¢ Simple Mail Transfer Protocol (SMTP)
e Post Office Protocol (POP)
e AX.25 PBBS Forwarding

SMTP handles the sending and receiving of mail via AMPRnet, and is
the default method of handling mail. Using SMTP you can transfer
mail between any computers which understand it; i.e. virtually any
kind of machine in the world.

POP is the reverse forwarding protocol that works with SMTP. With
POP you can nominate another machine as your Post Office, and
when you run POP, your own machine will automatically login to
the Post Office and collect any mail waiting for you.

AX.25 PBBS forwarding and reverse forwarding is fully compatible
with the PBBS network, so if you don’t have access to a local NOS
system which can forward your mail using SMTP, you can still
communicate with the outside world via the PBBS network.

© NOS in a Nutshell 27

Network Connectivity Services

NOS provides a number of network support services which let you
check the availability of other stations on the network. These services
include ping and hop.

The ping command is known officially in the trade as the “Packet
Internet Groper™ (... amazing but true!), and is useful when you’re not
sure if a local station is responding to your traffic. Whenever you want
to check if a local station is active, you “ping” it; e.g. ping ns9ken. If
NS9KEN is running NOS, it will respond to your ping, and you will
see on the screen a number representing the round-trip time for your
ping packets. If you get no response, or if the round-trip time is
unexpectedly long, you know that something is wrong.

The hop commands let you check the availability of routes to a
particular station. For example, to find out which gateways your
packets pass through to reach NSOLIZ, you would give the command
hop check ns9liz. This is very useful to verify that a route exists to the
target station — and can sometimes show up some bizarre routings that
you never knew existed!

Station IP Addresses

Every NOS station has an IP address, a unique 32-bit number which is
usually expressed as four decimal numbers separated by dots (the so-
called “dotted-decimal” notation). For example, NS9BOB’s IP address
in this book is 44.199.41.1.

The first byte is always 44, which represents the AMPRnet.

The second byte (199) usually represents a country (or a state in the
United States).

The third and fourth bytes are an address within that country.
Typically the third byte will represent a region or area, and the last byte
will be a station number in that region.

Incidentally, you may see some documentation which shows IP

addresses enclosed in square brackets; e.g. [44.199.41.1]. This
convention is a relic of early NOS systems, and is not used today.

Each country or state where there is AMPRuet activity has a local IP
address coordinator who allocates addresses on request. A list of

28 NOS in a Nutshell ©

coordinators is shown in Appendix 5. You should contact your local
coordinator listed in the appendix to get an address. If your country
does not yet have a coordinator, you should contact the international
coordinator in the United States instead (but be prepared — he will
probably nominate you as the country coordinator!).

From time to time the coordinators issue a full list of IP addresses in
their area, as a set of bulletins on the PBBS network. When you set up
your NOS station, you will use this list to create the file domain.ixt,
which NOS uses whenever you make a network connection. (Strictly
speaking, you don’t really need to have a domain.txt file — you could
use IP addresses instead of symbolic hostnames; e.g. you could give the
command ping 44.199.41.2 instead of ping ns9ken, but obviously it is
more meaningful to use names rather than addresses).

Keeping domain.txt up to date is clearly a problem. One way round
this is to nominate a local station as a Domain Name System (DNS)
Server, which keeps a master copy of the file and makes it available to
other users. (This is somewhat similar to a PBBS White Pages server,
which keeps a record of AX.25 stations and their local mailboxes). If
you then set up NOS to use the DNS server and attempt to make a
network connection, NOS will first look in your own domain. txt file for
the hostname you have given. If it can’t find the hostname there it then
automatically make a request to the DNS server machine for the IP
address of the station you are trying to contact.

Address Resolution Protocol

When setting up a network connection, NOS needs to know not only
the IP address but also the link address of the station you wish to talk
to. If you are using a radio link, the link address is the other station’s
callsign (e.g. NS9KEN-5). If you are on Ethemnet, the link address is
the 48-bit hardware address of the Ethernet adapter card in the other
station’s PC (e.g. 00:00:C0:AC:01:26).

To set up the table of link addresses, NOS provides the arp (Address
Resolution Protocol) set of commands. Thus, for example, to
communicate with NS9KEN, you could give a command such as
arp add ns9ken ax25 NSOKEN-5, thus forming an association
between the IP hostname (ns9ken) and the link address (NS9KEN-5).

© NOS in a Nutshell 29

Routing

Routing controls how packets get to their destination. NOS supports
no less than three completely independent levels of packet routing:

e AX.25 routing
e NET/ROM routing
¢ [P routing

You’ll already be familiar with AX. 25 routing, particularly when it’s
referred to by its more usual name: digipeating. NOS has a set of
ax25 route commands which let you set up digipeater paths to
nominated destinations.

For example, to route packets via digipeater AX9DGC to reach
NS9PAM-5, the NOS command to set up the AX.25 routing table
entry will be ax25 route add NS9PAM-5 AX9DGC.

Similarly, there is a set of netrom route commands, with which you
can set up NET/ROM routes and aliases which ordinary NET/ROM
nodes understand.

IP routing is basically an extension of the NET/ROM routing idea,
specifically for forwarding IP packets onwards to their final
destination. NOS has a set of route commands for setting up and
maintaining the IP routing table.

Each of these three levels of routing is quite independent of the other
two.

Routing Table Updates

In the amateur packet network, nothing lasts for ever — or even for a
lot less time than ever! Routes between nodes are continually changing
as stations come and go, as frequencies change and so on. This means
that for there to be any realistic chance of communicating with other
users on the network, your station has to be kept up-to-date with the
current routing situation.

NOS achieves this in two ways. Firstly, it listens to user traffic on the
frequency, and when it hears stations it dynamically updates the
appropriate routing tables. These updates remain in memory for a
finite period (usually measured in minutes or tens of minutes), and if a

30 NOS in a Nutshell &

station is not heard again the routing information for that station
eventually disappears.

The second way that NOS keeps up-to-date is by routing broadcasts.
NOS regularly sends broadcasts of the NET/ROM routing table in just
the same way as a native NET/ROM node, and also sends IP routing
table broadcasts at regular intervals.

For IP routing broadcasts, NOS supports two protocols: RIP (Routing
Internet Protocol) and RSPF (Radio Shortest Path First) protocol. RIP
is the protocol to use if your station is part of a well-established and
stable network such as Fthernet, whereas RSPF works better in a
dynamic radio environment.

Wormhole Routing

Another method of packet routing supported by NOS is the wormhole,
which provides AX.25 connectivity over a TCP/IP link. This is useful
where you are linking two AX.25 stations via an Ethernet or telephone
connection. In effect, the NOS wormhole acts just like a (rather
complicated) digipeater — see Fig 4-1 opposite.

Interface Support

NOS is noted for its very wide range of supported interfaces (although
not every version of NOS will support all of them). These include:
e The serial ports (COM1 - COM4), for tncs or modems

e Modem control

o Ethemet adapters

e Clarkson drivers

e Baycom AX.25 driver

e DRSIPCPA 8530 card

o HAPN 8273 adapter

¢ High speed DRSI/HAPN driver

o [Eagle 8530 card

e NET/ROM control

o Single- and multi-port KISS TNCs

e PACcom PC100

@ NOS in a Nutshell 31

ni 04]

Fig 4-4: The AXIP wormhole lets AX.25 users communicate over
AMPRnet.

In other words, NOS will talk to virtually any tnc or modem, or any of
the well-known network adapters. The Clarkson drivers are freely
available as public domain software, and support all of the generally
available Ethernet and Token Ring LAN adapters.

NOS talks a number of low-level protocols via these interfaces:

e KISS for tnc control
s SLIP and PPP for serial point-to-point telephone links
e NRS for NET/ROM control

e Ethernet and ARCnet for Ethernet adapters

The NOS Session Manager

Because NOS is a multi-tasking system, you can run many sessions in
parallel. Hence it’s possible, for example, to telnet to NS9KEN, do file
transfers with NSOLIZ, access your own mailbox, ping NS9BOB and
have a chat with AX.25 station AX9AAA, all at the same time. In

32

NOS in a Nutshell &

principle you can run many more sessions as well, but you’ll really
need a Jekyll and Hyde personality to handle it all!

The NOS Session Manager maintains a virtual screen and keyboard for
each session, and you can hot-key from session to session at will. You
can find out the status of any session on demand, and you can trace all
the traffic flowing through your station, right down to the hexadecimal
byte level if you want to. You can also record any session on disk for
later use. Furthermore, you can allow other stations to drive your
Session Manager remotely if, for example, your station is on a remote
hilltop site.

That’s NOS

By now it will be clear that NOS is a very complex package, with
many advanced features which make it usable in a wide variety of
environments. To the beginner, some of the features in NOS may
appear to be daunting, but fortunately it isn’t necessary to understand
everything before you can use it.

Just like when using a tnc for the first time, you can get away with
using default setup parameters; performance may not be optimum, but
it will at least work. Then as you gain experience you can dig deeper
into the software and start to experiment with different configurations.

Driving NOS is a bit like driving a car. Think of the network protocols
(TCP, 1P, SMTP and so on) as the engine, and think of the network
services (like TELNET and FTP) as the brakes and steering. To drive
NOS (the car), you have to know about TELNET and FTP (the brakes
and steering), but learning about TCP and IP (the engine) can wait until
later.

With NOS, all you really need to know at first is how to set up the tnc,
how to configure the address and routing tables, and how to use the
basic network services to transfer files and handle mail. Fine tuning of
the network protocol parameters can wait until much later.

5: LET'S MEET THE LOCALS

For the purposes of illustration throughout this book, there are many
examples of NOS commands which include callsigns, IP addresses and
so on. To achieve continuity and consistency from chapter to chapter,
it’s useful to present a network showing who’s who. So let’s meet the
inhabitants of the hypothetical country of Nosland — see Fig 5-1.

The Nosland network consists of a mixture of ordinary AX.25 stations
(the small boxes in Fig 5-1), NET/ROM nodes (middle-size boxes) and
NOS TCP/IP stations (the shaded boxes). Stations have callsigns in
the following series:

AX .25 stations AXOxxx

AX.25 PBBS stations BB7xxx

NET/ROM nodes NROxxx

NOS stations NSOxxx
The IP network

The IP network (AMPRnet) is spread over three geographical regions,
arbitrarily called Regions 41, 45, and 47. The IP addresses of stations
in these regions are of the form 44.199.rr.xx, which breaks down as
follows:

e 44 isthe AMPRnet network code.

e 199is the country code for Nosland.

e 1T isthe Region code (i.e. 41, 45 or 47).

e xx is the station address within the region.

Let's Meet the Locals ©

mail
exchanger

smip
g_qfem:y server

44.199.41.1
NS9BOB-5

44.199.47. 75
ﬂSQTOM—S

domain name

NETWORK

AX 25 PBBS

44.199.47.76
NS9BEN-5

ni 054

Fig 5-1: The NOSLAND Network.

© Let's Meet the Locals 35

Star of the show (on whom most examples in this book are based) is
Bob, shown near the top of Fig 5-1. His AX.25 callsign (in upper-case
letters) is NS9BOB-5, and he has the IP hostname (in lower-case
letters) ns9bob.ampr.org, shortened to ns9bob. His IP address is
44.199.41.1.

Bob’s immediate IP neighbours in Region 41 are NSOPAM (via
digipeater AX9DGC) and NSO9KEN. Through Pam he can talk to Sue
in Region 45, and through Ken he can talk to Liz and Jim, also in
Region 45.

Bob also talks to NSOMXA, which acts as a mail exchanger gateway.
Bob uses this gateway to forward mail addressed to certain specific
stations. He also forwards mail to other stations via the general SMTP
gateway NSOSGW.

Further, he uses the Domain Name System server NS9DNS, to get IP
addresses for stations which are not included in his own [P name-and-
address file.

The NET/ROM Network

The ordinary NET/ROM network on the left of Fig 5-1 links Regions
41 and 47, and consists of three nodes, NROAAA, NR9BBB and
NR9ZZZ. These nodes have NET/ROM aliases NRA, NRB and NRZ

respectively.

In addition, Bob and Tom run NET/ROM nodes within their NOS
stations, using the alias:callsign pairs #BOB:NS9BOB-6 and
#TOM:NS9TOM-6 respectively.

The AX.25 Network

There are several stations which run ordinary AX.25. These include
digipeaters AX9DGA, AX9DGB and AX9DGC, plus end stations
AXI9TIM and AX9SAM (AX9DGA and AX9DGB are not shown on
this diagram).

Station BB7BBS is a regular AX.25 mailbox, capable of receiving and
forwarding mail over the PBBS network. Bob acts as a mail gateway,
forwarding mail to and from BB7BBS.

36 Let's Meet the Locals &

Connectivity

The stations which can talk direct to each other are joined by lines in
Fig 5-1. Certain stations function as bridges, routers and gateways, to
provide connectivity for other stations which are out of direct range of
each other. The Nosland network has been carefully designed to show
how to configure each of these stations, to handle just about every
forwarding scenario you’ll encounter in practice.

37

6: THE TNC REVISITED

Most amateur packet radio systems use a terminal node controller
(tnc) to interface the computer to the radio (Fig 6-1). The tnc is
basically a Packet Assembler/Disassembler (PAD), with a built-in
modem to convert outgoing digital bit streams into audio tones suitable
for modulating the radio transmitter, and to convert incoming audio
from the radio receiver into digital data for the PC,

ni 06

Fig 6-1: The Terminal Node Controller contains a packet
assembler/disassembler (PAD) and modem.

[As an alternative, some people are now using the Baycom modem for
packet radio. In this case, the PAD functionality is implemented in a
special software driver which you load into memory before starting
NOS].

This chapter examines briefly what is inside a tnc, and the various
modes it can operate in.

38

The TNC Revisited ©®

TNC Modes

The tnc can operate in three different modes:

e Native mode
o Host mode
e KISS mode

Native Mode

Native mode is the mode for which the tnc was originally designed. As
its name implies, the tnc controls a terminal node on the packet
network, and when operating in native mode you don’t even need a
computer; a dumb terminal is enough.

When the tnc starts up it displays the familiar cmd: prompt on the
terminal; and you can then give around 80 commands to start and stop
connections, monitor network traffic, send and receive mail, and so on.

All of these operations are controlled by firmware within the tnc (Fig
6-2). The firmware has five main components:

e Command interpreter

e TNC control
e Packet Assembly/Disassembly
e Radio Control

e Personal Messaging System

Command Interpreter: The command interpreter directs user
commands to the other firmware components.

TNC Control: This component understands dozens of commands to
set up the tnc; e.g. uart control, terminal link flow control, clock
initialisation, callsign setup, etc, etc.

Packet Assembly/Disassembly: This is the major component of the
tnc firmware, handling the connection and disconnection of AX.25
virtual circuits, AX.25 timers, digipeater routing, beacons, network
monitoring, packet sequencing/flow control and HDLC frame
assembly/disassembly.

The TNC Revisited 39

ni 07

Fig 6-2: The tnc in native mode. All packet handling takes
place inside the tnc.

Radio Control: This component supports the radio-dependent aspects
of the tnc, such as TXDELAY and other timers, persistence count
and so on.

Personal Messaging System: The PMS is a simple messaging system
that stores personal messages which people have sent to you.

These tnc functions are only briefly listed here, simply to allow us to
compare native mode operation with host mode and KISS mode. If you
want to find out more about native mode, the book Your Gateway fto

40 The TNC Revisited @

Packet Radio by Stan Horzepa is highly recommended (details in
Appendix 6).

Shortcomings of Native Mode

When the first tncs were designed in the early 1980s, the goal was to
give users the opportunity to get into packet radio with the minimum of
equipment. Together with just a dumb terminal and a radio, you had
everything you needed to make AX.25 network connections, chat
interactively with your neighbours, and send and receive short personal
messages.

But that was all. If you wanted to do more adventurous things like file
transfers, or set up a store-and-forward bulletin board, or set up a
network switch, you had to replace the dumb terminal with a PC.

To do these things properly, the PC has to be in control of the packet
station, not the tnc. But with the firmware which existed in the early
tncs, it was the ne that was in charge of proceedings. The tnc decided
when to send a message to the PC, and what format the message was
in. Incoming status messages got mixed up with user data, and the file
transfer was a hit-and-miss affair.

The basic difficulty was that the tnc’s user interface had been designed
for people, not computers. Human users were not greatly troubled if
status messages arrived at random times in different formats, and were
mixed up with data, but programming a PC to cope with all these
possibilities was a nightmare.

To overcome these shortcomings, host mode was introduced.

Host Mode

In host mode (Fig 6-3), the tnc is like a well-behaved child — it only
speaks when spoken to! The PC is now in charge of proceedings, and
commands and responses across the serial link are in simple, consistent
formats which are easy to program. The PC only asks the tnc for
information when it is ready to receive it.

This makes it much easier to display session status, switch between
multiple data streams, and so on. Programming network services such
as file transfer and bulletin boards is now straightforward, and more

©® The TNC Revisited 41

flexible — it’s much easier to change software in the PC than to
change firmware in the tnc.

Fig 6-3: When the tnc operates in host mode, the PC is in
control. The PC handles the higher level functions such as the
Personal Messaging System, multiple streams and split-screen

operation. The tnc still handles low-level packet assembly/
disassembly, however, and is still restricted to AX.25.

However, in host mode, most of the low-level packet handling still
takes place within the tnc. This is fine for AX .25 virtual circuits, but
not suitable for other protocols such as TCP/IP. What’s really needed

42 The TNC Revisited @

is the capability of the PC to control the content of frames at the lowest
level. This is what you get when the tnc operates in KISS mode.

KISS (Keep it Simple, Stupid!) Mode

When the tnc operates in KISS mode, almost all of the station’s
functionality takes place within the PC (Fig 6-4). The PC provides the
high-level network services for file transfer, bulletin boards and so on,
together with lower level protocol software which has access to every
HDLC frame that enters and leaves the tnc.

Network Services |
(ffp. teinet etc)

TCP UDP
P
NET/ROM
AX.25

| Packet
Assembly/
| Disassembly

ni 09

Fig 6-4: In KISS mode, the tnc handles all frame types. NOS in

the PC contains a complete set of AX.25 software (replacing the

tnc AX.25 firmware), together with support for all the AMPRnet
protocols and NET/ROM.

@ The TNC Revisited 43

This means that it’s now possible to control exactly what goes into
each individual HDLC frame, making it straightforward to multiplex
several different protocols over the same radio link. The downside, of
course, is that these protocols have to be implemented within the
PC — this makes it necessary for NOS to contain a complete set of
AX.25 software which completely replaces the AX.25 firmware in the
tnc.

The KISS Protocol

To communicate between the PC and the tnc, the KISS protocol is
used. This is a very simple asynchronous packet protocol, whose main
purpose is to provide an envelope for HDLC frames (Fig 6-3). Each
frame starts and finishes with a Frame End (FEND) character. There
is no checksum or CRC.

ni 10

Fig 6-5: KISS Frame format. When a frame reaches the tnc, the
FEND and KISS type bytes are removed, leaving the original
packet for transmission.

The TNC Revisited @

Immediately following the leading FEND character is a KISS fpe
byte. The low-order 4 bits of this byte contain a control code.

If the code is 0, this is a data frame, and the high-order 4 bits specify
the tnc port number (0-15) for which the frame is applicable.

If the control code is non-zero, the frame contains a tnc setup
command.

The KISS link is set to 8-bit data, one stop bit and no parity. If a
frame happens to contain a data byte which looks like a Frame End
character, the byte is replaced with a 2-byte Frame Escape/Transposed
Frame End (FESC/TFEND) sequence. If a frame contains a FESC,
this is replaced with a 2-byte Frame Escape/Transposed Frame Escape
(FESC/TFESC) pair.

o

Voo asWwWweH

Data Frame

TX Delay (x 10ms)

Persistence (0-255)

Slottime delay (x 10msS)

TX Tail (x 10mS)

O=half duplex, l=full duplex
Hardware dependent

TX mute

0=DTR low, 1=DTR high

0=RT8 low, 1=RTS high
Baudrate

End delay

Group

Idle

Min

Max key

Wait

Parity: O=none, l=even, 2=odd
Down

Up

Prepare to switch tnc from KISS to native mode
Switch tne from KISS to native mode

Table 6-1: KISS Control Codes (expressed in decimal). Most of
these codes are tnc-specific. Only codes 0-3, 5 and 255 are

understood by all tncs.

® The TNC Revisited 45

When a KISS frame arrives at the tnc, the FEND characters and KISS
type byte are stripped off, and any escaped characters are replaced with
their original values. Then, if the frame is a data frame, it is passed to
the HDLC controller chip for transmission.

If the frame is a tnc control frame, the tnc executes the command
specified in the KISS type byte. Some of the commands require
additional parameters, which are included in the rest of the frame. The
actual command codes and their functions are tnc-dependent.

A more-or-less complete list of known codes is shown in Table 6-1
opposite. All tncs understand codes 0-3, 5 and 255, whereas the
remaining codes are mostly for experimental use.

For a more detailed description of KISS mode, see the paper by Mike
Chepponis and Phil Kam (details in Appendix 6).

Switching the TNC to KISS mode

When you power up a tnc, it will normally start in native mode. To
make the tnc ready for NOS, you first need to initialise it with your
AX 25 callsign, and you also need to set up the CW ID interval for
Morse code station identification, if local licence regulations require it.

For example:

cmd: MYCALL NS9BOB-6
cmd: MID 84

Then, to switch to KISS mode, the command:

|| cmd: KISS ON Il

is probably all that’s necessary — see Fig 6-6 on the next page.

Once the tnc is in KISS mode, it won’t understand any more native
mode commands. From now on, all communication with the tnc uses
the KISS protocol.

46

The TNC Revisited @

cmd: MYCALL NS9BOB-5
cmd: MID 84
cmd: KISS ON

net> (NOS commands)

net> param tnc0 255

ni 12

Fig 6-6: Switching the tnc between native mode and KISS mode.

However, some older tncs may require a sequence of commands to
switch from native to KISS mode; e.g.

cmd:
cmd:
cmd :
cmd :
cmd :
cmd :
cmd :
cmd :
cmd ¢
cmd :
cmd:
cmd :
cmd:
cmd :
omd :

AWLEN 8

CONMODE TRANS

HID OFF
HPOLL OFF
KiSS ON
PARITY 0
PPERSIST ON
RAWHDLC ON
START §00
STOP $00
TRACE OFF
XON $00
XOFF $00
XFLOW OFF
HOST ON

@ The TNC Revisited 47

Switching Back to Native Mode

If you want to switch your tnc out of KISS mode back to native mode,
you need to send a KISS command frame with command code 255.
This is achieved in NOS with the param command:

I net> param tnc0 256 H

where tnc0 is the name of the interface to the tnc. Some tncs may also
require the param tnc0 254 command as well:

net> param tncld 254
net> param tncld 266

]

7: A PEEK AT PROTOCOLS

In this chapter we take a fresh look at some of the protocols which you
are probably already using, such as AX.25 and NET/ROM, and then
explain how TCP/IP and the AMPRnet ride on top of them.

Protocol Stacks

Present-day networking design usually follows the OSI model, the so-
called 7-layer protocol stack (the left half of Fig 7-1). This isn’t the
place to go into detail on the functions of each layer in the stack;
suffice to say here that it’s convenient to break down the stack into two
parts. The lower part contains the Physical, Data Link and Network
layers, and the upper part contains the remaining four layers.

The essential difference between the two sets of layers is that the lower
layers are basically network-dependent, whereas the upper layers are
virtually independent of the underlying network.

However, the TCP/IP world which NOS supports was well established
long before the OSI model became accepted. The TCP/IP stack is
shown in the right half of Fig 7-1, and from this we can see the
approximate correspondence between the two models.

The reason for showing both of these stacks here is that some of the
protocols which NOS supports (such as KISS, AX.25 and NET/ROM)
best fit the OSI model, whereas the Intemet protocols best fit the
TCP/IP model. Predictably, this mixture of old and new protocols has
caused many headaches for the software developers who squeezed them
all into one package. To the purist the result is a mess, but to the
pragmatist it works, and that’s what counts!

So let’s merge the protocols which NOS supports into one diagram
(Fig 7-2). It looks preity complicated now, but if we take it piece by
piece it won’t be too painful. Let’s start at the bottom.

50 A Peek at Protocols @

The O8I TCP/IP Protocol
Reference Model Architecture
BBS
NET/ROM
AX.25
Kiss
ni 14 |

Fig 7-1: The OSl and TCP/IP Protocol Stacks

The Physical Layer

The physical layer is concerned with the physical connections to the
network, NOS provides support for three main types of connection:

¢ modems

¢ packet radio terminal node controllers

e local area network adapters

The connection between the PC and a modem can be a simple 3-wire
cable (TD, RD and ground), but is much more likely to include all the
modem control lines, such as RTS, CTS and so on.

@ A Peek at Protocols 51

Fig 7-2: NOS Protocols
L]

52 A Peek at Protocols @

The connection between the PC and a tnc can also be a 3-wire cable, as
the KISS protocol which NOS uses when running TCP/IP does not
support flow control. However, some versions of NOS do support
hardware flow control, so it would make sense to have a cable with all
the modem control lines present anyway.

The LAN adapter can be any of a wide range of commonly available
Ethemnet or token ring adapters. We will see shortly that NOS allows
you to install one or more of the public domain Clarkson drivers which
support these adapters.

NOS Drivers and Interfaces

For each of the I/O controllers and the uarts in your system you will
need to define a DOS 1/O address and an IRQ vector number. For
example, for the COMI1 port, the uart uses I/0O address 0x3f8 and
IRQ4. These numbers appear as parameters in NOS attach
commands which run when you start NOS. For example:

ﬂ attach asy Ox3f8 4 ax25 tncO 2048 256 4800 !I

We’ll look in detail later at what all the parameters mean, but two of
them are relevant here. The parameter asy is the name of the NOS
asynchronous driver, and the parameter tnc0 is the NOS interface name
for the driver. NOS driver names like asy are fixed, but you can
choose any meaningful names for the interfaces. (In this book we use
the name tncO for the tnc interface, but other documentation which you
may have seen uses the names ax0 or pkO instead).

Interface names are used in many commands. For example, if you
want to trace packets passing through the tnc, you can give the
command trace tnc0 211, or if you want to chat with AX9SAM using
AX.25 you can give the command connect tncd AXISAM. Similarly,
if you use the interface name tel0 for the modem port, you can run a
dialer script with a command like dialer tel0 /scripts/dialbob.scr.

Data Link Layer

The Data Link layer is concerned with protocols which encapsulate
packets into frames in readiness for transmitting them (and also, of

@ A Peck at Protocols 53

course, for decapsulating received packets). When sending and
receiving data over a telephone line, the most common protocol is
SLIP, but the PPP point-to-point protocol is nowadays gaining in
popularity.

For the packet radio network, you will almost certainly be using the
AX 25 protocol at this level, with the AX .25 packets being enveloped
in KISS frames for the tnc. The AX.25 driver is fully compatible with
the AX.25 Level 2 Version 2 specification, so you can use it not only
for NOS but also for ordinary AX.25 connections if you want to.

An added feature of NOS is the ability to talk directly to a serial port,
without encapsulating the data in any way. This is useful if you want
to send commands to the tnc in native cmd: mode, or to set up or
interrogate a modem.

NOS provides three commands to do this:

e tip allows interactive access to a serial port via the keyboard and
screen;

e comm lets you send previously prepared strings from a file to a
serial port;

e dialer lets you control a serial port with scripts containing modem
control commands, time delays and tests for expected responses.

For LAN adapters you can use external drivers compatible with the
FTP Inc packet interface. As the drivers are not part of NOS, you load
them into memory before starting NOS. You can get suitable drivers
from the FT/TCP package available from FTP Inc, or more probably
you will use one of the public domain Clarkson drivers. Appendix 1
gives the details.

The “Workhorse” Protocols

Working our way up Fig 7-2, we now come to the “workhorse”
protocols which do the hard work of transferring information between
systems. These include TCP, IP, UDP, ICMP, NET/ROM and others.
As already mentioned in Chapter 4, think of these protocols as the
“engine” of the NOS system. We are not particularly interested at the
moment in exactly what they do or how they work; all we need to know
now is where they fit into the overall picture.

54 A Peek at Protocols @

The Network Services

The services shown at the top of Fig 7-2 (tip, ftp, telnet etc) form the
interface between NOS and the user. You can give commands like
ftp ns9bob from the keyboard and see responses on the screen, or you
can include the commands in script files if you want to run them
repeatedly (in a similar way to * BAT files in DOS). You can also give
many of the commands from your built-in NOS BBS.

The Session Manager

The Session Manager is the part of NOS which pulls everything
together. You give commands to the Session Manager, which then
either executes them immediately, or starts new sessions to handle
them. With the Session Manager you can monitor what is happening
within NOS at any time, start and stop network services, abort data
transfers, run command scripts, trace network packets, change
interface configurations and so on.

0 AX25 — 01 ICMP ping
cd ARP — 06 TCP telnet, fip. efc
cf NET/ROM — 11 UDP rip, hopcheck

Fig 7-3: The Protocol ID (PID) code in the AX.25 frame specifies
the type of packet. When the PID = cc (hex), it is an IP packet,
and the IP Protocol code then specifies the higher level
protocol. (All codes shown here in hexadecimal).

55

8: NAMES, DOMAINS AND ADDRESSES

Before you can communicate using TCP/IP, you need an Internet
hostname and address. Your hostname will usually be your callsign,
followed by the domain name for packet radio: .ampr.org (e.g.
ns9bob.ampr.org). A domain is a logical area in the Internet network;
ampr means “‘amateur packet radio” and org means “organisation.”

To get an Internet address, you need to contact your local address
coordinator (see Appendix 5 for a list of coordinators). The IP address
will be 32 bits long, and, like your radio callsign, it will be
unique — nobody else in the world will have the same address. The
address is almost always written in dotted-decimal notation; e.g.
44.199.41.1.

The domain.txt File

Having received your IP address, you now edit it into the NOS name-
and-address file, domain.txt. Appendix 3 contains an example of a
typical domain.txt file (see pages 318-319). Fig 8-1 on the next page
shows a short extract.

Each entry (known as a “resource record”) needs one line, and the
fields are separated by any combination of tabs or spaces. You can
include comments, prefixing them with the # character.

Special Addresses

The first few resource records in domain.txt specify some special
addresses for network broadcasts and packet routing. Later chapters
describe how to use these.

The loopback address is a dummy IP address: 127.0.0.1. When you
send anything to this address, you are really sending it to yourself! For

56 Names, Domains and Addresses @

example, you can transfer a file to yourself with the command
ftp loopback, or log into your own NOS BBS with telnet loopback.
You won’t use loopback very often once you are familiar with NOS,
but it’s extremely useful for testing off-air — this way you can learn a
lot about NOS and make as many mistakes as you like, without
treading on your neighbours’ toes. Incidentally, some documentation
uses the word localhost instead of loopback; this means exactly the
same thing.

#

SPECIAL ADDRESSES

#

ampy . ampr.org. IN A 44.0.0.0

nosland. ampr.org. IN A 44.199.0.0

regiondl.ampr.org. IN A 44.199.41.0

region45.ampr.org. IN A 44.199.45.0

locopback.ampr.org. IN A 127.0.0.1

i

RADIO REGION 41

#

nsSbob. ampr.org. IN A 44.199.41.1

ns9ken.ampr.org. IN A 44.199.41.2

ken.ampr.org. IN CHAME ns9ken.ampr.orgq.

naSpam. ampr.org. IN A 44.199.41.3

ns9Yzzz.ampr.org. IN MX 0 nsSken.ampr.org.
IN WS nsSdns.ampr.org.

ns9dng . ampr.org. IN A 44.199.41.98%

Fig 8-1: The file domain.txt relates symbolic hostnames to
Internet addresses.

Ordinary Internet Address Records

You need an entry in domain. txt for your own station. For example:

nsSbob. ampr.org. IN A 44.199.41.1

® Names, Domains and Addresses 57

Note that the callsign/domain string ends in a dot (after the letters org).

The letters IN A signify that this is an Internet Address entry; we’ll see
later that there are several other types of entry as well.

You’ll also need an entry in domain.xt for every other station you want
to communicate with using TCP/IP. There may be only a few entries if
you just want to talk to the locals, or there may be hundreds of entries
if you want to venture further afield. Your IP address coordinator
should be able to provide you with an up-to-date file containing the
details you need.

[net> ftelnef ps9k_en]

44199.41.2

e e

ni 16

Fig 8-2: NOS uses domain.txt when transiating symbolic
hostnames to numeric IP addresses for insertion in packets.

The file domain.ixt is not just restricted to containing entries for
AMPRnet stations. You can also include entries for other domains if
you have access to other networks.

58 Names, Domains and Addresses @

For example, your NOS system may be connected to your company’s
Ethernet LAN, so you will have entries like this:

alpha.acme.com. IN A 192.93.94.95
beta.acme.com. IN A 192.93.94.96

Here the domain name is acme.com, where com is short for
“company.’,

Default Domain Suffix

By default, you have to include the full name of a station when giving a
command, e.g. to transfer a file to Pam, the full command is
ftp ns9pam.ampr.org. However, using full domain names like this
gets tedious after a (very short) while, and so to make life easier you
can define a new default, by putting this command in the NOS startup
file autoexec.nos:

domain suffix ampr.org

Thereafter, all you need to say is fitp ns9pam — NOS then
automatically adds the suffix .ampr.org to ns9pam to get the full
hostname.

However, you can still use the full name if you wish, so if you want to
send a file to host alpha on the LAN, you can say ftp alpha.acme.com.
In this case, because you have given the full name, NOS ignores the
default domain suffix.

Canonical Name (Nickname) Records

For stations that you talk to regularly, it may be convenient to add a
nickname entry to domain.txt. This is termed a CNAME (Canonical
NAME) resource record, which refers back to an existing IN A record:

ken.ampr.org. IN CHAME ns9ken.ampr.org.

Then you can talk to NSO9KEN with a command like ftp ken.

Mail Exchanger Records

Another type of entry in domain.txt is the MX (Mail EXchanger) record.
For example:

ns9%zzz.ampr.org. IN MX 0 ns9ken.ampr.org.

This states that mail addressed to ns9zzz is to be sent to ns9ken, who
will act as a “Mail Exchanger” and forward it on to ns9zzz. The digit
0 after IN MX is called the preference value of the exchanger. You can
have several mail exchangers for a given destination, each with a
different preference value, and NOS will attempt to forward to the
exchanger with lowest value. If that fails, it will try again with the next
lowest value, and so on. This is covered in more detail in the chapter
on SMTP mail forwarding.

ns9zzz.ampr.org. IN MX 0 ns@ken.ampr.org

! org. IN A 44.199.41.2
_narpron N A 41994

44,199.41.2

O

ni17J

Fig 8-3: The Mail Exchange (MX) record specifies a mailhost
which knows how to forward mail for a particular station.

60

Names, Domains and Addresses @

Name Server Records

There are of thousands of people throughout the world with AMPRnet
IP addresses, and hundreds of thousands of people with IP addresses
for other networks. It’s obviously unrealistic to put all of these
addresses in domain.ixt (and even if you did, it would be an impossible
task to keep them up-to-date manually), and so it makes sense to put
these addresses on special machines called Domain Name System
(DNS) servers; see Fig 8-4 opposite.

Name servers are usually large, fast machines which communicate with
each other to keep master copies of resource records up-to-date, and
which allow ordinary users to interrogate them for particular records of
interest.

Some versions on NOS incorporate a DNS server. If you have a server
in your area, you can refer to it by adding an NS (Name Server) record
to your domain.txt. For example:

IN N8 ns%dns. ampr.org.

The NS record specifies the name of a Name Server machine. That
machine will need an ordinary IN A entry as well:

na9dns. ampr.org. IN A 44.199.41.99

Now, when you attempt to communicate with any station, NOS will
first look in domain.txt for the IP address of that station. If it isn’t
there, NOS will then automatically send a request to the name server in
an attempt to get the address from there.

Optimising domain.txt

If you don’t have access to a name server, your domain.xt file may be
very long. As NOS needs to read this file whenever you want to
contact a station, it makes sense to optimise its layout to minimise
access time — if the file has hundreds of records, it may take several
seconds to find a record if the machine or disk are slow.

The most obvious way of reducing access time is to put all the entries
for local stations at the front of the file, as you’re more likely to talk to
them than to other stations further afield.

Names, Domains and Addresses

61

nsQyyy.ampr.org. IN A 44.199.52.4

ni 18_1

Fig 8-4: If there is no entry for a wanted hostname in domain.txt,
NOS can make a request across the network to a Domain Name

Server to get the required IP address.

62

Names, Domains and Addresses ©

In addition, you should remove all extraneous comments and
whitespace (tabs and spaces) from the file. This will markedly improve
system response if you have a long descriptive comments for each
resource record.

Some versions of NOS also support another technique for reducing the
length of domain.txt. You can include an origin statement, specifying
the default domain name for entries in the file, and then you don’t need
to include the domain name in individual resource records,

For example:
$origin ampr.orgq.
nsSbab IN A 44.1%9.41.1
naSken IN A 44.199.41.2
ken IN CNAME nsSken
ns9pam IN A 44.199.41.3
ns9zzz IN MY 0 nsSken
IN NS ns9dns
ns9dns 1IN A 44.195.41.98
alpha.acme. com. IH A 192.93.94.95

This makes the file a lot shorter (and much easier to prepare!).

63

9: CLIENT/SERVER

Fundamental to the operation of NOS is the concept of “client/server”
organisation. This chapter covers the basics of client/server, explaining
why it is so powerful and flexible in networked environments.

POST OFFICE

ni 19

Fig 8-1: Client/Server Organisation.

64 Client / Server &

It’s convenient to use a post office analogy to show how client/server
works (Fig 9-1). Let’s say that a manager in the offices of XYZ Inc
requires some postage stamps. He asks his secretary to go to the post
office to buy them. To do this, the secretary leaves the building, goes
down the street, enters the post office, and stands in line waiting to be
served at a counter.

Eventually, the secretary reaches the front of the line and asks the
counter clerk for the stamps. The clerk hands over the stamps. Then
the secretary leaves the post office and returns to XYZ Inc, arriving
back in the manager’s office to hand over the stamps.

A simple enough transaction. Now let’s translate this into networking
jargon. The manager is a user, who issues an instruction to a client
(the secretary) to request a server (the counter clerk) to provide a
service (issue postage stamps). The client (secretary) then submits the
result of the service (the stamps) back to the user (the manager).
That’s basically all there is to “client/server”.

[As an aside, you’ll see the words listener or daemon scattered
throughout NOS documentation. These are alternatives for the word
server].

The telnet Client

In the world of TCP/IP, there are several types of client (just as in the
office there are several types of secretary), used for requesting different
services. One of the most important clients is felnet (Fig 9-2). When
you give a command such as telnet ns9ken, you are asking your telnet
client to make a connection with the telnet server at NS9KEN.

When the connection is made, the telnet server then sets up a logical
path between the client and the NOS BBS service. The BBS sends
back a login prompt to the client, which displays it on your screen.
You then log in, and you’re away. The connection remains in place
until you give the B command to the BBS, which then disconnects itself
from the client.

The numbers 1024 and 23 in Fig 9-2 are called port numbers. Packets
passing between client and server contain these port numbers, so that
each end knows which service and which user session they relate to.
The number 1024 is an arbitrary port number allocated by the client,
and 23 is the port number for the telnet service.

© Client/ Server 65

ni.?ij

Fig 9-2: When NS9BOB gives the command telnet ns9ken, his
telnet client connects to the teinet server at NSSKEN. The server
then starts the BBS, which sends a login request back to
NSSBOB.

Multiple Sessions

You are not restricted to just one telnet session. In principle, you could
start many sessions, accessing the BBSs of several stations at the same
time. Fig 9-3 shows two such session, with NSOKEN and NS9LIZ.

66

Client / Server &

o
3

Fig 9-3: Multiple TELNET sessions.

A further concept associated with client/server is the socket. A socket
is basically an end point for communication, and is expressed as a
combination of hostname:port number. For example, in Fig 9-3, socket

© Client/ Server 67

nsSbob:1024 is connected to socket ns9ken:23, and socket
ns9bob:1025 is connected to socket ns9liz:23. These socket numbers
appear in several NOS status messages, making it possible uniquely to
identify individual sessions.

Behind the telnet Server

It’s important to realise that when your telnet client connects with a
telnet server on another machine, you may not always be greeted by a
NOS BBS. See Fig 9-4. If the server is running on a UNIX machine,
the telnet server will connect your client to a UNIX login prompt
instead, which will then take you into a UNIX shell. If the telnet server
is running on a DEC VAX machine, the server will connect you to a
VMS login sequence instead.

R

ni 22

Fig 9-4: The NOS telnet client can communicate with telnef
servers on all kinds of systems.

In other words, what lies behind the TELNET server depends very
much on the machine it is running on and the network services it
supports. In NOS you have the potential to login to any machine of
any type which is running a telnet server — almost every well-known

68 Client / Server ®

machine supports telnet these days — giving you the opportunity to
connect to all manner of network services.

Different Services

Let’s take the post office analogy a little further. When the secretary
talks to the the clerk, it doesn’t always have to be a request for stamps.
It could be a request to mail a parcel, or to ask for a sheet of airmail
stickers, or whatever.

That is, the server can handle several kinds of related request from the
client. In the telnet world, the user can ask for a different service by
adding a service number to the telnet command; for example,
telnet ns9ken 21. The number 21 is called a “well-known™ port
number. The default well-known port number for the telnet server is
23 (that is, telnet ns9ken 23 means the same as telnet ns9ken).

There are around 370 assigned well-known port numbers. Here are
some of them:

7 echo
9 discard
20 ftp-data
21 ftp-control
23 telnet
25 smtp
67 bootp
69 tftp
79 finger
87 ttylink (chat)
109 pop2
110 pop3
119 nntp
513 rlogin

Having to add a port number to a telnet command is a bit of a chore,
and so to make things easier, NOS provides more meaningful client
names for the more frequently used services. For example, you can say
ftp ns9ken instead of telnet ns9ken 21, or finger ns9ken instead of
telnet ns9ken 79, and so on.

© Client/ Server 69

Note that some versions of NOS don’t have a ttylink (or chat) client,
so in this case you’ll need to include the well-known port number 87 in
telnet commands to chat to those versions; e.g. telnet nsSken 87 — see
Fig 9-5.

t> telnet nsPken 8 Hi Ken
Well hellooo Bob

ni 23

Fig 9-6: It is possible to access several different types of server
by adding a port number to the telnet command. For example,
to chat to NS9KEN, the command will be telnet nsSken 87.

70 Client/ Server ©

Talking to Yourself

A further feature of client/server architecture is that you are not
restricted to having only clients on some machines and only servers on
others. Any machine can have both clients and servers. This gives you
the opportunity to talk to yourself in exactly the same way as you
would talk to somebody else over the network — very useful for testing
and familiarising yourself with NOS.

Thus if you are running NS9BOB, you could log into your own NOS
BBS with the command telnet nsSbob (Fig 9-6). In this case, the
telnet client in your machine connects directly to the telnet server in
your machine. Now you can drive your own BBS in exactly the same
way as if you had logged into somebody else’s NOS BBS. In fact,
logging into your own BBS is such a common requirement that NOS
has a special command for this: bbs.

ni24.

Fig 9-6: NS9BOB can log into his own NOS BBS with any of
three different commands:
bbs, teinet loopback, or telnet nsSbob.

k&

10: HANDS ON — HARDWARE CHECKOUT

Now that we’ve seen something of the background to TCP/IP and
NOS, it’s time to get down to business. This chapter and the next one
explain how to set up the hardware and install the software.

To run most versions of NOS in a packet radio environment, you need
the following hardware (see Fig 10-1):

e APC

e A tnc (terminal node controller)

¢ An RS-232 cable connecting the PC to the tnc
e A radio transceiver

The PC

The PC may be any IBM-compatible 80x86 machine, running DOS or
similar. NOS needs as much memory as you can give it, and it’s
unlikely that it will run with less than 640K of RAM. A hard disk is
obviously preferable, although NOS will run (slowly) on a dual-floppy
laptop as well.

The TNC

Most tncs have an internal battery which saves certain setup
parameters in battery-backed RAM. This can be a nuisance at times,
especially if you get the setup wrong and accidentally get the tnc into a
locked up state. The only remedy is to take the cover off of the box,
disconnnect the battery, re-connect it again a few seconds later, and
then replace the cover.

It’s highly likely that you’ll get the tnc settings wrong when first setting
up NOS, and so it’s recommended that you fit a single-pole on/off
switch in the battery circuit. Then if you lock up the tnc, it’s a simple

72 Hands On — Hardware Checkout © @

matter to turn the switch off and on again to make the tnc usable again,
without the hassle of removing and replacing the cover. (In fact, you
can probably operate the tnc without a battery at all, as you will
configure NOS to initialise the tnc to KISS mode each time you start
NOS, and reset it back to native AX.25 mode when you are done).

(2)

(8

9

PODOD
3
i

ni25_|

Fig 10-1: The RS-232 cable connects the PC to the TNC.

The RS-232 Cable

The RS-232 cable connecting the PC to the tnc should be a 5-wire
cable, wired for hardware (RTS/CTS) flow control; again see Fig 10-1.
Some tncs with older firmware do not support RTS/CTS in KISS
mode, in which case a simple 3-wire cable (TD/RD/GROUND) will
suffice.

In any case it’s probably preferable to use the 5-wire cable to avoid
possible lockup problems when transferring non-printing ASCII

@ ©® Hands On — Hardware Checkout 73

characters in the tnc’s native mode — XOFF (CTRL-S) may stop data
transfer if software flow control is used.

When hardware flow control is working properly, the following
conditions apply:

RTS HIGH: PC tells the tnc it can start/resume sending data
RTSLOW: PC tells the tnc it must stop sending data
CTSHIGH: tnc tells the PC it can start/resume sending data
CTSLOW: the tne tells the PC it must stop sending data

Native Mode Checkout

Before using NOS, it’s advisable to check out the tnc in native AX.25
mode with hardware flow control. Set the speed of the PC-to-tnc link
to a reasonably high value (e.g. 4800 bps), with an 8-bit data path, and
disable software flow control:

cmd: AWLEN 8
cmd: START $00
cmd: STOP $00
emd: TBAUD 4800
cmd: XON $00
cmd: XOFF $00
cmd: XFLOW OFF

Connect to your local AX.25 PBBS as usual and read a few long
messages. Also send yourself a long message and read it back. Make
sure that nothing is missing from the text on the screen. If some
characters are missing, or if the keyboard or screen lock up, it’s
probable that the hardware flow control is not working.

Make it work properly before proceeding. If flow control does not
work in AX.25 mode, it’s unlikely that NOS will work either, If
everything works with software but not hardware flow control, you
may need to check the state of the RTS and CTS lines (tnc pins 4 and 5
respectively) with a breakout box or multimeter. Most of the time
these lines should be high, dropping only occasionally to the low state
when transferring long messages.

Assuming all is well, you are now ready to install the NOS software.

75

11: HANDS ON —

SOFTWARE INSTALLATION

Several steps are required when installing the software:

¢ Optimising DOS

o Modifying CONFIG.SYS and AUTOEXEC.BAT
e Loading the NOS software

o Configuring the NOS control files

Optimising DOS

As mentioned earlier, NOS is memory hungry and will use as much
memory as you can give it. This means that you should minimise the
DOS overhead as far as possible. There are several ways to do this.

First, as NOS does not require graphics memory, the biggest potential
saving is to tell DOS to release the video RAM that it uses for the
graphics pages (for example, with the DR-DOS command
MEMMAX +V, or with the Quarterdeck VIDRAM program). This
step alone will make an extra 96K of RAM available in conventional
memory. '

You should load as much of DOS as possible into upper memory or
high memory.

You should also load your favourite TSR (Terminate and Stay
Resident) programs into upper/high memory if possible.

With these precautions in place, you’ll probably find that you now have
over 700K of conventional RAM available for NOS.

76 Hands On — Software Instailation @ @

Modifying CONFIG.SYS and AUTOEXEC.BAT

A small number of additions and modifications to the DOS files
CONFIG.SYS and AUTOEXEC.BAT are required to run NOS.

CONFIG.SYS should have at least the following commands:

BREAK=0N

BUFFERS=20

FILES=20

LASTDRIVE=z

SHELL=c: \command.com /P /E:1024
DEVICE=c:\dos\ansi.sys

The LASTDRIVE variable is required because NOS will be configured
to use SUBSTituted drive letters up to the letter V-.

The SHELL variable has the /E parameter, to set the environment space
to 1024 bytes. This is to ensure there is sufficient room for NOS
environment variables.

The ANSL.SYS device driver lets you use ANSI escape sequences in
text strings (for example, to display the command prompt in reverse
video).

AUTOEXEC.BAT will contain all the usual commands, plus the
following:

CALL c:\nos\nosenv.bat

(assuming that you place NOS in directory C:\NOS).

The batch file NOSENV.BAT, described below, sets up the NOS
environment variables.

Loading the NOS Software

The simplest way to install NOS is to acquire a copy of NOSview,
which contains all the files you need, plus an installation script which
puts them in the proper place. Details of how to obtain NOSview were
included in Chapter 2, and full installation instructions are in the
IREADME.IST file in NOSview.

@ ® Hands On — Software Installation 77

If you don’t have a copy of NOSview, you’ll have to install NOS and
prepare all the control files by hand. Full listings of the control files
are included in Appendix 3.

Whichever way you install NOS, you’ll need decide on the NOS root
directory; i.e. the top level DOS directory which NOS will use. In this
book we use C:\NOS as the NOS root, but in principle you can place it
anywhere.

However, be aware that when NOS is operational, other people will be
logging into your system and may browse around your files, from the
NOS root level downwards. For this reason, C:\ is not recommended
as the NOS root!

It’s convenient to use a SUBSTitued drive for the NOS root — see Fig
11-1. This is set up in NOSENV.BAT, with a command of the form
SUBST N: C:\NOS. Thereafter, you can make all references to NOS
files relative to drive V..

ni 26

Fig 11-1: The NOS root directory is defined as drive N: in this
book, using the DOS command SUBST N: C:\NOS.

78 Hands On — Software Instailation @ @

The NOS Directory Tree

NOS requires the following directory tree. If you are installing NOS
manually, you’ll need to create the following directories (with the DOS
MKDIR command), replacing N: with your chosen NOS root directory
(e.g. C:\NOS).

W\

M \DUMP\
N : \DUMP\RECORD'\
N: \DUMP\TRACE\

N:\FINGER\

N:\PUBLIC\

N:\PUBLIC\MASTERS\
N:\PUBLIC\NOSDOCS\
N:\PUBLIC\NOSVIEW\

N:\SCRIPTS\

N:\8SPOOL\

W: \SPOOL\HELP\
N:\SPOOL\MAIL\

H: \ SPOOL\MQUEUE',
H:\SPOOL\MEWS\
N:\8POOL\RQUEUE\,
H: \SPOOL\SIGHATUR\

W: \TMP\

Once the directory tree is in place, the files listed in the box opposite
need to be installed.

Configuring the NOS Control Files

Several of the files listed opposite require tailoring before you use NOS
on-air. This mostly involves changing callsigns, IP addresses, routing
tables, and so on, to suit your local environment. Details of exactly
how to make the necessary changes are included in subsequent
chapters. However, the files supplied with NOSview are usable as
they stand — provided, of course, that you leave your radio switched
off.

@©® Hands On — Software Installation 79

N:\ALIAS
N:\AUTOEXEC.NOS
N:\AX25.COM
N:\CLEANQ.BAT
NW:\DOMAIN.TXT
M:\FTPUSERS
M:\HET.RC

M : \HOSxxxxx . EXE (the NOS executable)
N:\NOSENV.BAT
N:\PCELM.EXE
HW:\PCELM.MSG
N:\PCELM.RC
N:\POPUSERS
N:\REMOTE . BAT
N:\SIGNATUR
N:\STARTNOS . BAT
N:\UUDECODE. EXBE
N:\UUENCODE . EXE
N:\VIEW.COM
N:\VIEW.HLP
N:\WD8003.CoM

N:\FINGER\SYSOP

N:\PUBLIC\MASTERS*. * (HosSview control file masters)
N:\PUBLIC\NOSDOCS*.* (NOSview documentation files)
W:\PUBLIC\NOSVIEW*.* (NOSview HELP files)

N:\SCRIPTS\FKEYS.LST
M:\SCRIPTS\FKEYS.SCR
N:\SCRIPTS\KISSON.DIA
W:\SCRIPTS\TNCRESET.DIA
W:\SCRIPTS\TNCRESET.SCR

N:\SPOOL\AREAS

W:\SPOOL\FORWARD . BES

N:\SPOOL\REWRITE

M:\SPOOL\HELP* _* (the NOS BBS help files)

N:\SPOOL\SIGNATUR\SYSOP.SIG

Fig 11-2: NOS Files. Their functions are described in the next
chapter.

80 Hands On — Software Installation @ @

In fact, you can learn a great deal about NOS before using it for real,
so it’s recommended that initially you leave the files alone. Try
working through the hands-on sessions in this book as far as you can
with the radio disconnected, then edit the control files to reflect your
own environment before going live.

Checking the VIEW Fileviewer

Having installed the software, you should then re-boot the system.
When AUTOEXEC.BAT runs, it will now call NOSENV.BAT, which
sets up the NOS environment. You should see the message:

Loading VIEW - Clockwork’s Resident File Viewer.
To activate press:- RShift and SPC

This confirms that the VIEW TSR file viewer is loaded. VIEW lets you
examine any file in the system, ASCII or binary, in text or hexadecimal
format. Test its operation by pressing the right shift key and the space
bar simultaneously. The Clockwork View introduction screen should
appear. Use the PgDn and PgUp keys to examine the help menus.

Then test the file viewer, by pressing F3. The prompt:

ﬂ Load file: *_ * !l

should then appear at the top of the screen. Now press CR. This
should pop up a list of files in the current. directory, similar to the
example in Fig 2-1. Move the arrow keys up or down to select a
particular file, then press CR again. The selected file should now
appear.

Use the G and/or H key to change the display format if necessary.
Finally press ESC to exit from VIEW.

SUBSTIituted DOS Drives

Type the DOS SUBST command, and confirm that all of the
SUBSTituted drives defined in NOSENV.BAT are available:

@ ©® Hands On — Software Installation 81

=> C:\NOS\SPOOL\MAIL

=> C:\Nos

=> C:\NOS\SPOOL\MQUEUE
=> C:\NOS\DUMP\RECORD
=> C:\NOS\DUMP\TRACE

=> C:\NOS\PUBLIC\NOSVIEW

SRR ER

Change directory to the NOS root directory (V:\), and check that all the
files and directories listed above are accessible. Also, change to
directory ¥:\ and check that the NOSview files are present.

Now type the DOS SET command, and check the NOS environment
variable settings defined in NOSENV.BAT are correct. Also check that
the N:\ directory has been appended to the original PATH list:

PATH=C:\dos; ... N:\
HOME=C:\nos
MATLER=N:\pcelm.exe

TMP=N: \ tomp
TZ=UTC
USER=nsS%bab

The meanings of these variables are explained in later chapters.

With software installation complete, it’s now time to look closer at the
files.

12: NOS FILE COMPENDIUM

In this chapter we take a closer look at the directory structures and
data files in the NOS environment. This includes the files listed in the
previous chapter, plus other files which NOS generates at runtime.

Examples of all the text files are included in Appendix 3.

The Directory Tree

The complete directory/file tree for NOS is shown in Fig 12-1 on the
next page. NOS can reside in any directory on any drive, but as
explained earlier, it’s best to allocate a new drive letter for NOS (e.g.
N:), using the DOS SUBST command. This has the advantage that the
path declarations in the NOS control files are kept simple, and, more
important, it prevents people browsing through your private files when
they log into your system. You don’t want other people climbing too
high up your tree!

The NOS directories under drive N: are as follows:
/: The root directory contains most of the files for controlling NOS.
/dump: This directory is for log and trace files.

/dump/record: Holds session recordings and files downloaded from a
mailbox.

/dump/trace: Holds trace files.

/finger: The NOS finger command allows you to “put the finger on
somebody™; i.e. find out more about them. The finger directory

contains one or more text files with information about yourself (the
so-called “brag” files).

84 NOS File Compendium @ @©
/alias /public/masters/* *
/autoexec.nos /public/nosdocs/* .+
N:\AX25.COM /public/nosview/* *
N:\CLEANQ.BAT
/domain. txt /scripts/fkeys.lst
/£tpusers /scripts/fkeys. scr
/net.xrc /scripts/kisson.dia

/netrom.sav

N: \NOSxxexx . EXE
W: \NOSENV.BAT
N:\PCELM.EXE
N:\PCELM.MSG
N:\PCELM.RC
/popusers
N:\REMOTE, BAT
/seqf

/signatur

N: \STARTNOS . BAT
N:\UUDECODE . EXE
N:\UUENCODE.EXE
N:\VIEW.COM
M:\VIEW.HLP
N:\WDB003.COM

/dump/session.log
/dump/record/* . *
J/dump/trace/*.*
/finger/sysop

/public/* .+

/scripts/tncreset.dia
/scripts/tncreset. scr

/spool fareas

/spool /forward.bbs
/spool /history
/spool/mail.log
/spool /rewrite
/spool/help/*.hlp
/spool/mail/*.txt
/spool /mqueue/* . txt
/spool /mqueune/* .wrk
/spool/mqueue/* . lck
/ spool /mqueue/sequence.seq
/spool/news/*.*

/spocl/rqueue/* . txt
/spool /rqueue/* .wrk

/spool/signatur/*.sig

/m/*_i

Fig 12-1: The complete NOS file tree. DOS filenames are in
capital letters, NOS filenames in lower-case. Filenames in light
text are created by NOS at run-time.

/public: This is a general-purpose directory which anyone can access
when logged into your system. The directory contains files for
general consumption, and certain nominated users can also write
into it.

©®® NOS File Compendium 85

/public/masters: This directory contains master copies of the NOS
control files. The files in this directory are read-only, to prevent
accidental damage.

/public/nosdocs: The nosdocs directory contains a set of
miscellaneous NOS documentation files. The files in this directory
are also read-only.

/public/nosview: This directory contains the complete set -of
NOSview reference documentation files, so that other people can
read them to find out more about NOS. The files in this directory
are read-only. DOS drive letter V- also points to this directory, so
that you can instantly access NOSview.

/scripts: This directory contains scripts for use with the NOS source
command, together with dialer scripts for setting up a modem or
tnc.

/spool: The spool directory contains a number of files to do with mail
handling.

/spool/help: The help subdirectory contains a set of help text files
used by the built-in NOS mailer.

/spool/mail: This is the default directory for incoming mail, for
outgoing POP mail, and for outgoing mail to be forwarded into the
PBBS network.

/spool/mqueue: This is the directory containing all outgoing mail
awaiting SMTP forwarding.

/spool/news: This directory contains files received from the news
network with the NNTP protocol. ,

/spoob’rqueue The rqueue directory is an alternative directory for
incoming mail (i.e. instead of /spool/mail).

/spool/signatur: This directory holds one or more text files containing

your “signature” to be appended to messages which you send with
the NOS BBS.

/tmp: This directory is for temporary work files.

DOS Files
This section describes the DOS files required by NOS.

\NOS File Compendium @&

CANUTOEXEC.BAT: (see page 312 jor listing) This file serves its
usual purpose during DOS startup. The only special requirement is
that it includes a CALL to NOSENV.BAT, to set up the correct
working environment for NOS. If you include any TSRs in
AUTOEXEC.BAT, it is recommended that you load them in upper
memory, to free up as much conventional RAM as possible for
NOS. Further, you may also care to use a utility such as
Quarterdeck’s VIDRAM to free up the PC’s graphics buffer area,
thus making it available to NOS.

CACONFIG.SYS: (page 317) The usual DOS configuration file.
The only special requirements are the inclusion of the LASTDRIVE
environment variable (allowing us to define a number of
SUBSTituted drives), and the use of the /E option with the SHELL
variable to make the DOS environment space large enough.

CADOS\ANSLSYS: The usual device driver for screen and keyboard
handling. Alternatives such as NANSLSYS, ZANSLSYS or
VGAANSI.SYS are equally suitable here.

NAAX25.COM: The special TSR driver for the Baycom modem.

NACLEANQ.BAT: (page 317) This batch file removes any unsent
messages and lock files from the outgoing mail queue, and any
unsent messages awaiting PBBS forwarding. This is a useful utility
for cleaning up after experimenting with mail handling off-air.

N:ANOSxxxoox. EXE: This is the NOS runtime executable. The
letters x000¢x represent a date code or version number.

N:\NOSENV.BAT: (page 325) Called by AUTOEXEC.BAT at DOS
startup, this file initialises the NOS environment. There are six
SUBST commands to define new drive letters:

defines the incoming mail queue

(useful for taking a quick loock at files in the queue)
defines the NOS root directory

defines the NOS outgoing mail queue

(uzeful for taking a quick look at what is in the gqueue)
defines the NOS record directory

(useful for taking a quick look at downloaded files)
defines the NOS trace directory

(useful for scrolling through trace files)

defines the NOSview directory

s 3 @@ pE =

(useful for examining NOSview files)

©@® NOS File Compendium 87

NOSENV.BAT also contains a number of environment variable
definitions:

HOME: this is the home directory for the external mailers (BM,
PCElm and ELM) .

MAILER: this is the name of the external mailer which you
call when you give the NMOS mail command.

TMP: this the the name of the temporary directory for the
external mailers.

TZ: this is the time-zone, used by mailers.

USER: this is the name of the user, used by the ftp command.

NOSENV.BAT then calls the VIEW TSR. VIEW is quite large
(around 13 KB), so you should load it into upper memory if
possible.

Finally, NOSENV.BAT installs the device driver(s) for devices
which NOS does not support directly. This will be necessary for
devices like Ethernet adapters, or for the Baycom AX.25 driver
(AX25.COM).

N\PCELM.EXE: PCELM is a popular external mailer, invoked with
the NOS mail command. The DOS environment variable MAILER
specifies the name of this file. (Alternative external mailers
commonly supplied with NOS are ELM and BM).

NAPCELM.MSG: This file contains the text of PCEIm help and
status messages. You can edit this file to provide help in different
languages if you wish.

NAPCELM.RC: This is the startup file for PCELM (¢ means “run

commands™). The corresponding startup files for ELM and BM
are, predictably, ELM.RC and BM.RC.

NAREMOTE.BAT: (page 326) This batch file runs NOS i a
continuous loop, and is intended for use at remote site locations. If
NOS stops running for some reason, DOS goes back to the
beginning of the loop and restarts it.

NASTARTNOS.BAT: (page 328) This is a simple DOS batch file
that starts NOS running,

NAUUENCODE.EXE: This command performs binary-to-ASCII
file conversion. Encoding of 8-bit binary files into 7-bit ASCII is

88 NOS File Compendium 0@

necessary prior to uploading/downloading of binary files to/from the
NOS BBS (This is only required for AX.25 users of the BBS. FTP
can handle 8-bit binary file transfer without encoding).

NAUUDECODE.EXE: This command converts uuencoded files from
ASCII back to binary.

NAVIEW.COM: This is the VIEW fileviewer from Clockwork
Software.

NAVIEW.HLP: The help file for VIEW.

NAWDB8003E.COM: This is an example of a Clarkson Ethernet
driver.

NOS Files

This section describes the complete set of NOS files. All the file
pathnames given below are relative to the NOS root drive, N:.

/alias: (page 311) The alias file contains a list of alternative names
for mailing, allowing you to use easily-remembered names when
sending mail. Also, the file can contain distribution lists for sending
messages to groups of people.

/autoexec.nos: (pages 312-317) This is the big daddy of the NOS
control files. The name autoexec.nos is the default name for this
file, but you can choose a different name if you wish. You can
create a number of different startup files for different situations or
configurations, and switch quickly from one scenario to another
without having to edit the startup file every time.

In this chapter we only look at the main functions of this file, and
then in later chapters we will analyse each of the functions in detail.
The main sections of qutoexec.nos are as follows:

Miscellaneous Setup: These commands are for general NOS
housekeeping.

Domain Defaults: These defaults make it easier to use domain
addressing. They let you use simple commands like ftp ns9ken
instead of the full ftp ns9%en.ampr.oryg, and in status reports
you will see host names displayed as ns9ken rather than the
less meaningful 44.199.41.2,

@ ® NOS File Compendium

Station Identification: Here you define your IP and AX.25
addresses.

TNC Setup: The commands in this section initialise the tnc at
the physical level. The attach command defines the interface
name (tnec0), sc that later commands can use this name when
addressing the interface. The dialer script kisson.dia
switches the tne to KISS mode, and the param commands set up
various parameters inside the tne.

The Baycom AX.25 Packet Driver: This command makes the link
between NOS and the Baycom AX.25 driver TSR.

Setting up AX.25: Here you define the usual parameters for
the AX.25 level.

Other Interfaces: At this point in the startup file are
commands for defining interfaces for the Ethernet adapter and
for an AX.25-over-IP (axip) "wormhole" link.

Interface Configuration: The ifeconfig command lets you
define broadecast and network mask parameters for the tne
interface.

TCP/IP defaults: Here are the initial wvalues for critiecal
TCP and IP parameters.

Starting Network Services: This is where you start all of
the network servers (listeners). Once these are running,
clients on other machines can then establish communication
with them.

N_n-/mu Configuration: Where TCP/IP traffic is carried over
a NET/ROM link it is necessary to set up a large number of
NET/ROM parameters. These commands start the NET/ROM server,
define your own NET/ROM alias (#BOB in the example), and
initialise a number of timers and counters.

NK'.‘I‘(ROH Filtering: In some instances it may be preferable to
accept NET/ROM broadcasts from only a limited number of
nominated stations, rather than to accept broadcasts from any
station which might be in range. The netrom nodefilter
commands let you nominate the stations of interest (or
alternatively filter out unwanted stations).

IP Routing Table for NET/ROM: This table is required for NOS
stations which are contacted via NET/ROM.

The ARP Table for NET/ROM: The ARP table specifies the

relationship between IP hostnames and NET/ROM callsigns.

NET/ROM Routing: Entries in this section let you set up the
NET/ROM routing table.

endium 0@

AX.25 Routing: The entries in the AX.25 routing table allow
you to specify any digipeaters in paths to AX.25 destinations.

AX.25 Modes: Here you can specify whether virtual circuits
or datagrams are to be used.

More ARP Table entries: This part of the file contains more
ARP table entries specifying the relationship between IP
hostnames and AX.25 callsigns (or Ethernet adapter addresses).

IP Routing Table: The IP routing table contains entries for
groups of stations and/or individual stations, specifying the
local interfaces to be used and the hostnames of remote IP
gateways which will handle the traffic.

Routing Interface Protocol: The RIP commands control IP
routing table broadeasts, and allow you to filter particular
broadeasts in a similar way to NET/ROM node filters.

RSPF: The RSPF commands are an alternative to RIP.

Hop Check: These commands specify timer constants for use
with the hop commands when tracing the availability of
particular routes.

Remote Control: These commands kick other hosts within radio
range into life. The resulting traffic thus forces an
automatic update of the routing tables.

Setting up the NOS BBES: The smtp commands initialise SMTP
mail forwarding. The smtp kick command forces the SMTP client
to scan the outgoing mail queue and to forward any IP mail.
The mbox kick command wakes up the mailbox client and forces
it to forward any AX.25 PBBS mail.

POP Commands: These commands configure the POP mail
forwarding service.

FTP Defaults: These parameters specify how FTP is to
transfer files by default.

Function Key Definition: The script fkeys.scr contains
definitions for all of the function keys and cursor keys.
These definitions let you execute frequently-used NOS comands
with just one or two keystrokes, making it much easier to
drive.

/domain.txt: (pages 318-319) The domain.txt file contains a list of
station names, such as ns9ken.ampr.org, together with their
corresponding IP addresses. (In some versions of NOS, this file is
called hosts.net and has a different format).

@@ NOS File Compendium 91

/ftpusers: (pages 322-323) The fipusers file contains a list of people
who are allowed special privileges on your system, when using the
ftp command or when logged into your mailbox. You can therefore
give permission to specific individuals to create, write or delete files
in nominated directories, and let them access various network ports
via your mailbox. And you can even let them operate your station
remotely if you want!

/net.rc: (page 324) The net.rc file contains username/password pairs
for one or more remote hosts. When you ftp to those hosts, you will
be automatically logged in and can start FTP transfers immediately.

/netrom.sav: This file is created when you give the netrom save
command. It contains the dynamic NET/ROM routing table entries
which have been received in broadcasts. You can later give the
netrom load command, which will read this file and restore the
NET/ROM routing table to its original state at the time when the
file was created. This means that you don’t have to wait for new
broadcasts after restarting NOS.

/popusers: (page 326) This file contains a list of username/password
pairs used with the POP mail forwarding protocol.

/seqf: This file is maintained automatically by the ELM mailer, and
contains the current message number for an outgoing message.

/signatur: (page 327) This file contains the text to be appended to the
end of any messages you send with the PCEIm mailer. Note that
there is a separate signature subdirectory which is used by the NOS
built-in mailer; see below. [Having two different methods of adding
a signature 1o a message, depending on whether you’re using PCelm
or the NOS BBS, is just plain silly and should be unnecessary.
However, we have to live with it at present].

/dump/session.log: The session log is maintained by NOS, and
contains NOS startup and shutdown times, together with a detailed
record of almost everything that NOS does. This is invaluable when
trying to find out what actually happened and what didn’t!

/dump/record/*.*: These files are session recordings (created by the
NOS record command) or files downloaded from a BBS.

/dump/trace/*.*: The files in this directory contain full trace
information of packet traffic sent and received by this station.
These trace files are essential when setting up NOS and debugging.

92 NOS File Compendium @@

/finger/sysop: (page 329) This is an example of a “brag” file. When
a remote user gives the command finger sysop@ns9bob, this file is
sent to the user, and tells him all about you.

/public/masters/*.*: These are master copies (read-only) of the NOS
control files.

/public/nosdocs/*.*: These are miscellancous NOS documentation
files.

/public/nosview/*.*: These are the on-line NOSview documentation
files.

/scripts/fkeys.Ist: (page 319) This is a text file which is displayed
when you hit the F1 help key. It lists all the function key
definitions.

/scripts/fkeys.scr: (pages 320-321) ‘This is the file which programs
the function keys and cursor keys, and corresponds to the fkeys.Ist
file.

/scripts/kisson.dia: (page 324) This script sets the speed of the PC-
to-tnc serial link to 4800 bps, and then sends a number of asterisks
to the tnc. Hopefully the tnc will recognise them and autobaud into
native command mode. The script then sets up the tnc with your
callsign and Morse ID (MID) interval; the value 84 corresponds to
840 seconds (14 minutes). Finally, the script sets the tnc into KISS
mode.

This script was written for a PK-88 tnc; you may need to change it
if you have a different tnc,

/scripts/tncreset.dia and tncreset.scr: (pages 329-330) These scripts
reset the tnc to native mode.

/spool/areas: This text file is used by the NOS BBS, and is output in
response to the BBS A command. It contains a list of public
mailbox names.

/spool/forward.bbs: (page 321) The forward.bbs file specifies how
and when messages are to be forwarded onto the AX.25 PBBS
network.

/spool/history: The history file is generated by the built-in NOS
mailer, and contains a list of received bulletin IDs. If a bulletin
arrives in the system with an ID which already exists in the history
file, NOS rejects it.

©® NOSs File Compendium 93

/spool/mail.log: The mail log contains details of every attempt to send
and receive mail. This is where to look if mail transfer is not
working.

/spool/rewrite: (page 327) The rewrite file contains the rules for re-
addressing mail (e.g. for forwarding onto the PBBS network).

/spool/help/* hlp: These are short text files containing instructions on
how to use the NOS BBS commands. There is one file per
command.

/spool/mail/*.txt: The .ixt files contain incoming messages, which
you can then read with a mailer. There is one file per individual
user and one per public mailbox area; for example, all of
NS9BOB’s messages are in file ns9bob.1xt, and all bulletins in the
TCPIP area are in the file rcpip. fxt.

In addition, there may be other .7xt files in this directory, for
outgoing mail to be forwarded into the AX.25 PBBS network or for
POP forwarding.

/spool/mgueue/*.txt: The .txt files in this directory contain the text of
outgoing messages.

/spool/mqueue/*.wrk: The .wrk files contain message To: and From:
information, together with the name of the host to which the
message is to be sent.

/spool/mqueue/*.Ick: The .Ick files are lock files which SMTP
creates when attempting to send a message.

/spool/mqueue/sequence.seq: This file is maintained automatically
by the NOS BBS and PCEIm mailers, and contains the current
message number for an outgoing message.

/spool/news/*.*: The files and subdirectories below /spool/news are
used by the network news protocol NNTP.

/spool/rqueue/*.txt and /spool/rqueue/*.wrk: This directory is an
alternative to the default incoming mail directory (/spool/mail). The
.1xt files have the same format as those in the default mail directory.
The .wrk files have a similar but not identical format to those in the
default mail directory.

/spool/signatur/*sig: The signature files in this directory are short
text files which the built-in NOS mailer automatically appends to
the end of messages which you create. Which file is used depends

94

NOS File Compendium ©®

on how you log into the NOS BBS. If you log in as ns9bob, then
the mailer uses the signature file ns9bob.sig, but if you log in as
sysop, then sysop.sig is used instead.

Note that these signature files are used by the NOS BBS. If you
use the PCEIm mailer, the file /signatur will be used instead.

/tmp/*.*: The files in this directory are temporary working files,
usually created by external mailers.

95

13: HANDS ON — SESSION MANAGER

Having installed the hardware and software, and become familar with
the functions of most of the files, you are now almost ready to start
NOS. This chapter covers the final steps required to tailor NOS to
your environment, then explains in detail exactly what happens when
NOS starts up. Once NOS is running, you can then get to know the
Session Manager.

The first time you run NOS, make sure that the radio is turned off.
Only when you are confident that all the control files are set up
properly with real callsigns and IP addresses should you consider going
live.

Choosing a Serial Port

Before you can communicate with the tnc, you have to specify which
asynchronous serial port you are going to use (i.e. COM1, COM2,
COMS3 or COM4), by removing the # symbol from the front of one of
the following attach asy commands in autoexec.nos:

attach asy Ox3f8 4 ax25 tncO 2048 256 4800 # COM1
attach asy Ox2f8 3 ax25 tncO 2048 256 4800 # COM2
attach asy Ox3e8 4 ax25 tncO 2048 256 4800 # com3
attach asy Ox2e8 3 ax25 tncO 2048 256 4800 # coM4

L R

The first two numeric parameters (¢.g. 0x3f8 and 4) are the I/0 address
and IRQ number for the port respectively.

The name tnc0 is a symbolic interface name for the port. You can
choose anything you like here (but tnc0 is used throughout this book
for consistency). You will use this name in future commands to refer
to this port.

96 Hands On — Session Manager @ ©

The next two numeric parameters (2048 and 256) are to do with buffer
and packet sizes, and need not be changed.

The last parameter on the line (4800) is the speed of the serial link to
the tnc. You may care to increase this to 9600 or even higher if your
machine is fast enough; in general, the faster the better, to minimise
bottlenecks on the link.

So, for example, if your tnc is attached to COMI1 and the link runs at
9600 bps, the line will read:

attach asy Ox3f8 4 ax25 tncO0 2048 256 9600 # comi

Starting NOS

There are several different ways you can start NOS, and to make things
easy it’s convenient to put the startup commands in a .BAT
file — you’ll be starting and stopping NOS many times, so a .BAT file
saves a lot of typing. You can also make several .BAT files for
different startup situations.

Appendix 3 contains a typical NOS startup file, STARTNOS.BAT (see
page 328). It performs several functions.

First, the PROMPT symbol is redefined to read:

Se [5mEXIT TO RETURN TO NOS Se[OmSe(44m$pSgse(m Iﬂ

(The $e sequences in the PROMPT string are ANSI escape sequences
to make the text string EXIT TO RETURN TO NOS flash, and to
display the current directory name in green. You can remove these
sequences if you have an aversion to flashing lights or green text!).

Why change the prompt from its usual C:\> form? Well, when NOS is
running, you can escape to a DOS shell if you want to do DOS things.
The new prompt reminds you that you are not in a default DOS shell,
and that you need to give the EXIT command to return to NOS.

Next, for DR-DOS users, the startup file executes the MEMMAX +V
command. This makes 96 KB of additional RAM available.
(Alternatively, if you are using Quarterdeck’s QEMM package, you

©®® Hands On — Session Manager 97

can give the VIDRAM ON command to gain access to this extra
memory).

The IF EXIST statement tests for the existence of * LCK files in the
Q: directory (recall that Q: is a SUBSTituted drive for the outgoing
mail directory /spool/mqueue). These lock files appear when NOS is
attempting to forward mail to another station, and normally disappear
when forwarding is complete. However, if you stop NOS before it has
a chance to remove the lock files, the forwarding system is left in an
indeterminate state. Thus during startup, STARTNOS.BAT forcibly
removes any lock files.

The next command:

N:\NOS_20M.EXE /autoexec.nos

starts NOS itself. The NOS executable is NOS 20M.EXE, and
autoexec.nos is the NOS startup file.

IMPORTANT: Note that the slash preceding the startup file name is a
forward slash, not a backslash. The slash indicates that the file is at
the NOS root level (i.e. drive N:).

The general syntax for NOS startup is:

nos.exe [-b] [-2 n] [-d /directory] [-VvI Ist;arblw_fila]

The -b option: This option specifies the use of the PC’s BIOS for
console output. Normally NOS writes direct to the video display
buffer for speed, but in certain circumstances (e.g. when running a
windows package) this may cause bleedthrough. Selecting the -b
option should remove this problem; e.g.

N:\NOS_20M.EXE -b /autoexec.nos

The -s option: This option defines the number of sockets for use by
NOS. Sockets are data arrays used for network connections; you
typically need four sockets for most types of connection. The
default number of sockets is 40. Increase this number if you
anticipate running many sessions in parallel. For example:

N:\NOS_20M.EXE -s 60 /autoexec.nos

98 Hands On — Session Manager 0 ®©

The -d option: This option lets you specify a different root directory
for the NOS configuration and spool files. Its use is not
recommended, as some of the commands in NOS (e.g. finger) do
not understand it. It’s much cleaner and more secure to root NOS
on a SUBSTituted drive, and to make all file references relative to
that root.

The -v option: This option gives a verbose output at NOS startup
time, displaying each startup command as it executes. This is useful
for detecting errors in the startup file, or if NOS hangs during
initialisation. For example:

N:\NOS_20M.EXE -v fautoexec.nocs

The default name for startup_file is autoexec.nos (so it isn’t really
necessary to include it in the above examples). You can create any
number of NOS startup files if you wish, to cater for different
operating scenarios.

The rest of STARTNOS.BAT restores the original DOS environment

after you finally exit from NOS. That is, the 96 KB block of video
RAM is released and the prompt is restored to its original state.

Lift Off!

You are now finally ready to start NOS. Switch on the tnc, and make
sure that it’s working properly in native cmd: mode. Then type the
STARTNOS command at the DOS prompt. NOS will run
autoexec.nos, and eventually something like the display in Fig 13-1
opposite will appear on the screen.

net> is the Session Manager prompt. If it doesn’t appear immediately,
just hit CR a couple of times — it should then appear.

Switching the TNC from native mode to KISS mode

The last few lines (starting at Dialing on tnc0) appear when NOS calls
the dialer script near the start of aufoexec.nos. The script itself,
kisson.dia, is in directory /scripts; see Appendix 3 for a listing (page
324),

©@® Hands On — Session Manager 99

KASQ NOS version 911229 (PAOGRI v2.0m)
This version produced by PAOGRI
Copyright 1991 by Phil Karn (KASQ) and contributors.
TxDelay: 20

Persist: 63

SlotTime: 10

TxTail: 10

FullDup: O

DTR: 1

RIS: 1

N: /DUMP/RECORD

Dialing on tncO

MYCALL NSSBOB-5

MID 84

XMITOK ON

KIsSs ON

Dial tnc0 complete

net>

Fig 13-1: The NOS startup screen.

The purpose of the script is to switch the tnc from native cmd: mode
into KISS mode — see Fig 13-2. Afier setting the link speed to 4800
bps, the script then sends a number of asterisks at 200 millisecond
intervals, giving the tnc an opportunity to autobaud to the correct
speed. The script now sends a \r (CR), waits up to one second for the
cmd: prompt, and then sets up the AX25 Ccallsign
(MYCALL NS9BOB-5). This is followed by MID 84 (to set the
Morse ID interval to 840 seconds — 14 minutes) and XMITOK ON
(to enable the tnc PTT line). Finally, the KISS ON command sets the
tnc into KISS mode.

This script is applicable to an AEA PK-88 tnc with the RAM backup
battery removed. That is, each time NOS starts up it is assumed that
the tnc is in its reset state — if it’s already in KISS mode, then the tnc
will ignore the script commands. If you have a different type of tnc, or
want to use a different sequence of commands to set it into KISS mode,
then you will need to modify the script. (On the other hand, if the
backup battery is in place and you leave the tnc permanently in KISS
mode, you won’t need the script at all).

100 Hands On — Session Manager ©©

send seed
wait cmd: |4 cma:
send MYCALL
send MID 84

send XMIT ON

ni 27

Fig 13-2: NOS startup. The dialer runs kisson.dlia, which
autobauds the tnc (by sending a stream of asterisks). The tnc
responds with the native mode cmd: prompt. Then the dialer

sends commands to set up the callsign and CWID interval, and
to enable the PTT line. Finally the dialer sends the KISS ON
command to switch the tnc to KISS mode.

First Steps

To find out which commands this version of NOS supports, give the ?
or help command — see Fig 13-3.

Note that all of these commands are in lower case; NOS understands
cd, but will not understand CD or Cd or ¢D.

Note also that you can abbreviate commands, provided that they are
still uniquely recognisable. For example, you can type star instead of
start (but not sta, as status also begins sta).

©®® Hands On — Session Manager

101

net> 7
!
attach
ed
dir
dump
finger
hop

ip

lzw
mode
nntp
pwd
rip
shell
start
telnet
trace

abort
attended
close
delete
echo
fkey
hostname
isat
mail
more
param
record
rmdir
skick
stop
test

udp

arp
ax25s
cls
detach
eol
ftp
icmp
kick
mbox
motd
ping
remote
route
smtp
status
ttylink
upload

autoroute
bbs

camm
dialer
escape
ftype
ifeconfig
lock
memory
multitask
popmail
rename
session
socket
tcp
third-party
watch

asystat
connect
disconnect
domain
exit
help
info

log
mkdir
netrom
ps

reset
sccstat
source
tail

tip
watchdog

Fig 13-3: The NOS command set.

To find out some more information about this particular release, give
the info command:

net>

info

NOS configuration information.

Containing: AXIP,
POP3zerver,
Russell Nelson modsets

Generic async interface (via 8250/16450/16550)

SLIP async interface (via B250/16450/16550)

(via 8250/16450/16550)

KISS8 async interface

TCP servers,

POP2client,

POP2Zserver,
RIP, HOP, MAILBOX, LZIW,

(PAOGRI wversion 920424)

FTP Software’s PACKET driver interface
Generic SCC (B530) driver
NET/ROM network interface
Van Jacobson compression on SLIP/PPP
IP access control

POP3client,

and the

The status command gives us further useful information:

net> status
KASQ Internet Protocol Package, v911229 (PAOGRI vZ.0m)
This version produced by PAOGRI

NOS load information: Code Segment=1f75 - Data Segment=71le3

The system time is Sat Aug 15 13:55:47 1992
NOS was started on Sat Aug 15 13:54:52 1992

Elapsed time => 0 days:00 hours:00 minutes:55 seconds.
The station is currently Attended.

The ‘Message Of The Day’ is
If I’m not here, please leave a message in the mailbox.

Table of Open Files.
Name length offset hnd acc PSP device type/owner
SESSION .LOG 107238 0 1 rw 1EAF drive C: [nos_20m.exe]

Escape to DOS

To escape to a DOS shell, give the ! or shell command. You should
now see the special DOS prompt already set up in STARTNOS.BAT,
and you should be able execute DOS commands. Be aware, however,
that there will only be a small amount of memory available to the shell,
as NOS is still running and occupying most of the available RAM, so
this will limit what you can do in DOS.

Furthermore, you may find when you attempt to escape to DOS that
the PC locks up completely. This almost certainly means that there is
no room for the DOS shell, and you will have to experiment with
CONFIG.SYS and AUTOEXEC.BAT to move as much as possible out
of conventional memory.

When you have finished with DOS, give the EXIT command to return
to NOS.

Let’s Start a Session: The more Command

The help, info and status commands are examples of direct NOS
commands; they respond immediately, and do not start a new session.

©®® Hands On — Session Manager 103

As an example of starting a session, give the command
more /autoexec.nos (note the forward slash — we’re in NOS now).
The screen clears, and then the first page of aufoexec.nos appears, with
the word —More— at the bottom, indicating that there is “more” to
come.

Now hit CR a few times. You’ll see that you are scrolling down the
file, one line at a time. To get the next screenful, hit the spacebar
instead.

Then, before you reach the end of the file, hit the ESC key (or F10 if
you are running a version of NOS which doesn’t support function key

mapping). This will take you back to the Session Manager. Now give
the session command:

net> session
s# Type Rocv-0Q Snd-Q State Remote socket

*1 -1 More o 0 Limbo! fautoexec.nos

The first column contains the session number, and the asterisk indicates
that this is the currently active session. The Type and Remote socket
columns verify that this i1s a more session. The remaining columns are
meaningless in this context.

If you now hit CR, you’ll find that you are back in the more session.
That is, whenever you are in Session Manager and hit CR by itself,
NOS takes you back to the currently active session (indicated with an
asterisk) if there is one.

Now hit ESC again to return to the Session Manager, and try the
command more /nosenv.bat. Again the screen will clear, and the
NOSENV.BAT file appears. Once again, hit ESC, and give the session
command:

net> session
f S# Type Rev=Q Snd-Q State Remote socket

1 -1 More 0 0 Limbo! fautoexec.nos
*2 -1 More o] 0 Limbo! /nosenv.bat

This time, the asterisk is alongside session 2, so if you were now to hit
CR by itself you would return to the NOSENV.BAT file. But how do
you get back to the first session? Simple: just give the command
session 1.

104 Hands On — Session Manager © ©

In other words, you can switch between sessions by giving the session
command, followed by the number of the particular session you are
interested in. (It turns out that this is a round-about way of doing
things — we’ll soon see that there’s a much better solution if your
version of NOS supports function key mapping).

Terminating a Session

Sessions will either terminate naturally (e.g. you have mored the
complete file), or you can terminate them prematurely with the reset
command; for example, reset 2 will terminate session 2. When you
give the reset command, you will find that NOS takes you back to the
session one last time, asking you to confirm termination by hitting CR.

Keyboard Mapping

Almost all versions of NOS recognise function key F10 to mean
“escape to the Session Manager”. You can also define an additional
key to do the same thing, by putting the escape command in
autoexec.nos. For example, if you really wanted to use the “:”
character as an escape character (not recommended), put this command
in qufoexec.nos:

escape

In practice, it’s much more useful to use the ESC key:

escape ESC

Note that the letters ESC represent the Escape key. That is, you need
to ertter this key as a single literal character (for example, if you use
DOS EDIT to edit gutoexec.nos, you prefix the ESC key with
CTRL-P), and it will not be visible in a printed listing of the file.

If you use a variant of PAOGRI’s NOS, you have much more flexibility
in re-defining individual keys, using the fkey command. It’s best to put
the definitions in a NOS script file, and call this script from
autoexec.nos; see the command source /scripts/fkeys.scr towards the
end of autoexec.nos — source means “run a script containing NOS

©®® Hands On — Session Manager 105

commands.” Appendix 3 contains a listing of fkeys.scr (pages 320-
321).

The listing includes the numbering scheme for the keys which you can
map: the function keys F1 to F10 (in normal, shift, control and alt
modes), plus the PgUp, PgDn, Home, End, Ins, Del and arrow keys.
For example, key 60 corresponds to F2, key 85 to SHIFT-F2, key 95 to
CTRL-F2 and so on.

The definition for each key is defined in the fkeys script as a text string
between inverted commas (" "). To include a control character, prefix
the character with a caret (*) symbol; e.g. #M means CTRL-M (CR).

Each command begins with *[, which means ESC. That is, you first
escape from the current session back to the Sess1on Manager, before
executing the rest of the string.

Some of the commands end in AM, which means they are executed
immediately. Others do not end in AM, giving you the chance to add
extra information, or the opportunity to think before you hit CR — you
certainly don’t want to reset the tnc with CTRL-F1 by accident, for
example!

Note that F1 (fkey 59) is defined as "A[tail /scripts/fkeys.Ist*M". Thus
when you hit F1, NOS will display the tail end (the last few lines) of
Jkeys.Ist, which just happens to contain a help list for the mapped keys;
see Appendix 3 for a listing of fkeys.Ist (page 319).

Note also that the up-arrow (fkey 72) is defined as CTRL-B. This
means “repeat the last command.”

Now try repeating the more commands described earlier, using the
ESC key to return to the Session Manager, and F2 to list the sessions,
and CTRL-F5 to reset a session. Use F1 whenever you need help.
Then start several other more sessions, and use ALT-F1 to switch to
session 1, ALT-F2 to switch to session 2, ALT-F3 to session 3, and so
on. A lot easier than typing session 1, session 2, etc.

The keyboard mappings keys defined in this book save a lot of time and
typing, and make NOS much easier to drive. Obviously you are free to
change them to anything you like, but it’s recommended that you stay
with the mappings defined here, at least until you’ve finished reading
this book!

106 Hands On — Session Manager © @

Some more Filesystem Commands
Let’s try a few more miscellanous commands to get our bearings:

cd: By itself, cd tells you the current DOS directory. At NOS startup
this is /dump/record, set at the very end of autoexec.nos. The
command pwd (“print working directory”) does the same thing.

To change to a different directory, it’s almost like DOS; e.g.
cd /spool/help. Note however that cd.. (without a space after cd)
doesn’t work; you need to give the ¢d .. command (with a space
before the two dots) to go up a directory level.

dir: You can use the dir command by itself to get a directory listing
of the current directory, or with a directory path; e.g.

net> dir /spool
help/ 8:05 8/13/92 mail.log 77 10:16 8/13/%92
mail/ 8:05 8/13/92 maueue/ 8:05 8/13/92

news/ 8:05 8/13/92 rgueue/ B:06 8/13/92
signatur/ 8:05 8/13/92
7 files, 4,669,440 bytes free. Disk size 41,246,720 bytes.

Resetting the TNC

You may wish to switch the tnc back to native mode, either because
you have finished with NOS, or because the tnc seems to have locked
up and is not responding as expected — Fig 13.4. The basic NOS
command to do this is param tnc0 255 (some tncs may require
param tnc0 254 as well).

The key combination CTRL-F1 takes this a step further. The keyboard
mapping file (fkeys.scr) shows that CTRL-F1 runs the script
tncreset.scr. This gives the param command to switch the tnc back to
native mode, then calls the dialer script fncreser.dia (see pages 329-330
for listings of these files).

The dialer script resets the tnc, then, after autobauding with the
asterisks, gives the XMITOK OFF command to disable the
transmitter.

©®® Hands On — Session Manager 107

Try CTRL-F1 to verify that you can reset the tnc. Then, to switch it
back into KISS mode again, you can use SHIFT-F1, which calls the
kisson.dia script described earlier.

Switch tnc back to
native mode
send RESET
sgr}d LIl
wait cmd: < cma:
send XMIT OFF
'_______/

ni 28]

Fig 13-4: The NOS command param tnc0 255 switches the tnc
from KISS mode back to native mode. The tncreset.dia dialer
script then resets the tnc and disables the PTT line.

Talking Direct to the TNC in Native Mode

If you want to communicate directly with the tnc in native mode, you
can use the tip (Terminal Interface Program) command — sec Fig
13-5,

You must first reset the tnc to native mode (for example, with
CTRL-F1), then give the command:

ﬂ net> tip tncO !

er ©6

This clears the screen and starts a new session. Hit CR a couple of
times, and you should see the cmd: prompt appear. From now on you
can talk to the tnc just like you used to!

Note than when you are running a tip session, you cannot run TCP/IP
at the same time — tip lets you talk in native mode to the tnc, whereas
TCP/TP requires KISS mode access to the tnc.

To exit the tip session, you simply escape to the Session Manager, then
give the reset command. Then you can give the SHIFT-F1 command
again, to put the tnc back into KISS mode.

ni29 |

Fig 13-5: The fip command lets you communicate direct with the
tnc in native mode. It is not possible to run TCP/IP at the same
time.

The Next Step

If you’ve successfully navigated this chapter, you are now ready to get
to know the NOS command set.

109

14: THE NOS COMMAND SET SUMMARY

NOS has over 80 separate commands, and getting your mind around
them is not a 5-minute job! Also, most of the commands have several
options, complicating matters even further. This chapter puts the
commands into logical groups, and provides a brief description of each
one. In later chapters we will look at most of them again in much more
detail. (See Appendix 2 for full command syntax information).

Session Manager Commands

? (or help) lists the main command names
F10 (or ESC) returns you to the Session Manager net> prompt
attended defines whether station is attended

cls clears the screen

dump displays memory contents

escape defines the Session Manager escape character
exit exits from NOS back to DOS

fkey defines function keys and cursor control keys
info displays NOS release information

isat (“is AT”) defines method of system clock handling
lock locks the keyboard

log logs NOS sessions

memory displays memory utilisation

multitask allows NOS multitasking

ps displays process status

I (or shell) escapes to a DOS subshell

record records a session in a file

source runs a NOS command file

status displays Session Manager status

test performs a system test

trace traces packet traffic

watch calculates execution times

watchdog controls NOS restart after failure

110 The NOS Command Set Summary @@

Directory Access Commands

cd changes DOS directory

delete deletes a file

dir lists the files in a directory
mkdir makes a DOS directory

pwd displays current DOS directory
rmdir removes a DOS directory

File Access Commands

more displays a file a page at a time
rename renames a file

tail displays the last few lines of a file
upload uploads a file

Session Control Commands

abort aborts an FTP transfer

close closes a session normally
connect initiates an AX.25 connection
disconnect terminates an AX.25 connection
kick wakes up a NOS client

reset forces a connection to close
session displays session status

skick kicks a socket

start starts 2 NOS server

stop stops a NOS server

NOS BBS Commands

bbs calls your own NOS BBS

lzw controls data compression

mail calls external mailer

mbox displays mailbox status

motd defines “message of the day”

pop, popmail handles reverse forwarding of SMTP mail
smtp controls the SMTP client

telnet calls a remote NOS BBS

third-party controls third-party message handling

@O The NOS Command Set Summary

111

FTP Commands
abort aborts an FTP transfer
echo controls command echoing
eol controls end-of-line handling
ftp initiates a file transfer session
ftype sets default file transfer type (ASCII or binary)

Status Commands

arp
asystat
drsistat
dump
eaglestat
etherstat
hapnstat
icmp
ifconfig
ip status
mbox
memory
nntp
nrstat
param
ps
sccstat
session
socket
tep status
udp

displays ARP address table
displays asynchronous port status
displays DRSI interface status
displays memory contents
displays Eagle interface status
displays Ethernet status
displays HAPN interface status
displays ICMP status

displays an interface configuration and status
displays IP status

displays mailbox status
displays memory status
displays network news status
displays NET/ROM status
displays tnc parameters
displays process status
displays SCCS interface status
displays session status

displays socket status

displays TCP status

displays UDP status

Routing Commands

autoroute
ax25 route
hop

netrom route
rp

route

rspf

remembers IP routing

manipulates the AX.25 routing table (digipeaters)

traces the route to a remote station
manipulates the NET/ROM routing table
controls the Routing Interface Protocol
manipulates the IP routing table

controls the Radio Shortest Path First protocol

112

The NOS Command Set Summary ©©®

Network Client and Server Commands

starts a local NOS BBS session
starts a chat session

starts a finger session

starts a file transfer session

bbs
chat
finger
ftp
kick
mode
nntp
ping
pop
rarp
remote

reset
rlogin
smip
start
stop
telnet
telnet 25
telnet 87

tip
ttylink

kicks a client

sets up transfer mode (datagram or virtual circuit)
handles network news

pings a remote station

handles SMTP reverse forwarding
handles reverse ARP

handles remote control of a station
aborts a session

starts an rlogin session

handles the SMTP client

starts a network server (listener)

stops a network server

starts a remote NOS BBS session
starts an SMTP session

starts a chat session

communicates directly with tnc/modem
starts a chat session

Interface Commands

attach attaches an interface
detach detaches an interface
ifconfig configures an interface
Trace Commands
domain trace traces domain cache handling
hop trace traces packets to nominated destination
icmp trace traces ICMP packets
nntp trace traces network news packets
rip trace traces routing broadcasts
smtp trace traces SMTP mail handling
tcp trace traces TCP packets
trace traces network interface packets

©© The NOS Command Set Summary 113

TNC/Modem Commands

comm sends commands to a tnc/modem

dialer runs a tnc/modem initialisation script
param * sets tnc parameters

PPP controls point-to-point protocol

tip communicates directly with a tnc/modem

Network Name and Address Commands

arp manipulates Address Resolution Protocol table
bootp, bootpd handles network booting
domain handles domain caching
hostname sets local host name

"

=

T

-
= - :
-
L]
i
]
-
-
= Ll
F iy -
-
L] i
- =
.
—
¥
"
i
w
-

L]

- I =
&
-
i
a
.
[
r -
-
-
-
-
"
L
"
. -
- Mk
- L
: - - i '-I-
- L s
-
-
- s
-
-
.
-
-
.
-
-
i
.
"
-
L]
-

L}

"
&
B s
-
=
&
-
7

-

™ -
- -

[-
-
=

= =

.- .

d M

,I_l

L™

115

15: HANDS ON — autoexec.nos

We now take a closer look at some of the NOS startup commands to
be found in auftoexec.nos. As usual, this chapter assumes you are
using the default autoexec.nos listed in Appendix 3 (pages 312-317).
This means that you are NS9BOB, so when you give a command like
finger sysop@ns9bob, you are really talking to yourself. Try the
commands as we go along,

Command Ground Rules

As explained earlier, all NOS commands are lower case, and you can
abbreviate them as long as they are still unique. However, you must be
careful when adding parameters to the commands: you shouldn’t
abbreviate parameters, as NOS is not always thorough about checking
them for validity. '

If you are not sure about what parameters are needed for a particular
command, just type the command followed by a question mark. NOS
will reply with a list of required parameters. For example:

net> mbox ?
valid subcommands: attend expert fwdinfo haddress jumpstart

kick maxmsg motd nrid password gth secure smtptoo status
timer tiptimeout trace utc zipcode

Alternatively, you can consult the NOS Command Set Reference in
Appendix 2, or use VIEW to look at the same file on-line (when in
VIEW, use F3 to display file V:\/CMDSET).

Note that many of the commands are of a “display or set™ nature. That
is, if you give the command by itself, you can display the current
values of its parameters, but if you follow the command name with
parameters you can change the parameter values to something else.

116 Hands On — autoexec.nos ©©

Let’s take a look at the beginning of autoexec.nos.

Miscellaneous Setup

Miscellaneous setup *rtttkEtrss it AR it T A dReaTadadt bbbt dad

attended on

escape BSC # <EsC> character
isat yes # 286/386 clock
multitask on

log /dump/session.leg

watchdog off

motd "If I'm not here, please leave a message in mailbox."

attended: The attended flag indicates whether the station is attended
and you are ready to accept incoming chat requests. If attended is
set to off, NOS sends a message back to the caller saying that the
station is unattended.

isat: The isat flag states whether the PC is an AT (i.e. 286/386/486)
or nott When set to on, NOS measures time intervals in
milliseconds, but if set to off it can only measure time in 55
millisecond clock ticks.

multitask: When multitask is set to on, NOS continues to run when
you escape to a DOS shell. If set to off, NOS activity ceases until
you exit from DOS and return to NOS.

log: The session log file contains a log of every time you start and
stop NOS, and a summary of every session you run. This can be
useful in tracing system problems. Not surprisingly, the file can
grow to be very large, so you should delete it from time to time to
save disk space.

watchdog: When set to on, NOS runs a watchdog process that
monitors internal activity. If the watchdog times out (after 5
minutes), NOS will automatically exit. This is useful for
unattended site operation, where STARTNOS.BAT can be part of an
endless loop, as in the file REMOTE. BAT:

iloop
N:\STARTNOS
GOTO loop

©®® Hands On — autoexec.nos 117

motd: Specifies the “message of the day”, used to welcome callers.

Domain Commands

There are many domain commands, most of which you’ll rarely use.
They specify how NOS is to resolve and display IP addresses:

Set up domain defaults FAFFAF AR AR RAARERR AR TR RRRNT AR AR RS ER
domain cache size 30
domain suffix ampr.org.
domain translate on
domain verbose off
domain addserver nsSdns

display host names

#
do not display suffix

domain suffix: NOS automatically adds the suffix to any hostname
you type which does not end in a dot, to generate the full domain
name. For example, when you give the command ftp ns9ken, NOS
will look in domain. txt for the name ns9ken.ampr.org.

domain translate: When set to on, NOS converts numeric IP
addresses to host names, making it much easier to understand status
reports. For example, the route command gives an output like this
when domain translate is set to on:

Dest Len Interface Gateway Metric P Timer Use
ns9tom 32 netrom 1 man D
regiond5 24 tncO ns9ken 1 man o

This is much more meaningful than:
Dest Len Interface Gateway Metric P Timer Use
44.199.47.75 32 netrom 1 man 0
44.199.45,0 24 tncO 44.199.41.2 1 man 0

when domain translate is set to off. (Unfortunately some versions of
NOS are broken; even when domain translate is set to on, the
conversion does not take place).

domain verbose: When set to on, NOS displays the full domain _
names of hosts, including the suffix; e.g. ns9ken.ampr.org. This
can be useful if domain.ixt contains hosts from several different

118 Hands On — autoexec.nos O ®

domains, but in an AMPRnet-only environment you don’t need to
see the suffix, so you can set domain verbose to off.

Station Identification
Here is where you tell NOS who you are:

Station Identification *hdsddd st dddddddhdddhhddh kbbb hds

ip address ns9%bcb
hostname nsSbob
ax25 mycall NS9BOB-5 # This MUST precede 'attach'’

ip address: This is the IP address of your station. This corresponds
to the word host in descriptions of command syntax. For example,
the syntax for the ftp command is “ftp host”, which means that the
ftp command needs an IP address (or a name in domain.txt which
corresponds to that address).

(N.B. A lot of existing reference documentation uses the word
hostid to mean IP address. This is quite wrong. A hostid is an IP
address expressed in hexadecimal; e.g. the IP address 44.199.47.75
is equivalent to a hostid of 2cc72f4b. You can say ftp tom or
ftp 44.199.47.75, but ftp 2cc72f4b won’t get you very far. Except
for mentioning it here, the word Aostid is not used anywhere else in
this book).

hostname: The hostname is the name by which you greet users of
your FTP server and your NOS BBS. In principle you can use any
name here, but this can cause complications when people try to
reply to mail, so it’s best to use the name corresponding to your IP
address in domain.txt.

ax25 mycall: This tells NOS your AX.25 callsign. Note that it does
not set up your tnc with the callsign as well; you must do this
separately (e.g. in the script kisson.dia) before starting NOS.

Setting up the TNC

We’ve already seen how to attach the serial interface to the tnc, with
the attach asy command. You can also set up various parameters in
the tnc with the param command:

@® Hands On — autoexec.nos 119

i Set up the THC *Ahdkd ARk drddrrtd e tdtd b bd bbb bbb bbb dd

attach asy 0x3f8 4 ax25 tncO 2048 256 4800 # coM1i
attach asy Ox2f8 3 ax25 tncO 2048 256 4800 # com2
attach asy Ox3eB 4 ax25 tncO 2048 256 4800 # coM3
attach asy Ox2e8 3 ax25 tnc0 2048 256 4800 # comM4
trace tnco 211

Initialise the tnc to KISS mode #hkdkkhkktddbbhdhhhrrhhdhid
dialer tncO /scripts/kisson.dia

param tnecO 120 # TX delay (x 10ms)
param tncO 2 63 # Persistence (0-255)
param tncO 3 10 # Slot Time (x 10msS)
param tnel 4 10 # T™X tail (x 10ms)
param tnco 50 # O=HDX

param tnc0 dtr 1

param tncoO rts 1

Here is a list of param commands which may be applicable to your tnc
(all values of n are decimal in the range 0-255):

param tnec0 1 n TX Delay (x 10mS)

param tncO0 2 n Persistence

param tncO0 3 n Slottime delay (x 10mS)
param tncO 4 n TX Tail (x 10mS)

param tne0 5 =n O=half duplex, 1=full duplex
param tncO 6 Hardware dependent

param tnc0 7 TX mute

param tncO 8 n 0=DTR low, 1=DTR high
param tne0 9 =n 0=RTS low, 1=RTS high
param tnc0 10 Baudrate

param tnc0 11 n End delay

param tne0 12 n Group

param tne0 13 n Idle

param tncO 14 =n Min

param tne0 15 n Max key

param tncO 16 =n Wait

param tne0 17 n Parity: O=none, 1=even, 2=odd
param tne0 129 n Down

param tne0 130 n Up

param tncoO 254 Prepare to switch tnc to native mode
param tne0 255 Switch tnc from KISS to native mode

120 Hands On — autoexec.nos @ ©

Note that many of these parameters are tnc- and NOS-version
dependent; only parameters 1-3, 5 and 255 are common to all
implementations.

Interface Configuration

The interface configuration command (ifconfig) sets up various
network parameters for each of the NOS interfaces. The parameter
you may need to change is description:

ifeconfig tncld description "144.625 MHz port"

This description provides useful information to people who want to use
this interface as a gateway to other networks.

To obtain the current status of all NOS interfaces, use the ifconfig
command by itself:

net> ifconfig
tncl IP addr nsSbob MTU 256 Link encap AX25
Link addr NS9BOB-5
flags 0 trace Ox0 netmask Oxff000000 broadcast
44.255.255.255
sent: ip 0 tot 6 idle 0:00:00:07
recv: ip 0 tot 0 idle 0:00:00:07
descr: 144.625 MHz port
loopback IP addr loopback MTU 65535 Link encap None
flags 0 trace 0x0 netmask Oxffffffff broadcast
255.255.255.255
sent: ip 0 tot 0 idle 0:00:00:07
recv: ip 0 tot 0 idle 0:00:00:07
encap IP addr 0.0.0.0 MTU 65535 Link encap None
flags 0 trace 0x0 netmask Oxffffffff broadcast
255.255.255.255

sent: ip 0 tot O idle 0:00:00:07
recv: ip 0 tot 0 idle 0:00:00:07

This tells us several things about each interface:
e The IP address
e The MTU (maximum transmission unit); i.e. largest packet size.

e The encapsulation: i.e. whether the packets are AX.25 or
NET/ROM packets etc.

©®® Hands On — autoexec.nos 121

¢ The link address: either an AX.25 callsign or Ethernet adapter
address

e Various flags and masks
e Numbers of packets sent and received through the interface.

In addition to the tnc0 interface defined in gutoexec.nos, there are two
other interfaces which appear automatically: loopback and encap. The
loopback interface is a software loopback within NOS; that is, it is not
attached to a physical interface port. This can be useful for testing.
The encap interface is used for encapsulating AMPRnet traffic inside
packets which the Internet understands.

The finger Command

To show how you can use NOS to communicate with other stations,
let’s look at the finger command. This allows you to “put a finger on”

(i.e. find out about) users on another system. The syntax of the
command is:

finger Rhost
finger usexfhost

To find out who is known on particular system,\use the first form of
this command. Try:

“ net> finger @nsSbob !I

Alternatively, you can try finger @loopback, which amounts to the
same thing. N.B. There is no space after the @ symbol.

NOS replies with the message:

@ns%ob — Resolving ns%ob... trying ns%ocb:finger
Known users on this system:

sysop

The first line confirms that NOS is resolving (looking for) ns9bob in
domain.txt, and is then trying to connect to the finger server at ns9bob.

122 Hands On — autoexec.nos @ ©

The finger server then responds with a list of known users on the
system; in this case, just one (sysop).

Where did the name sysop come from? Take a look in directory /finger
(with the dir /finger command). Here you’ll find a text file named
sysop, containing everything you ever wanted to know about sysop.

Now that you know the file sysop exists in the finger directory, you can
ask NOS to send you a copy of the file:

u net> finger sysop@nsSbob II

(N.B. No spaces cither side of the @ symbol).
This time, NOS responds with the contents of /finger/sysop:

sysop@ns9ob — Resclving ns%ob... trying ns9%ob: finger

Hello and welcome to nsSbob

User: bokb (NS9BOE)
Real Name: Robert R Roberts
Class: Extra
Address: 12345 Anystreet
Anytown, Anystate, AnyZIP
Telephone: (111) BOB-3456

System Config: PK-88
Yaesu FT-27RB

144.625 MHz
Gccupation: Professor of Anglo-Saxon
Hobbies: Sheepshearing

So all you have to do now is prepare a separate text file for each user
on your system that you want to tell the world about. Please remember
KISS — keep it short, stupid! One screenful is quite enough. Give
each file a name up to 8 letters long (no extension), and place it in
directory /finger.

Incidentally, if you give the ifconfig command again, you will now see
that the send and receive counts on the loopback interface have
increased, In other words, ifconfig is useful for checking that traffic is
actually passing through an interface.

123

16: THE fitpusers FILE

The file /fipusers is probably the most critical control file in NOS, as it
determines what individual users are allowed to do in your system. If
you get this file wrong, you could be in for a few surprises!

The file contains a list of login names, passwords, top-level root
directories and access rights. Although called fipusers, the file is
actually used for general access control, for TELNET and PPP as well
as for FTP,

The format of each entry in fipusers is as follows (all on one line):

login_name password root dir([:root_dir] permissions
[ip_address]

For example, here is an extract from the fipusers file listed in
Appendix 3 (pages 322-323):

Miscellaneous accounts requiring no password:
anonymous * /public 3

anon * /public 3

bbs * /public 3

guest * /public 3

Special accounts:
superuser supasswd /public 67

nsSbob bobby /public 7
roberto robertspw / 127 # Login name > 6 characters

Friendly visitors
nsSken kenneth fpublic 7
ns9liz lizzie /public 7

Unwanted visitors:
NSSNRD * /public/tmp 128 # Sorry, no access

124 The fipusers File © 0@

There must be exactly one space between each field, and at least the
first four fields must be present. The fifth field (ip_address) is only
used for PPP.

(N.B. If you are already familiar with the UNIX file /etc/fipusers, be
aware that this serves the opposite purpose of the NOS fipusers file.
The UNIX file contains a list of those users who are not allowed to use
FTP, whereas the NOS file specifies those who are allowed).

Login Name

The login name may be any length, but only the first 8 characters are
significant. In most cases the login name will be a callsign, and will
appear in the From: field of any messages which the user subsequently
sends. However, there’s nothing to stop you having a login name like
nebuchadnezzar, but your messages will then be
From: nebuchadnezzar@ns9bob, which may not be particularly
helpful to anyone who wants to reply to you!

In addition to ordinary login names, you should also include the names
anonymous, anon, bbs and guest. These four accounts are intended
for anyone who doesn’t otherwise have an entry in fipusers. You will
allow people to login to any of these accounts with any password, but
they will only have restricted read-only access to “safe” public
directories.

Password

The password may be any string of characters, with no spaces or tabs.
Note that the password is “in clear” (i.e. not encrypted), so it’s not a
good idea to allow anyone to access the root directory (N:\) where
fipusers resides. Otherwise, if somebody discovers the password of a
user who does have access to N:\ (by monitoring the on-air packets
from that user), it is then possible to read fipusers and discover all the
passwords.

For the anonymous, anon, bbs and guest accounts you should put an
asterisk is the password field. This means that these users may use any
password when logging in. By convention, it’s usual for such users to
give their callsign as the password.

©®® The ftpusers File 125

Password Checking

It’s important to realise that NOS only refers to fipusers when users
connect to the system with the ftp, telnet, bbs and ppp commands. If
someone connects to the NOS BBS using ordinary AX.25 or
NET/ROM, NOS does not ask for a password. In this case the login
name becomes the user’s AX.25 callsign.

AX.25

connect | | connect

() (Pop) (bbs) (ielnel) NE”"OM]
N\

FTP | PPP
server gy server

Fig 16-1: The fipusers file authenticates access to the NOS BBS
{when entered with the bbs or felnet command).and also to the
FTP and PPP servers. If a user enters the BBS with an ordinary
AX.25 or NET/ROM connect, there is no access check against
the fipusers file.

So how can you prevent ordinary AX.25 or NET/ROM users gaining
password-free access? The brute-force way is to turn off the AX.25
and NET/ROM servers (with the stop ax25 and stop netrom
commands). An alternative, more subtle approach is to choose login
names with 7 or more characters for accounts with sensitive access
permissions. As AX.25 callsigns have a maximum length of 6
characters, these will never match any 7- or 8-character login name.

Root Directory

The root directory is the highest directory level which the user is
permitted to access. This must be expressed as an absolute full

126 The ftpusers File @ O

pathname from the NOS root (N:\), but without drive letter. (The
reason for recommending that you use the SUBST N: command to
define the NOS root should now be crystal clear: users are not able to

go any higher up the file tree than N:\, so they can never access any
files outside of NOS).

You are not restricted to one root directory — you can specify a list of
them, using the semicolon as directory name separator. For example:

/public; /private

Note that there are no spaces in the directory list, and that all root
directories are relative to the NOS root. (Newer versions of NOS are
now becoming available which allow you to specify root directories
relative to any DOS root, such as D:\ or H:\ or whatever, allowing you
to specify LAN network drives or CD-ROM drives, for example).

When you login to the NOS BBS or use the ftp command, NOS
automatically takes you to the first root directory in the list. Then you
can give a ¢d command to change to another root directory. (This

applies only to the ftp command; you cannot change to a different root
in the BBS).

Access Permissions

The access permissions are expressed as a numerical code derived from
Table 16-1 opposite.

To determine the permissions code for a user, add up all the values in
the table which apply to the user. For example, for ns9bob’s account,
the permissions code is 7; 1.e. 1+2+4, meaning that Bob can read,
create, write and delete files in the /public directory, or in any directory
below /public. Anybody logging in as anonymous, anon, bbs or guest
has permissions code 3, meaning that they can read or create files in or
below /public, but they cannot update or delete any existing files.

The meanings of the other permissions are discussed later.

Note that anyone could masquerade as Bob, and login using AX.25 or
NET/ROM with the AX.25 callsign NS9BOB. In this case, because
the callsign matches Bob’s password entry, the user immediately gains
Bob’s access permissions, without being asked for a password.

© O The fipusers File 127

That is why Bob has two password entries: ns9bob and roberto.
Account ns9bob is potentially vulnerable to intrusion from an AX.25
station, and is therefore access is restricted to /public.

Account roberto can never be accessed by an AX.25 station (the login
name roberto is 7 characters long), and so general access is allowed to
all directories and all gateways. Provided that Bob only uses this
account locally — that is, not over the air where other people could see
his password when he logs in — he is perfectly safe from intrusion.

o and telnet
1 read files
2 create new files
4 write/delete existing files
telnet only
8 allow AX.25 Gateway access
16 allow Telnet Gateway access
32 allow NET/ROM Access
64 allow Remote control
128 Disallow all access
ppp _only
256 PPP connection
512 peer ID/password lookup
miscellanecus
1024 disallow send commands (except to sysop)
2048 disallow read commands
4096 disallow third-party mail
8192 this station is a known BBS

Table 16-1: Access Permissions in the fipusers file. (N.B. Some
versions of NOS do not support all of these permissions).

Selective Read-Only Permission

You may wish to give users general read/write/delete permissions for a
particular directory such as /public, but how can you prevent them

128 The ftpusers File @0

writing to sensitive files below /public? For example, in the NOSview
distribution, the masters, nosview and nosdocs directories are located
below /public, and you certainly don’t want people tampering with
them!

This is where DOS comes to the rescue — you can use the DOS
ATTRIB command to add the read-only permission to all the files you
want to protect:

N:\> ATTRIB +R N:\PUBLIC\MASTERS\","

N:\> ATTRIB +R N:\PUBLIC\NOSVIEW\"."
N:\> ATTRIB +R N:\PUBLIC\NOSDOCS\".*

129

17: HANDS ON — FTP

With FTP (File Transfer Protocol) you can connect to another NOS
station, browse around the filesystem there, and transfer ASCII or
binary files to or from that system — provided you have permission to
do so, as determined by that station’s fipusers file.

Before using FTP, you should use ¢d or pwd to select a safe NOS
directory on your system. For example, you don’t usually want to
download files into your NOS root directory. It’s best to select the
default directory /dump/record.

I| net> cd /dump/record |I

This directory corresponds to the SUBSTituted R: drive. Thus you can
examine any file in this directory by selecting F3 R:* * when in VIEW,

Initialising FTP

Prior to using FTP, you can give the ftype command to set the mode of
file transfer: '

|| net> fiype binary II

This sets the default transfer mode to 8-bit binary (also known as
image mode), and is normally good for the transfer of a// files, ASCII
and binary.

However, if you suspect that the path will only handle 7-bit file
transfers, you can change the mode, using the command:

“ net> ftype ascii |I

130 Hands On — AX.25 0@

Starting an FTP Session

The hands-on session described in this chapter is summarised in Fig
17-1 opposite.

The syntax of the FTP command is:

ftp host

To try out FTP, you can start a session with yourself, with the
command:

E net> fip nsSbob ﬂ

(Assuming you are NS9BOB).

NOS responds by starting a new session window, which displays:

Resolving nsSbob... Trying nsSbob:ftp...

ETP session 1 connected to nsSbob

220 ns%ob FTP version 911229 (PAOGRI v2.0m) ready on Sun Aug
23 05:45:41 1992

Enter user name (nsS%bob):

As you are logging in as nsSbob, you can can just hit CR; if you are
logging in with any other account name in fipusers, give that name.

Later, when you go on-air and log into somebody else’s system, you
may not know if you have an account on that system. In that case, log
in as anonymous.

The FTP server now requests your password:

331 Enter PASS command
Password:

Now enter the password for ns9bob (bobby) and hit CR. The password
does not echo. (If you log in to another system as anonymous, give
your callsign as the password).

@@ Hands On — AX.25 131

S — FTP
..inet> ¢d /dump/record L
i {nef> flype binary § : Sf

|net> fip ns9bob

Enter user name: ns9bob

Jpublic

/public/nosview

i

i

B

:@:%' s

T T Y

Fig 17-1: A typical FTP session. After connecting with the
server and entering your login name and password, FTP takes
you to the directory listed in your fipusers entry (in this case,
/public). You can then transfer files between client and server.

132 Hands On —AX.25 O @

If you get the password wrong, FTP responds with Permission denied
and an ftp> prompt. To try again, give the pass command, together
with the password:

ftp> pass bobby
230 Logged in

If you subsequently decide to log in as another user, give the user
command:

I ftp> user roberto !l

FTP Subcommand Summary

Having logged in, you can now give several subcommands at the ftp>
prompt. Here is their syntax:

ascii

batch [on|off]

binary

cd remote_dir

dele remote_file

dir [remote_dir | remote_file [local_file]]

flow [on|off]

get remote_file [local_file]

hash

list [remote_dir | remote_file [local_file]]

Is [remote_dir | remote_file [local file]]

mget remote_file [remote_file ...]

mkdir remote_dir

mput local_file [local_file ...]

nist [remote_dir | remote_file [local file]]

pass password

put local_file [remote_file |

pwd

quit

rmdir remote_dir

type [a|i]| | bytesize]

user usemame

verbose n n=0: errors only
1: + summary
2: + progress
3: + hash

@@ Hands On — AX.25 133

Let’s try some of these. First, it’s a good idea to turn flow control on.
Some FTP commands can produce several screenfuls of output, which
will zip by too quickly unless you say:

E ftp> flow on ﬂ

Now check the remote directory that you have logged into:

ftp> pwd

257 "/public" is current directory

This will be the directory listed in the fipusers entry for this user.
Now get a full directory listing:

frp> dir

200 Port command okay

150 Opening data connection for LIST /public

masters/ §:05 B8/13/%82 nosdocs/ B8:05 8/13/92
nosview/ B:05 8/13/92

3 files. 4,079,616 bytes free. Disk size 41,246,720 bytes.
LIST : 169 bytes in 0 sec (1158/sec)

226 File sent OK

If you just want a list of filenames, without sizes or date/timestamps,
just give the Is (list) command instead.

Now change directory to nosview, and get a full listing of files there:

ftp> cd /public/nosview

257 "/public/nosview" is current directory

ftp> dir

200 Port command okay

150 Opening data connection for LIST /public/nosview

{then follows a screenful of filenames}

—More—

Then repeatedly hit the spacebar to get the rest of the listing.

134 Hands On — AX.25 © @

Downloading Files

To get a copy of one of these files (say, socket) into your local
download directory, use the get command:

ftp> get socket
200 Type i OK
200 Port command okay

150 Opening data connection for RETR /public/nosview/socket
RETR socket: 3267 bytes in 0 sec [9497/sec)
226 File sent OK

You can now examine your local directory (/dump/record) to confirm
that the file is indeed there. To do this, escape to the Session Manager,
and give the dir command. NOS should then report that the file socket
is there. You can then read the file, with the command more socket.

(You will probably prefer to use VIEW instead of the NOS dir and
more commands. In that case, just hot-key to VIEW, then
F3 RASOCKET to read the file).

Now return to the FTP session, with ALT-F1. In the get request above
you simply said get socket, which means that the local copy will have
the same name as the original file. To give the downloaded copy a
different name, just include the new name in the get command:

H ftp> get socket mysocket I

Monitoring the Transfer

When you are downloading files to yourself in this manner, the transfer
rates are obviously high, because the transfers are taking place
completely within your system; speeds of thousands of bytes per second
are typical. Unfortunately, when you use FTP in earnest over the air,
the rate will drop to hundreds or even tens of bytes per second,
depending on the speed of the radio link and on other traffic on the
channel. This means that file transfers can take a very long time.

©® Hands On—AX.25 135

To monitor the progress of a transfer, you can give the hash command:

M ftp> hash !I

Now, whenever you transfer information, FTP will display a hash
character (#) for every 1024 bytes transferred. Try getting a large file:

ftp> get tcp
200 Type i OK
200 Port command okay

150 Opening data connection for RETR /public/nosview/tcp
HERSHERRRRER

RETR tcp: 13591 bytes in 1 sec (12503/sec)
226 File sent OK

You will see 13 # marks, corresponding to a file length of about
I3 KB. This is an extremely useful indication that things are still
happening.

If you want to download several files, you can use the multiple get
(mget) command. It’s usual to use a wildcard with this command. For
example, to get all filename starting with the letters re:

! ftp> mget re* II

In this case, the downloaded copies have the same names as the
originals.

Uploading Files

To upload files from a local directory to a remote directory, you use the

put command. For example, go back to the public directory, then
upload the file mysocket:

136 Hands On —AX.25 0@

ftp> cd /public

257 "/public" is current directory

ftp> put mysocket yrsocket

200 Type 1 OK

200 Port command okay

150 Opening data connection for STOR /public/yrsocket
#H#

226 File received OK
STOR yrsocket: 3267 bytes in 0 sec (11626/sec)

Now give the dir command to confirm that the upload was successful:

ftp> dir

200 Port command okay

150 COpening data connection for LIST /public

masters/ 8:05 8/13/92 nosdocs/ 8:05 8/13/92
nosview/ 8:05 8/13/92 yrsocket 3,267 7:19 8/25/92
4 files. 4,079,616 bytes free. Disk size 41,246,720 bytes.
LIST : 201 bytes in 0 sec (1158/sec)

226 File sent OK

Deleting Files
You can now try deleting this file:

|| ftp> dele yrsocket lI

A further dir command should confirm that the file has gone.

Note that the dele command was successful because NS9BOB’s entry
in fipusers has permission code 7, which means he is allowed to read,
write, create and delefe files in directory /public downwards. If the
permission code were only 3 (as it should be for the anonymous
account, for example), it would not have been possible to delete the file.

Finally, when you have done all you want to in the FTP session, you
terminate with the quit command:

ftp> quit

221 Goodbye!

FTP is nothing but friendly!

@® Hands On — AX.25

Automated Login

When you use FTP to access other stations, you can save time in the
login process by setting up the file /net.re, which contains all the

information needed to login automatically:

NET.RC
Format:
- -

<hostname> <username> <password>

*kwddkikdikd EXACTLY ONE SPACE BETWEEN FIELDS ##fsshds
=

loopback nsSbob bobby

ns9%ken nsSbob mypasswd

ns9liz anonymous ns%bob

When you now give the command ftp loopback, the FTP client will
automatically supply the login name ns9bob to the FTP server, and will

then automatically provide the password bobby when asked.

Similarly, when you say ftp ns9ken, NOS will provide the login name
nsSbob and password mypasswd — see Fig 17-2. For the login to be
successful, the login name and password must match an entry in Ken’s

fipusers file.

FTP
SERVER

ni 32
Fig 17-2: The net.rc file contains username and password

entries which are supplied automatically to the server when you

give an fip command.

5 0@

When you say ftp ns9liz, NOS will log you into Liz’s FTP server as
anonymous and provide your callsign ns9bob as the password. In this
case you will gain access to the directory specified in the anonymous
entry in Liz’s fipusers file.

Binary File Transfers

The transfer of 8-bit binary files works well if the path to the other
station supports 8-bit data all the way. You simply set ftype to binary
as explained earlier, and then get or put the files you need.

However, if any part of the path only supports 7-bit data (and very
often you don’t know), 8-bit binary transfer is out. In this case you’ll
need to convert the 8-bit file to a 7-bit ASCII format, transfer the 7-bit
file, and then have the sysop at the other end convert it back to its
original 8-bit format.

The NOSview distribution provides two utilities to do this:
UUENCODE and UUDECODE. See Fig 17-3. The letters UU
betray the origin of these commands — they were originally developed
for Unix-to-Unix file transfers. The UU commands are DOS programs,
so you need to shell out from NOS to use them.

To encode an 8-bit binary file (say AX25.COM) into its 7-bit
uuencoded equivalent (say 4X25.UU), shell out to DOS and then give
the UUENCODE command:

net> shell
EXIT TO RETURN TO NOS N:\> UUENCODE < AX25.COM > AX25.UU

EXIT TO RETURN TO Nos N:\> EXIT

On returning to the NOS FTP session, set the transfer mode to ASCII
and send the uuencoded file to the other station:

ftp> type ascii
frp> put ax26.uu

©® Hands On — AX.25 139

At the other end, file conversion back to binary is achieved with the
DOS command:

I N:\> UUDECODE < AX25.UU > AX25.COM Il

UUENCODE 1 UUDECODE

ni33

Fig 17-3: If the network can only support 7-bit file transfers, it is
necessary to encode an 8-bit binary file into 7-bit ASCII format
before sending it. At the receiving end, the file is decoded back
to its original 8-bit format. You have to escape to DOS to
encode and decode the file.

140 Hands On — AX.25 ©@®

Aborting an FTP Command

Sometimes things don’t go to plan, and you may want to abort an FTP
session. You can use the NOS reset command as a last resort, but it’s
usually much cleaner to terminate the session with the NOS abort
command.

To do this, escape to the Session Manager, then give the abort
command, with a session number if necessary. For example, to abori
an FTP transfer in NOS session 3:

! net> abort 3 I

The abort command only works with FTP transfers. Be aware that
when you abort a file transfer, you may finish up with a partial copy of
the file on the destination machine. You will then have to delete the file
manually.

Kick the Session into Life!

Sometimes you’ll find that sessions appear to stop running for no
apparent reason. To bring them back to life, you can try the kick
command. For example, to kick session 3:

net> Kick 3

You can use this command for all types of session, not just ftp

sessions.

1

net> kick J

ni 88

141

18: NOS BBS — THE BIG PICTURE

In the AX.25 PBBS world, it’s common for users to run their own
personal messaging system (PMS), with automatic forwarding in both
directions between the PMS and a local PBBS. People can log into the
PMS, but they can only leave private messages there for the PMS
owner,

In the NOS world, you also have a personal messaging system. Here it
is called the NOS BBS, and is very much more powerful and flexible
than an AX.25 PMS.

You can login to your own NOS BBS with the bbs command, and into
a remote BBS with the telnet command. Ordinary AX.25 users can
also login to the NOS BBS, simply by connecting to the station in the
usual way.

The NOS BBS comprises six main parts:

e The Mailbox Server

@ The Built-in NOS Mailer
» File Server

o Gateway Server

e Finger Server

e Remote Sysop Server

See Fig 18-1.

The mailbox server contains a command interpreter which understands
simple one- or two-letter commands to invoke the BBS services.

The NOS mailer lets you create, send and receive mail. You can
transport mail to other NOS stations using the SMTP protocol, and
collect your mail using the POP protocol. You can also forward and
reverse-forward mail to and from the conventional AX.25 PBBS
network.

142 NOS BBS — The Big Picture ©®

Mailbox Server

ni 34

Fig 18-1: The NOS BBS. The individuall capital letters in the
boxes (e.g. AL RV K 8) are BBS commands.

The file server lets you upload and download files, and, if you have
permission, delete them also. File transfers are in 7-bit format. If you
want to transfer 8-bit binary files, it’s necessary to encode them into
7-bit format first. The file server is really intended for AX.25 users
who connect to the BBS — NOS users would normally use FTP
instead.

@ © NOS BBS — The Big Picture 143

The gateway server lets you make outgoing AX.25, NET/ROM and
TELNET connections to other stations. The server is likewise intended
for AX.25 users, so that after connecting to the BBS they can then
initiate a2 new connection to another station, possibly on another
network. The server also provides a chat facility, letting you talk direct
to the sysop.

The finger server is also intended for AX.25 users, letting them read
the finger files on the system; NOS users would normally use the
finger command instead.

The remote sysop server lets you communicate directly with the NOS
Session Manager on the system, giving you the power to do almost
anything. This is particularly useful if you need to change settings on a
difficult-to-get-to hilltop system, for example, without physically
having to go there. For security reasons you need to have the sysop
permission in the fipusers file on the remote system, and you may also
have to give an additional password, before you can go ahead and do
your worst.

Mail Handling

Fig 18-2 shows the principal building blocks for handling mail within
NOS. Starting at the top of the diagram, the main steps in composing,
sending and receiving mail are as follows:

« BBS Login

e Composing Mail

e Forwarding Mail with the SMTP Client

» Receiving Mail with the SMTP Server

o Reading the Mail

¢ POP Mail Collection

¢ PBBS Forwarding

BBS Login

There are several ways of logging into the BBS, depending on whether
the BBS is local or remote, and whether the connection to the BBS is
made via telnet or ordinary AX.25.

144 NOS BBS — The Big Picture @&

local mail,
POP mail,
PBBS mail

from remote to remote
smipclient pop client

Fig 18-2: The NOS BBS and PCEIm external mailer.

©©® NOs BBS — The Big Picture 145

To login to your own built-in BBS (see Fig 18-3 below), give
command:

|| net> bbs |I

Alternatively, if you prefer to use an external mailer, the command to
start the mailer is:

“ net> mail u

Note that before starting NOS and giving the mail command, you must
set up the DOS environment variable MAILER, to specify which mailer
you want to use. For example, in NOSENV.BAT:

SET MAILER=N:\PCELM.EXE

You can even run an external mailer independently of NOS if you wish.
For example, at the DOS prompt:

" N:\> PCELM II

starfing extemal starfing extemal starting the intemal
mailer from DOS mailer from NOS " NOSBBS

ni 36
Fig 18-3: Logging in to your own NOS BBS (or external mailer).

146 NOS BBS — The Big Picture @©

To log into a remote BBS (Fig 18-4 below), you will normally use the
telnet command; e.g.

“ net> telnet ns9ken I

When you use telnet (or bbs), NOS will ask you for a user name and
password. These must match an entry in fipusers. If you can’t provide
a suitable name and password, you could try connecting to the BBS
with the AX.25 connect command instead. For example:

|| net> connect tnc0 NSIKEN-5 !

This sets up an ordinary AX.25 connection, and NOS will not ask you
for a login name or password.

Ordinary AX 25 users can also connect to the NOS BBS, and AX.25
PBBS mailboxes can connect when they have mail to forward to the
BBS.

[net> C‘Oﬂﬂef-‘fj

[;['neb_;;mm ;:m)]

remote from
AX25 AX.25

B e

4 Mailbox Server i
(NOS Mailer)

Fig 18-4: Logging in to a remote NOS BBS (using felnet or an
ordinary AX.25 or NET/ROM connection).

ni37]

© ©® NOS BBS — The Big Picture 147

Composing Mail

Once logged in to the BBS, you can then give commands to the mailer
(see Fig 18-5). To compose a message for sending, you use a
command like:

“ NS9BOB-5} sp nsdliz@nsdliz II

When you have finished preparing the message, you terminate it with
CTRL-Z, in a similar way to conventional PBBS mailbox systems. The
NOS mailer then checks to see if it is a bulletin which it has already
received (the file /spool/history contains details of all received
bulletins).

: [NS9BOB-5] SP NS9LIZ@GNS9LIZ J

ni 38

Fig 18-5: The mailer puts the message into the outgoing mail
queue (/spool/mqueue).

148 NOS BBS — The Big Picture ©©

Also, if necessary, the mailer converts the destination address into a
more suitable format (by reference to the file /spool/rewrite) — the
history and rewrite files are described later. The mailer then places the
message in the outgoing mail queue, in directory /spool/mqueue, and
wakes up the local SMTP client.

Forwarding Mail with the SMTP Client

The SMTP client takes the message from the outgoing mail queue, and
attempts to forward it to its destination (Fig 18-6).

local mail,
POP mail,
PBBS mail

ni 39_

Fig 18-6: To forward the mail, the SMTP client connects fo the
addressed SMTP server. This may be a local server (for local
mail), or a remote server across the network. The smip kick and
smip timer commands bring the SMTP client to life.

© O NOS BBS — The Big Picture 149

If the destination is on a remote system, the SMTP client will make a
connection with the SMTP server on that system. If the message is
addressed to a user on the local system, the SMTP client will make a
direct connection with the SMTP server on the same system.

Normally the SMTP client attempts to forward messages as soon as the
mailer places them on the outgoing mail queue. However, if the
attempts are unsuccessful, the client will try again at regular
intervals — you can set up the retry interval with the smtp timer
command.

Sometimes you may find that the SMTP client appears to have gone to
sleep for too long (it doesn’t seem to be forwarding any messages). In
this case you can give it a nudge with the smtp kick command.

Receiving Mail with the SMTP Server

The SMTP server listens continuously for incoming connection
requests from local and remote SMTP clients (again, see Fig 18-6).
When a connection is made, the client passes the message to the server.
The server then checks to see if the addressee has an entry in the file
/alias. If there is an alias, it is expanded; depending on the alias entry,
this may result in several copies of the original message.

The server then places the original message (and any copies) into the
appropriate queue. Messages to be sent onwards to another station go
back into the outgoing mail queue, for forwarding by the SMTP client.

Messages intended for local users go into the incoming mail queue (by
default, in directory /spool/mail), and a message pops up on the screen
saying that mail has arrived.

Each message goes into a text file in the incoming mail queue, There is
a separate file for each addressee; for example, all mail addressed to
ns9bob goes into file /spool/mail/ns9bob.txt, mail addressed to tcpip
goes into /spool/mail/tcpip.txt, and so on.

Reading the Mail

To read incoming mail, you first have to select the correct mailbox
area. The default mailbox area name is the same name that you used
to login to the BBS. If you logged in as ns9bob, the default area is

150 NOS BBS — The Big Picture @ ©

ns9bob, which means that you can read all messages in
/spool/mail/ns9bob.txt (using the BBS R command).

If you logged in via an AX.25 connection (and therefore did not provide
a login name or password), the default area is your callsign.

The file /spool/areas defines public areas to which you are allowed
access (in addition to your default area), and you can switch to any of
these areas with the BBS A command.

For example, the BBS command A TCPIP (or a tcpip) switches you to
the tcpip area, and then you can read all the messages and bulletins in
/spool/mail/tcpip.txt (see Fig 18-7).

You can only switch to areas listed in the areas file, plus your own
private login area. If you want to see the private mail of another user,
you have to login first as that user.

[nsoBOBS) A TCPIP
| NSPBOBS) R 10

ni 40

Fig 18-7: Reading the mail. The file /spool/areas specifies
public bulletin mailboxes.

© 06 NOs BBS — The Big Picture 151

POP Mail Collection

Normally, mail delivery to a remote host takes place automatically,
provided that the remote host is actually switched on and ready to
receive it. In many instances, however, this will not be the
case — many people shut down their systems when they are not
actually using them. This can lead to network overload, where a
machine makes repeated attempts to forward mail which can never
succeed.

A solution to this problem is to nominate a machine as a “poste
restante” — a system which will hold mail indefinitely for people, and
which will only deliver the mail when those people wake up and ask for
it. See Fig 18-8.

The poste restante machine arranges for such mail to go into the
incoming mail queue in .fxt files. The POP server on this machine
listens continuously for requests from POP clients on neighbouring
machines. When it receives a POP request, the server checks the user
name and password against the file /popusers, and if they match, the
server transfers the corresponding .1xt file across the network to the
client.

The POP client on the receiving machine then deposits the file in the
incoming mail queue, and displays a message on the screen saying that
the mail has arrived. '

PBBS Forwarding

Mail for forwarding onto the PBBS network is handled specially in
NOS. Irrespective of whether you create messages locally for PBBS
forwarding, or whether they come into the system from another
machine, they eventually find themselves in one or more .#xt files in the
incoming mail queue. See Fig 18-9.

On their journey to the incoming mail queue, the destination addresses
for the messages will probably be changed, by reference to the rewrite
file. PBBS addressing rules are quite different from SMTP, varying
considerably throughout the world, and the rewrite file serves as an
address swap file — it contains all the necessary rules for converting
addresses into formats which the PBBS network will understand.

152 NOS BBS — The Big Picture ©©®

RESTANTE

to remote from remote
pop client pop server

ni4l

Fig 18-8: POP Mail Collection. Mail for ns9liz resides in Bob's
incoming mail queue awaiting collection. When Liz is ready to
collect the mail, her POP client connects to Bob's POP server,
which then forwards the mail. The file /popusers in Bob's
system authenticates Liz's POP request.

At regular intervals, the mailbox client wakes up and examines the file
/spool/forward.bbs, to see if the time is right to forward PBBS mail.
You can define different timeslots in forward.bbs for different PBBSs
if you wish. If there is any outstanding PBBS mail in the incoming
mail queue when a timeslot becomes valid, the mailbox client connects
to the designated PBBS and then forwards the mail to it.

After forwarding any mail to the PBBS, the roles are then reversed and
the PBBS forwards any outstanding mail that it has for the NOS

system.
You can define the mailbox client scan interval, using the NOS

mbox timer command. If you want to force the client to forward mail
immediately to a PBBS, you can use the NOS mbox kick command.

©©® NOS BBS — The Big Picture 153

i

mbox kick mbox
mbox fimer client

fo remote
AX.25 PBBS

ni 421

Fig 18-9: PBBS forwarding. Mail for forwarding onto the PBBS
network resides on the incoming mail queue. The file
/spool/forward.bbs specifies when the mailbox client is to
forward the mail, and to which PBBSs it is to go. The mbox kick
and mbox timer commands bring the mailbox client to life.
When forwarding is complete, any outstanding mail on the
PBBS is reverse-forwarded to the NOS system.

i)

r
i
- ™~ =
.
i
"
v -
-
Ay
a
L
i
-
L
1
Famll mbm
ta
X -
L-E
T
&
N

[
]
-
w1
- " -
- -
i
- - i
-
]
a
L]
-
-
< -
a la
-
EE
. -
o a
a
L -
T e
[
-
e L
]
7’
L]
L]
- -
%
[-1
— -
r
= -
R]
- o
d - .
- -
i -
'aﬁ'.'.. Ve
»
W
E_
L]
I
{
- Wt
n
- - -
- [
- a o 4 -
] T
®
= T
N - =
ok n (L
- v
] " -
Fal 1
-. &] il [
- a
]
. = | 1
- e -
nl
s
r

a

L b oa - = A
-
L] - - -
- LAl
- .
& __
- [
- o
-
[T
: bow oA
b - I.a'_.
L Il L
& N d.‘ - .
= L
-y "
-~
ro- " -
a2 Za o ab,
i
B = "
v
o,
-
o
-
iz
B v
.
5. =
]
dw =
m a
i
B - -)
-
. _— - .
a) &1 il =
]
a0 %
.
.
. Y =
|'_‘ -
.
-
s s
. -
.
s
o
.'_" -
.
. L
- & .
e - - '
e
. i=a
-,
-
"
L]
— N N
. ® v
& Wi
= -
" L,
A aw = -
o -'F"l a
.: - .
- ¥ -
-3
Lt
-
-
¥
-

- [- '
| Y ul i . -
w - L . -— i —
J =k s
M -
= — e N
e i -
L] |.-|
R N R R
EE. 8. i N
- - a -
= s
H ' = |
-
“a . - - . .
- la” . =
. -
- - : a
- -] - ‘ -
- " -
=
.‘1
| - = i B
- v
. o o =
— . i '—F Ly
s o) ?I
il
. o
o L% Wi
. -
s N - {
.
"
s
L - |F
= d
[
- & | -
_ H o
l.l
- 'a - .
E
-
", '
[1 -
. . b
o . - -
L
N P - - a
[R - - YA o ’
i =
-
A =
- (]
e B - = -
- - B = i
= &
== Eo=Tw o7 T
. - 1 ¥
b - II. B & -
- E :
- =
A S . - -
) -
- . L
[}
|
- Llr%_.. E i =
- e -
w - . ™
- o - »
- r - - B ‘ -
1) - i M
- . . B
"
. A i .
- o o
'
-
r =
’.-]
=
. -
LNy i e =J
= _ .
ML
1, .
- -2
ol - & =
L] - :
B &
— v -
= 1
- -
.I -.- L] d &
- - —
.
a
B
& ¥ i
1 "
=
=
]
2 =
-
- -
. N Ca
« _ " & b 4 £ al,
..
"
"
= F *]
- i - 4 N
- o L ¢ =
= e -
= - =
@t -
7= =
- -
-
= b R
RN T - ¥
. AT Fa ¥ J
- - Law
I.‘ -
-
i r— B
R N LI isn B
I.-I L] L)] .' —
W L = .)
&
L -
R . = B
" e B =
=T O)
- E I
i L]
" . Y " [[
- . P N
=
. =
. 55 &
Sy
o
- Bl
o B . o¥
L
[b
-
[
.
- - r'
.
.
|
-
i
"
"

155

19: SETTING UP THE NOS BBS

Before using the NOS BBS, you have to set up a number of control
files. In this chapter we look at two of the files which you need for
simple mail handling via the AMPRnet (using SMTP):

e /spool/areas

e /autoexec.nos

Examples of these files are included in Appendix 3.

The areas file

The file /spool/areas (page 311) lets you set up public message areas
in your BBS. The first character of each area name must be the first
character on the line. Any other lines containing descriptive
information must start with a space.

all Laeavees General chit-chat.
tepip Lo General TCP/IP and NOS messages.
BYSOP ..ca:.ss Messages for Bab (NS9BOB) .

Users logging in to the BBS can list this file by giving the A command
by itself. Or they can select a particular area with a command like
A TCPIP, and then access public bulletins in that area.

The autoexec.nos file

The NOS BBS requires several parameters to be defined in
autoexec.nos (pages 312-317). The first of these is ifconfig
description:

ifconfig tnel0 description "144.625 MHz port"

156 Setting Up the NOS BBS 0 ©

This description appears on the screen in response to the BBS P (Ports)
command. Note that you need to enclose the description text with
inverted commas (" ").

Starting the Servers

Autoexec.nos contains several commands to start the servers required

for mail handling:

start ax2s # allow AX.25 users to leg in to my EBS
start finger # allow people to finger me

start pop2 # 2llow my BBS to reverse-forward mail
start pop3 ¥

start remote # allow pecple to control my station
start smtp # turn on SMTP mail forwarding

start ttylink # allow people to chat to me

These start commands turn on the network servers which the BBS
uses. If vou don’t want people to use some of these services, you can
comment them out with the hash character; e.g.

start ax25

start finger

start pop2

start Pop3

start remote

start ttylink
Third-Party Traffic

If you are permitted to handle third-party traffic, include this in

auloexec.nos.

third-party on

Configuring the SMTP Client and Server

To configure the SMTP client and server, include the following
commands in aqufoexec.nos:

©© setting Up the NOS BBS 157

ni43.

Fig 19-1: The smip mode command specifies which queue will
hold incoming mail. When the mode is set to route (the default),
the mail goes into /spool/mail, from where the NOS mailer can
read it. If the mode is set to gqueue, the mail goes into
/spool/rqueue. Special software (not supplied with NOS) is then
required to handie the mail in this queue.

158 Setting Up the NOS BBS ©©

smtp timer 600
smtp gateway ns9sgw
smtp usemx on
smtp mode route
smtp kick

The smtp timer value is the time interval, in seconds, between
automatic attempts at forwarding mail. Thus in this example the BBS
will attempt to forward any outstanding mail every 600 seconds (10
minutes).

The smtp gateway (ns9sgw) is the name of the station to which the
BBS will forward mail for destinations which do not appear in
domain. txt.

The smtp usemx command specifies that SMTP is to use MX entries
in domain.txt for forwarding mail. Chapter 23 describes this in more
detail.

The smtp mode route command states that SMTP is to place incoming
mail in the M: directory (/spool/mail), ready for the mailer to read it.
This is the usual setting — see Fig 19-1.

As an alternative, you can change the command to:

smtp mode queue

In this case all incoming mail goes into the directory /spool/rqueue
instead. This directory is intended for use by different mail handling
programs (not supplied with NOS), to allow you to experiment with
alternative mailing strategies. You cannot read mail in this directory
with the BBS mailer.

Configuring the Mailbox Client

Finally, you need to set up a number of parameters for the mailbox
client (see the box opposite).

When mbox attend is set to on, users can start chat sessions with you
using the O (Operator) command. If set to off, the BBS tells the user
that the box is unattended.

©© setting Up the NOS BBS 159

mbox attend on
mbox maxmsg 100

mbox motd "Please use SP NS9BOB to leave a message"
mbox expert on
mbox nrid on

mbox password "Maximum 30-character password."
mbox secure off

mbox gth " [London]"

mbox utc o

mbox zipcode "1234567"

mbox fwdinfo "BOBEBS"

mbox haddress "BB7BBS.#41.GBER.EU"
mbox smtptoo off

mbox kick

The mbox maxmsg parameter lets you specifiy the maximum number
of messages per mailbox area. Be aware that you should keep this
number (and the number of areas) reasonably low, as the BBS reserves
a corresponding amount of memory for the maximum number of
messages.

The mbox motd is a short “message-of-the-day™ that appears as a
welcome message when a user logs into the BBS. Note that the text of
the message must be enclosed in inverted commas (" ").

When mbox expert is on, the BBS will display a short prompt by
default when a user logs in. When set to off, the prompt contains a list
of all the command letters. The user can change the expert state with
the BBS X command.

When mbox nrid (NET/ROM ID) is on, your callsign appears in the
BBS prompt instead of the simple > prompt:

H NS9BOB-5] !I

If you are running a NET/ROM node, your NET/ROM alias appears
in the prompt as well:

|] #BOB:NS9BOB-6} !I

The mbox password is contained within inverted commas, and can be
up to 30 characters long. The BBS uses this password to authenticate

160 Setting Up the NOS BBS ©©

a user who wishes to control the station remotely; how to do this is
described in detail in Chapter 22.

The mbox secure command controls access to the BBS gateway
commands. When set to on, users are not allowed to use the gateways.

The remaining mbox commands (qth, utc, zipcode, fwdinfo,
haddress, smtptoo and kick) are to do with AX.25 PBBS forwarding,
and are described in detail in Chapter 25. 1If you are not using PBBS
forwarding, you can omit these commands from autoexec.nos.

161

20: THE NOS BBS COMMAND SET

This chapter summarises the NOS BBS commands available to you
when you log in.

Logging In

To log into your own NOS BBS, you simply give the bbs command.
To gain access to somebody else’s BBS, you use the telnet command,
¢.g. telnet ns9ken will connect you to the NOS BBS on NS9KEN’s
machine.

Try logging into your own BBS:

I net> bbs ﬂ

You will then see something like this:

Trying ns9%cb:telnet...
Telnet session 1 connected to Local BBS

Having connected with the BBS, you now log in:

KA9Q NOS (ns9bob)
login: ns9bob

Password: bobby {this does not echo)

The login name and password you use should be in the fipusers file,
described earlier in the Chapter 16.

[If you are logging in to a remote BBS, you probably won’t know if
you have an entry in their fipusers file, so log in as anonymous or bbs
instead, and give your own callsign in response to the password

162 The NOS BBS Command Set @@

prompt; your privileges will be restricted, but you should at least be
able to get in to the box].

Remember, the requirement for a login name and password only applies
if you connect to the BBS using bbs or telnet. Ordinary AX.25 or
NET/ROM users connecting to the BBS will not be asked for them.

Assuming your login was successful, you now get a welcome
“message-of-the-day” and the command prompt:

[NOS-H$]

Welcome ns%bob,

to the ns%bob TCP/IP Mailbox (911229 (PAOGRI v2.0m))
Please use sp ns9%ob to leave a message for NS9BOB

NS9BOB-5} Current msg# 0 :
?,A,B,C,D,E,F,H,I,JKLMN,0OP,R,S,T,UV,WXZ >

Help

The first command you can then try is the ? command, to find out more
about what BBS commands are available:

?.,A,B,C,D,E,F,H,I,J,K,L;MN,0,P,R,S,T,U,V,W,X,2 >

{?)help (Al rea (B)ye (Clonnect (D)lownload (E)scape

(F)inger [(H)elp {I)nfo (J)heard (K)ill (L)ist
(Mibusers (N)odes (O)perator (Plorts (R)ead {S)end
(T)elnet (U)pload (V)erbose (W)hat [X)pert (Z)ap

The actual commands you see here will depend on the version of NOS.
Several early versions have a slightly different command set; in those
versions, C means Chat (equivalent to Operator) and G means
Gateway (equivalent to Connect)

You can use either lower-case or upper-case letters for NOS BBS
commands.

@ ® The NOS BBS Command Set 183

The NOS BBS Command Set
The NOS BBS commands break down into 6 groups:

e NOS BBS User Interface: B,E,H,I, Mand X
e NOS BBS Mailer: AKLLR, Sand V
« NOS BBS File Server: D, U, WandZ

» NOS BBS Gateway Server: C,J,N,O,Pand T
e NOS BBS Finger Server: F

e NOS BBS Remote Sysop Server: @

Let’s look at them in detail.

NOS BBS User Interface Commands
B (Bye): This logs you off the BBS.

E (Escape): The Escape command lets you define an escape
character which you can use to break out of a NOS Gateway
session. The default escape character is CTRL-X. Thus, for
example, when you want to finish an operator chat session (started
with the O command — see below), you simply hit CTRL-X to
return to the NOS BBS prompt.

H (Help): The H command by itself will give you a list of topics on
which the BBS has further information:

HELP.HLP

USAGE
Hlelp] [<command-name>])

DESCRIPTION

The help command will display help for a given command. The
help command by itself, displays this particular message. To
get help for a specific command, enter "help" followed by a
space and then the name of the command you want described.

{etc ete}

164

The NOS BBS Command Set @ @

This listing is actually the file /spool/help/help.hip, which is located
along with all the other NOS BBS help files in directory
/spool/help. The help files are plain ASCII text, and you can
modify them if you wish (for example, translate them into another
language). They should not be longer than about 20 lines; otherwise
when a user calls them up they will scroll off the top of the screen.

As explained in the example above, you can then request further
help with a command such as help area. You can shorten this to
help a, or even h a, as the help command simply displays the help
file whose first letter matches the letter you give in the help
command.

I (Info): The Info command displays the Info help file

(spool/help/info.hlp). This is where you can describe your system,
and give brief instructions on how to use the gateways and any other
services you may offer to users logging in.

M (Mbusers): The M command displays the names of all users

logged into the mailbox.

X (Expert): The Expert command toggles the prompt between a full

prompt:

NS9BOB-5} Current msg# 0 : _
?,A,B,C,D,E,F,H,I,J,K,L,MN,0,P,R,S,T,UV,WX2Z >

and an abbreviated prompt:

NSSBOB-5] !I

The NOS BBS Mailer Commands
A (Area): The Area command lets you select a particular mail area

within the BBS. All the mail addressed to nsSbob is in the mail
arca ns9bob, all the mail addressed to tcpip is in mail area fcpip,
everything for sysop is in area sysop, and so on. This is somewhat
different from the ordinary AX.25 PBBS mailer, which has only one
mail area which holds all the mail, irrespective of whom it is
addressed to.

@@ The NOS BBS Command Set 165

When you log in, the default mail area is the same as your login
name; see Fig 20-1. That is, if you log in as nsSbob, then your
default area is ns9bob, and here you will find all the personal
messages addressed to ns9bob. (These messages are contained in
the text file /spool/mail/ns9bob. txt).

[net> feinel ns9bob J

all.txi sysop.ixt

nid4]

Fig 20-1: The file /spool/areas specifies the public bulietin
mailboxes. :

Your default mail area is the only area where you are allowed to
access personal messages. If you want to access messages
addressed to nsOken, then you will have to log in as ns9ken,
whereupon your default mail area will now become ns9ken.

The NOS BBS automatically creates a new personal message area
whenever a message arrives for someone who doesn’t already have
such an area. Thus when the very first message addressed to ns9liz
arrives, for example, NOS creates the file /spool/mail/ns9liz. txt.

K (Kill): The Kill command lets you mark mail for deletion from the
current area, provided you have permission to do so (as determined
by your account entry in fipusers). For example, K 10 marks
message 10 for deletion. The message doesn’t actually disappear
until you log out, so if you have second thoughts before you log out
you can still read the message.

166 The NOS BBS Command Set @ @

L (List): The List command lets you list mail in the current area.
The listing will contain a letter Y if you have already read a
message, or an N if not.

R (Read): The Read command lets you read mail in the current area.
For example, you say R 10 13 to read message numbers 10 and 13
(or you can even say simply 10 13; the letter R is not strictly
necessary).

S (Send): This is the basic command for sending mail. As with
AX.25 PBBSs, you append a second letter to the S, such as P or B;
e.g. SP for personal messages, SB for bulletins, and so on.

There are two special S commands:

SR lets you reply to a message; e.g. SR 10 to reply to message
number 10, or SR by itself to reply to the message you have just
read.

SF lets you forward (send a copy of) a message to someone else;
¢.g. sf ns9liz@ns9liz forwards the current message to Liz.

There are several methods of addressing mail, depending on whether
or not the addressee is in domain.txt, and on whether NOS is to
forward the mail to another NOS system (using SMTP), or to
forward it via the AX.25 PBBS network. These methods are
described in detail in later chapters.

V (Verbose): The Verbose command works the same way as the
Read command, but displays not only the message itself but also
the message header. This can be useful if there has been a message
forwarding problem and you want to see how the message got to
your BBS, '

The NOS BBS File Server Commands

The NOS file server commands give access to the public files area, and
are intended primarily for ordinary AX.25 users who have connected to
the NOS BBS (telnet users would normally use ftp instead to access
public files).

D (Download): The Download command lets you download 7-bit
ASCII files from the BBS to your system. For example:
d yourfoo.txt. See Fig 20-2.

@ ® The NOS BBS Command Set 167

To download a binary file, you use the DU (Download Uuencoded)
command instead; e.g. du prog.exe. In this case, the BBS will
automatically use the built-in uuencode function to convert the
binary file to ASCII, before downloading it to you. When
downloading is finished, you have to convert the encoded file off-
line back to its original binary form with the DOS UUDECODE
command.

=T T A i ASCII FILE
; download
request

| D YOURFOO.TXT

ASCI file
downloaded

BINARY FILE
download
request

| automatic
UUENCODED- UUENCODE

binary file
downloaded

MANUAL -
UUDECODE |

ni45]

Fig 20-2: BBS download always transfers files in 7-bit ASCII
format. If you request the download of an 8-bit file, the BBS
uuencodes the file first into 7-bit format before transfer.

168 The NOS BBS Command Set @ ®

U (Upload): The Upload command lets you upload 7-bit ASCII files
from your system to the BBS. For example: u myfoo.txt. There is
no UU command for uploading binary files. Instead, you must first
convert the file off-line from binary to 7-bit uuencoded-ASCII (as
already explained in Chapter 17) before uploading it.

W (What): The What command by itself lists the files in the root
directory to which you have access, specified by your entry in
Jipusers. (If your entry has more than one root directory in
fipusers — for example /public;/private — you can only list the
files in and below the first directory). To list files in sub-directories
below the top level, you simply specify the subdirectory path; e.g. w
public/nosview.

Z (Zap): The Zap command lets you delete files, if you have
permission to do so; €.g. z yourfoo.txt. Your entry in fipusers
specifies your file access permissions.

The NOS BBS Gateway Server Commands

The NOS BBS provides a number of gateway commands which let you
access the AX .25 network and the NET/ROM network, and which let
you log in to another NOS BBS using telnet. See Fig 20-3. To
terminate any sessions which you start with these commands, simply
type the BBS Escape character (by default, CTRL-X).

C (Connect): The Connect command allows you to connect to an
AX.25 station (e.g. C tnc0 AX9ABC-3) or to a NET/ROM node
(e.g. C #TOM). When connecting to an AX.25 station, you need to
include the interface name (tnc0) to specify which port you want to
use for the connection. To find out the names of available ports,
use the P command. To find out the names of known NET/ROM
nodes, use the N command.

J (Justheard): The J command gives you a list of recently heard
stations. This may be useful if you are not sure of the exact
callsigns or NET/ROM node aliases of accessible stations.

N (Nodes): The Nodes command displays a list of accessible
NET/ROM nodes.

O (Operator): The O command starts a chat session with the
operator. To terminate the session, give the BBS Escape command
(default CTRL-X).

@@ The NOS BBS Command Set

169

C tnc0 AX9ABC-3

AX.25
CONNECT
request

NET/ROM
CONNECT
request

AX9ABC-3

ni 46.

Fig 20-3: After connecting to the NOS BBS, users can connect
to AX.25 and NET/ROM stations via the NOS BBS Gateways.

170 The NOS BBS Command Set © @

P (Ports): The Ports command gives a list of available interfaces
through which you can make connections, together with brief
descriptive comments; ¢.g:

tne0 144.625 MHz Port
ecO In-house Ethernet LAN

telo 1200/2400 bps modem

This information comes from ifconfig description commands in
autoexec.nos.

T (Telnet): The Telnet command lets you make a telnet connection
with another NOS station; e.g. t ns9liz. See Fig 20-4. In this way
an ordinary AX.25 user can gain access to the AMPRnet.

AX9ABC-3

Telnet
CONNECT

i Lrnsouz

--

- AMPRnet

ni47]

Fig 20-4: After logging in to a NOS BBS, an ordinary AX.25
station can access AMPRnet via the NOS Telnet Gateway.

@@ The NOS BBS Command Set 171

The NOS BBS Finger Server

The F command lets you “finger” another station, that is, to find out
more information about it. See Fig 20-5. The command f @ns9ken
will return a list of known users having finger files on ns9ken, and the
command fsysop@ns9ken will return the contents of file
/finger/sysop at ns9ken. The finger files are plain ASCII, and, like the
help files, they should be short and to the point.

FINGER FILE
request

FINGER
file

Fig 20-5: Finger files.

The NOS BBS Remote Sysop Command

In addition to the commands just described, there is also a Remote
Sysop command, @, that lets you take over control of the station. This
is described in detail in Chapter 22.

i |
-
o B L
- r L
i - -
i & 3
« o S il
- it -.. 1
. i R
H e .)
r ¥ i

1B J Y
LSk & - ']
14 « ¥ r
[! . r P
=" . i i
iz , -

% a’l
i L 1
._.-
] . - LS
i &

. " i I %
byr ™™ o ’ : '\
[2] [J L b
e _
,q.... B “
...__.)

] _ 'i L] -
i kb i i i
-.l- ‘
. L] '-_ .— L .
AL - Tk
oy ; - / .
= 7 i u
I Y
L [i i
-t N . o .
- . " s LY
.] |
-..IILI. : -
[T T .
. “I _....r L] l.—h -
m mal i .
F iy _.._. ” R =)
1;
ol
- F LM
, "
HI._ L i N L]
) i -
B B -
1.
W i
L]
por LI
» . e
. s oat
T . .
- B i
- Mi :

- s =
LI i
— ’

T I

J il O -
Fi
L]
o . _
L]
I -
b ut
b |
_.r,. fi
+-+..
L..*
i i
] ..
u_ &' ‘e
Vs" o Lo
" .
- -
" ¥
1,
I L
i L
. - y
' "
HH .

.
-
R :
-
i
-
- 1
Ml
1
T
Fi
¥
L]
.-l
L
-
L iR
...—__. i
] [
l'.-
[T
i !
i i
i
a1l =
1Y
L i
r
-
T
L]
-— i
C N
L)
y
i’
dhi
.
e
i
'l
i
.
-
' i
"
L3

" .
.—._ ._IIL..’.-... [_.m-.__l.
I i _....l _u-__._
....ﬁ_ i [= ™
I~ o
i . i . fay,
i P -
__u_ i i "
-.— .f:-
o] 1
] ..- L
L 1 : " i
L]
a - -
.-
L o [
" d."
'.
i am ¥
-
. @
- -
¥
1 Y -
. *
i J o -
o - i
__.— all .
Lra
5 “]
L f
N i
-]
" .
1 -
._ [.
]
N |
- [} "
v "
¥
L] * | &
[3
-
i
. "
i 1] ¥ .-..-_
- . i
W
a .— .
L i
.. d
v
| a
i [
!
-
o
-
-
-". &
[3
|

-
i
i -
1 .
8
i
L
LM
i . *a
N
II
. " -
Ny o - o
1
L]
.
s I
i 4 "
-
& i
T
i -
- B i [
. .
W N
-h
=1 L]
i | 1
Wi
. ' .
. 1
& - []
o N
- . - s 1
'. = l||
4
,.__ i
L] i
1 L] r
H i
- .
. - o
I = . .. _ i _ﬁ_ 1]
) AR
. i N i ahi
. i L
N i
-
- 0
8
-
.
¢
¥ 1
_ .
s
ll.
] - - .'
& -
N o
i
-

..f. 1

i

wll

il

173

21: HANDS ON —

NOS BBS FILE SERVER

The built-in NOS BBS file server is intended for people who connect
to the system via an ordinary AX.25 or NET/ROM link; NOS users
will normally use ftp instead to access files on the system.

The server has five commands;

e W What (list the available files)
e D Download an ASCII file

e DU Download a uuencoded file

e U Uploada file

e Z Zap (delete) a file

To see how these commands work, check that your current NOS
directory is /dump/record, then log into your own BBS:

net> cd /dump/record
net> bbs

Log in as roberto (with the password robertspw), then try the
commands.

The What Command

The W command lists all files in a particular directory. The default
directory is the directory specified in the fipusers file for the user. If
more than one directory is specified in fipusers for the user, the default
is the first directory in the list.

174 Hands On — NOS BBS File Server @@

For example:

NS9BOB-5}- W

alias 662 10:09 5/25/92 autoexec.000 7,587 5:26 B/1l6/92
autocexec.nos 7,755 8:59 8/31/92 cleang.bat 285 11:20 8/13/92
domain.txt 1,925 8:37 8/28/92 dump/ 8:04 8/13/92
finger/ B:07 8/13/92 ftpusers 2,699 10:32 8/16/92
net.rc 545 8:54 B/23/92 netrom.sav 16 8:43 7/26/92

nos_20j.exs 190,556 20:03 5/03/92 nos_20m.map 75,514 8:23 8/03/92
nos 20m.exe 203,201 8:23 8/03/92 nosenv.bat 1,041 15:14 8/20/92

pcelm.msg 9,898 21:53 2/19/91 pcelm.exe 68,992 23:54 1/04/92
pcelm. re 8,344 11:48 5/25/92 popusers 429 18:13 9/18/91
public/ 8:04 B8/13/92 remote.bat 333 18:14 9/18/91
scripts/ B:04 8/13/92 signatur 533 14:34 5/14/92
spool/ 8:04 8/13/92 startnos.bat B47 15:13 8/20/92
tmp/ 8:04 8/13/92 view.hlp 6,910 0:00 9/01/89
view.com 10,221 4:24 5/21/91

Directories are indicated with a forward slash; e.g. finger/.
You can also use wildcards to narrow down the search:

NSSBOB-5] W ¥%.exe
nos_20j.exe 198,556 20:03 5/03/92 nos_20m.exe 203,201 8:23 8/03/92
pcelm.exe 68,992 23:54 1/04/92

To find out the names of files in a subdirectory, add the subdirectory
name to the W command, using forward slashes; e.g.

u NS9BOB-5] w [public/nosview II

The Download Command

The D command downloads a file to the user. The download is in 7-bit
format, suitable for plain ASCII files. For example:

! NS9BOB-5) d /public/nosview/arp II

@@ Hands On — NOS BBS File Server 175

But there’s a catch! You'll see that the downloaded file appears on the
screen, but it is not saved on disk. To save the file on disk, you need to
escape back to the Session Manager to start a record session; e.g,

l net> record /dump/record/myarp I'

[For convenience, the SHIFT-F10 key combination is programmed to
provide most of this command automatically, so all you have to type is
SHIFT-F10myarp].

Then return to the BBS session (by hitting CR), and give the download
command again.

When the download is finished, you terminate the record session by
escaping back to the Session Manager, then giving the command:

u net> record off Il

[For convenience, the CTRL-F10 key combination does the same
thing].

Now when you examine the /dump/record directory, you should find
the file myarp is present:

H net> more myarp Il

[Or you can hot-key to VIEW and F3 R:\MYARP].

Downloading uuencoded Binary Files

To download a binary file from the NOS BBS, you use the DU
command. This automatically reads the binary file and passes it
through the uuencode program built in to the file server (see Fig 20-2). .
The output from uuencode consists of 7-bit printable ASCII characters,
and it is this encoded form which is downloaded.

As before, you must first start a record session before giving the DU
command; e.g.

178 Hands On — NOS BBS File Server @ @

|| net> record /dump/record/pcelm.uu u

Then return to the BBS and give the download command:

“ NS9BOE-5} du pceim.exe u

When the transfer is finished, you should escape back to the Session
Manager and finish recording:

|| net> record off II

Now you will find the uuencoded file in /dump/record/pcelm.uu. Take
a look at this file:

“ net> more pecelm.uu u

[or hot-key to VIEW, then F3 R:\PCELM. UU]
You will see something like this:

du pcelm.exe

begin 755 /pcelm.exe

M35J7 8< ?P! __ros(/e § rsro<e

M ! 3 - #* 1S5)0 OP[N §,.
M- SH#GB!OP[6 4, .TRSHFLXIOP[* 4,.QL%#H#L(10PZ" 4, .NeSH##K8!0PZR
M 4, Kes##JHIOPZF 4, .Hes#RIXI0PY"15,. ;R1#HEPSOP[.14,.5e9##e8s
MOPY2"4, .3QE##DH) OPY&" 4, . ORBH#H#CX) OPXZ"4, . ~CE#HC () OPXN"4, . *RE#

{ many more lines }

MIOA% @(" B(" @(" @<*%0H,"O(""P(4#a(" e("" ("$e("$ (0O ’(" &(&
MIPH*"@P) @(- AS.SP("#P((A(2 @(" @(" & 'P [%H > "7 +4 U #s
M
M

!

end
size 689392
>

@@ Hands On — NOS BBS File Server 177

To restore this to its original binary form, you need to exit from NOS
and then decode the file under DOS. However, before performing the
decode, take a closer look at the begin line of the uuencoded file:

begin 755 /pcelm.exe

This contains the absolute pathname of the file that will be created
when you decode the file. In other words, if you decode this file as it
stands, it will appear as PCELM. EXE in the NOS root directory, N:/.
In all probability you won’t want this file in the root directory, so you
should edit the file to remove the slash character:

begin 755 pcelm.exe

Then, to decode the file, escape to DOS and use the commands:

N:\> CD \DUMP\RECORD
M:\DUMP\RECORD\> UUDECODE < PCELM.UU

This takes a few seconds. When finished, you should find the file
PCELM EXE in the current directory, and it should be identical to the

original binary file in N:\.
Finally, you can delete the encoded file:

l! M:\DUMP\RECORD\> DEL PCELM.UU !I

The Upload Command

To upload a 7-bit ASCII file to the BBS, you need to give the U
command. Be careful to ensure you include the full pathname where
you want to store the file on the BBS, otherwise it may finish up in the
wrong place.

178 Hands On — NOS BBS File Server @ ©

For example, to upload the local file myarp (in /dump/record) and call
it myarp2 on the BBS:

NSSBOB-5} u /public/myarp2
Send file, Terminate in /EX or ~Z in first column ("A aborts):

Note that all you have done here is tell the BBS that you want to
upload a file and call it myarp2. You haven’t actually started the
upload operation. To do this, you escape to the Session Manager and
give the upload command:

“ net> upload myarp II

The upload now starts. To check its progress, you can give the upload
command from time to time. NOS will respond with the current upload
status. When uploading is done, the status is reported as uploading off:

net> upload
uploading myarp
net> upload
uploading myarp
net> upload
uploading off

When uploading is finished, return to the BBS session to terminate the
U command with /EX, and the BBS prompt should then re-appear:

EX
NS9BOB-5}

[Sometimes you may need to enter /EX twice to make the prompt re-
appear].

Uploading Binary Files

The U command just described will only upload 7-bit ASCII files. If
you want to upload an 8-bit binary file, you first need to exit to DOS
and encode the file first.

®@® Hands On — NOS BBS File Server 179

For example:

ﬂ N:\DUMP\RECORD\> UUENCODE < MYFILE.EXE > MYFILE.UU II

This creates the file myfile.uu, which you can then upload to the BBS.
When it arrives at the BBS, there is no automatic way of decoding it
back to its original form; the BBS owner will have to do this with the
DOS UUDECODE command as already described.

The Zap Command

The Z command simply deletes a file, if you have permission in
fipusers to do so. For example:

|! NS9BECE-5] Z /public/myarp2 II

s B . J - ®
g n - \
= J L a = 4
. [i "oranh
. ¥ .
i .
wo i "
i
i o i [
Y a
- . - J '
S - - o
LL-_ & . . -
Sl W .
L1 Bl
- B
i al i]
- ¥
1 ..
L -
(5] k. & L .
" . & P
: : . | .
i g =]
-...- ¥ L
" I :)
. r
L ¥
LA
,H__. el L
i
] il
1 &
- . ..
o
'l- -]
Ji -
i L e
|i
-h
i "y [
L . &
L]
... " -
r
]
. "
i ol
I [
w
®
P
|
-
'y
i
I . - *_. l- -..r-
i L. j1 4 : "
l.. Ly ') i
Ll 1 N -
"y r 1 [
r : . o
.“.._ . .___“. . |
] a § . .___._ .:. . " i o 0 N
J o . Fa
-5 ' ’ o .._.:_- >
T S _ v
* k . .
- - i i
» v - +] = -
. ...__ . . . i I 1 m -
-) i g i
*..d.l) ra " L—— i
L. L i - .
1 - . .) .)
[

o
A

181

22: HANDS ON — REMOTE SYSOP

The NOS BBS allows remote access to the Session Manager — very
useful for setting up and checking the operation of a system which you
can’t physically reach easily.

Gaining Access to the Session Manager

To allow remote access to the Session Manager, you first need to set up
a Remote Sysop account with the sysop permission in fipusers. You
also need to set up the mailbox password for remote sysop access.

The sysop permission in fipusers is the code 64. This number should
be added to the permissions codes for all users whom you will allow to
become a remote sysop. For example:

superuser supasswd /public 67

Note that the login name (superuser) is more than six characters long,
thus preventing access to ordinary AX.25 users. Note also that the
permissions are 64+2+1; i.e. read, create and sysop, with /public as the
root directory — this reduces the possibility of serious damage to the
system if someone discovers the password by snooping on the channel
and then logs in as superuser.

The Mailbox Password

The mailbox password is set up in aufoexec.nos. This password may
be up to 30 characters long; e.g.

mbox password "Maximum 30-character password."

182 Hands On — Remote Sysop ® @

Now write out the password on a piece of paper and number each
character, starting at 0:

o|1]2]|3[4|5|e|7|8]|s|10]11]12]13]14]15|16{17|18]19|20]21]22|23]24]25|26|27|28|29]

Mla|x|i|[m|lulm 3|0|=|c|h|la|r|a|c|t]|e|r pla|s|s|w|o|r|d

You will need to know these character numbers when logging in.

Becoming Superuser

To see how to use the mailbox password, login to your own BBS as
superuser, with the password supasswd. See Fig 22-1. Then, at the
BBS prompt, give the @ command. The BBS responds with a warning
to be very careful, and then outputs a string of five numbers. You must
now reply by inputting the corresponding characters of the mailbox
password; 22 means character 22, 21 means character 21, and so on.

After inputting the five characters, hit CR twice. Assuming the input
was correct, a new Session Manager prompt then appears — but with a
capital “N”, to distinguish it from the normal prompt.

For example, the complete dialog looks like this:

NSSEOB-5] @
Type 'exit’ to return

Be VERY careful!!
22 21 18 2 12

apexh {@a is char 22, p is char 21, e is char 18, etc}
{blank line to finish password input]
Net:> {Remote Session Manager prompt)

From now on you are talking direct to the remote Session Manager, so,
as it says in the message, be very carefull You now have complete
control over the station, and can do almost anything with it.

©®® Hands On — Remote Sysop 183

222118212

NS9BOB-5)

ni49.

Fig 22-1: Logging in as a Remote Sysop. The Remote Sysop
server sends back 5 numbers between 0 and 29, corresponding
to character positions in the mailbox password. You have to
respond with the correct password characters before the server
grants access to the remote Session Manager.

184 Hands On — Remote Sysop © ©

When you are finished, leave the Session Manager with the exit
command. This takes you back to the BBS prompt:

Net> exit
NS9BOBE-5]

Dummy Responses

When inputting the mailbox password characters in response to the
series of five numbers, you can type several dummy lines if you wish,
to fool anyone who may be snooping. For example:

22 21 18 2 12
zfBwy {dummy line}
apexh {the real line}

qwert {another dummy line]
{blank line to finish password input}

Net>

Provided that one of these lines contains the correct mailbox password
characters, you will gain access to the remote Session Manager.

Unsupervised Operation

If the system operates completely unsupervised, it is a good idea to turn
on the NOS watchdog timer (in autoexec.nos):

watchdog on

The watchdog timer is normally reprimed at regular intervals, and
doesn’t time out. But if something goes wrong inside NOS and the
timer expires — after a few minutes — then NOS automatically exits.
If you originally started NOS with a batch file something like the
following, NOS will then restart again automatically:

loop:
CALL STARTNOS
GOTO loop

185

23: FORWARDING SMTP MAIL

In the next three chapters we take a closer look at how to address and
forward mail. There are several different methods, depending on
whether you want your mail to go via the AMPRnet using SMTP, or
via the AX,25 PBBS network, or a combination of both.

N.B. The techniques described in these three chapters show
what is technically possible with NOS mail forwarding. This
includes third-party message handling. If you are not
licensed to handle third-party messages, not all of these
techniques will be available to you.

Which Network?

The first question to consider is which network is to carry your mail.
You may launch some messages into the AMPRnet, and others into the
AX.25 PBBS network. This is like deciding whether to send a letter
via the public Post Office network or via a private courier service.

ni&ld

Fig 23-1: Launching mail onto the AMPRnet. All stations
understand SMTP.

186 Forwarding SMTP Mail ©©

In the ideal AMPRnet environment, you would use SMTP to forward
all messages to their destinations (Fig 23-1). In this case, all
forwarding stations and recipient stations understand SMTP. Think of
this as the public Post Office network.

On the other hand, you could use the AX.25 PBBS network to forward
all messages (Fig 23-2). This would be necessary if the recipient does
not understand SMTP, and/or there is no SMTP routing available to
the destination. Think of this as a private courier network.

ni 52—
Fig 23-2: If it is not possible to connect to a local SMTP station,
all mail has to be launched onto the AX.25 PBBS network.

SMTP/PBBS Mail Gateways

In reality, of course, things aren’t as clear cut as this, Just as the Post
Office makes use of private courier services, and private courier
services make use of the Post Office, individual packet radio messages
may in fact travel partly via SMTP routes and partly via AX.25 PBBS
routes.

The network to support this (Fig 23-3) consists of SMTP/PBBS mail
gateways which accept messages via SMTP and re-launch them on to
the PBBS network (and vice versa). As we’ve already seen, NOS can
handle both SMTP mail and AX.25 PBBS mail, and so can function as
such a gateway.

@®® Forwarding SMTP Mail 187

SMTP/PBBS
Mail Gateway

ni 50.

Fig 23-3: SMTP/PBBS mail gateways convert message formats
between AMPRnet and the PBBS network.

Launching the Mail

NOS allows you to choose how to launch mail into the combined
SMTP/PBBS network. To decide which method to use, the following
general rules are useful:

1. Choose a “next-door neighbour” station through which you
want to forward mail (ignore for now any intermediate
digipeaters or NET/ROM nodes you may need to go through to
get there). Your neighbour may be a NOS station which
understands SMTP, or a PBBS station which only understands
AX.25.

2. If your neighbour understands SMTP, you can use SMTP to
launch all of your mail. This includes mail addressed to
ordinary AX.25 stations which don’t understand SMTP;
somewhere along the route there will be an SMTP/PBBS mail
gateway to convert messages from SMTP to PBBS format.
(However, if you prefer, you can launch mail for AX.25
stations directly on to the PBBS network if you want to).

3. If your neighbour doesn’t understand SMTP, you’ll have to use
AX.25 PBBS forwarding for all your mail, even for addressees
running NOS.

188 Forwarding SMTP Mail @ ©

General Rules for Addressing

In general, you can address mail in two ways. The examples that
follow are for the built-in NOS BBS, but you will address mail in the
same way if you are using an external mailer such as PCEIm.

The syntax for addressing mail is as follows:

NS9BUB-5} Sp userftarget mailhost
NS9BOB-5} sp user%target mailhostfintermediate mailhost

(N.B. There is no space either side of the % sign). For example:

NS9BOB-5] sp liz@ns9liz
NS9BOE-5] sp AXSTIM%BB7BBS@nsSbob

[s P AX9TINM%BB7BBS @ns?bab]
Target
> TR, il Ma”hOSf
:QWJM@BB?BBS BB7BBS
AX25
A
Intermediate e
Mailhost
AXOTIM
AX25
_ni 53]

Fig 23-4: You can address mail via an intermediate mailhost if
that helps message forwarding towards the target. The
intermediate host translates the % character in the address to an
@ character.

®® Forwarding SMTP Mail 189

The target mailhost is the eventual destination of your mail, and the
user is someone (or something) that can access that mailhost to retrieve
the mail (see Fig 23-4).

The intermediate_mailhost is a host somewhere along the route to the
target_mailhost (again, see Fig 23-4). The intermediate_mailhost
changes the first part of the address (user%target_mailhost) to read
user@target_mailhost, and then sends it on towards the target.

This form of addressing, using the % symbol, is useful when you want
to launch a message in a particular direction, rather than rely on
automatic forwarding into unknown territory. It can save a lot of time
if you know something about the network to help the message along!

Incidentally, you can use this form of addressing in a pure AX.25
PBBS network as well. This may be useful for sending messages to
other countries, where some routes are known to be unreliable or where
the local network has strange forwarding tables. See Fig 23-5.

[SP ZZ9777%779BOX@BB7SAT] Q

v BB7SAT

Z29777@779BOX

ni 54

Fig 23-5: Using % in addresses on the AX.25 PBBS network.

190 Forwarding SMTP Mail @ ©

For example, SP ZZ9ZZZ%ZZ9BOX@BB7SAT lets you direct a
message to the local satellite gateway BB7SAT, which then changes
the address to ZZ9ZZZ@ZZ9BOX. This is probably preferable to
addressing the message simply as ZZ9ZZZ@ZZ9BOX, as you then
have no control over how your local network handles it, and it may
finish up going via an hf AMTOR link instead. On the other hand, that
may be a better bet after all ...

We’ll now look at some of the various methods of addressing mail in
detail.

SMTP to a Known IP Address

This is the simplest method of addressing. Bob can send a message to
Ken using the command:

NS9BOB-5] sp ns9ken@nsSken II

NOS discovers ns9ken’s IP address by looking it up in domain. fxt:

ns9ken.ampr.org. IN A 44.199.41.2

Assuming that IP routing is set up properly, NOS connects with
44.199.41.2 and then sends the message (or, more accurately, the
SMTP client in Bob’s system connects with the SMTP server in Ken’s
system, and then the client and server co-operate with each other to
transfer the message).

Thus for all your immediate neighbours, and for any other stations to
whom you wish to send mail and for which a known route exists, you
should have an IN A entry in domain. txt,

SMTP Client and Server

Fig 23-6 shows in more detail what happens when you send a message.
Starting at the top left-hand corner, you use a mailer (such as the NOS
BBS or PCEIm) to compose the message.

®® Forwarding SMTP Mail 191

smip kick s
smip timer cjient

Fig 23-6: Sending SMTP mail. The mailer places the message
onto the outgoing mail queue (/spooi/mqueue), then the SMTP
client connects to the addressee’s SMTP server. The server
places the message onto the incoming mail queue (/spool/mail),
ready for reading.

The mailer places the message in the outgoing mail queue
(/spool/mqueue), in two files: n.txt and n.wrk. The value n is the
sequence number of the message. Thus for message number 123, the
two files are called /23.1xf and 123.wrk.

The sequence number itself is maintained in the file
/spool/mqueue/sequence.seq.

The n.1xt file contains the text of the message, in exactly the form that
you composed it in the mailer, together with To:/From: address and
date/timestamp information which the mailer included automatically.

192 Forwarding SMTP Mail @ ©®

The n.wrk file contains three lines. For example:

ns%ken
ns9bobénsSbob
ns9ken@ns9ken

The first line states the target_mailhost.
The second line states who the message is from.
The third line contains the addressee.

At regular intervals (defined with the NOS smtp timer
command — normally every 10 minutes), the SMTP client wakes up
and looks at the outgoing message queue, by examining the n.wrk files.
For each message in the queue, the client then attempts to make a
connection with the SMTP server at the host listed in the first line of
the n.wrk file.

In the above example, the SMTP client on the local machine attempts
to connect with the SMTP server at ns9ken.

(If you don’t want to wait until the next SMTP timer interval expires,
you can force the SMTP client to wake up immediately with the NOS
command smtp kick).

Once contact is established, the client then transfers the message to
ns9%ken, where the SMTP server places it in the incoming mail directory
(/spool/mail). Each user has a separate .zxf file in this directory; thus a
message addressed to user ns9ken@ns9ken appears in file ns9ken. fxt.

Finally, the SMTP server at ns9ken outputs a message to the screen,
saying that a “message for ns9ken has arrived”. Ken can then log into
his BBS to read it. '

SMTP to an AX.25 Station at an SMTP Mailhost

When you want to send a message to an ordinary AX.25 station whose
local mailhost is running SMTP (Fig 23-7), all you have to do is
address the message to the AX.25 callsign @ the mailhost.

®® Forwarding SMTP Mail 193

For example;

|| NS9BOE-5] sp AXSSAM@nsSken II

Using SMTP, the message will find its way to nsOken, where it will be
saved in Ken’s NOS BBS, in file /spool/mail/ax9sam.txt. AX9SAM
can then connect to NS9KEN in the usual way, and will find the
message waiting for him there.

ni 56

Fig 23-7: Sending mail to an AX.25 station for collection at a
NOS station.

SMTP via a Mail Exchanger

As already noted in Chapter 8, it’s obviously unrealistic for domain. xt
to contain every known IP address in the world, and sooner or later

194 Forwarding SMTP Mail @©

you’ll want to send a message to a particular station whose callsign you
know but whose IP address you don’t. So what do you do?

If you’re lucky, there may be a reasonably local station which has a
comprehensive domain.txt file containing the address you want, and
which knows how to forward your message on to its destination. In
this case, you can use that station as a mail exchanger (Fig 23-8).

Mail Exchanger

ni 57

Fig 23-8: You can nominate a Mail Exchanger system with an
IN MX record in domain.txt. Mail for ns9zzz passes to the
exchanger, which then forwards it to its destination.

To do this, you first need to include the IP address of the gateway in
your domain. txt:

ns9mxa.ampr.org. IN A 44.199.41.90

®® Forwarding SMTP Mail 195

Then you add MX (Mail Exchanger) records to domain.txt for
particular stations you wish to send messages to via the exchanger.
For example, for messages to ns9zzz:

ns9zzz.ampr.org. IN M 0 ns9mxa.ampr.org.

The digit 0 after IN MX is the preference value of this exchanger. A
value of 0 is the highest preference.

There can be more than one MX record in domain.txt for a particular
addressee, allowing you to specify alternative MX exchangers:

ns9zzz.ampr.org. IN MX 0 nsSmxa.ampr.org.
ns9zzz.ampr.org. IN MX 10 nsSmxb.ampr.org.
ns9%zzz.ampr.org. IN MX{ 20 ns9mxc.ampr.org.

By default, NOS will attempt to forward messages for ns9zzz via the
MX exchanger with the lowest preference value (i.e. ns9mxa, with
preference 0). If that attempt fails, NOS will then try to forward via
the exchanger with the next lowest preference (i.e. ns9mxb, with
preference 10), and so on.

You can also use wild cards in MX records. This is very useful if you
want to direct messages to a particular network (which may not be
anything to do with AMPRnet).

For example, you can forward messages to anyone having a .com
Internet address with the record in domain. txt:

* . com. IN MX 0 ns9int.ampr.org.

assuming that the MX exchanger ns9int knows how to forward on to
the Internet. The wild card (*) matches any name ending in .com; e.g.
messages for a.com, a.b.com and a.b.c.com all go via ns9int.

Having set up the MX records in domain.txt, you then tell NOS to use
them, with the command (in autoexec.nos):

smtp usemx on

196 Forwarding SMTP Mail ©©

From now on, you can address mail via the MX exchangers with
simple commands like:

NS9BOB-5} sp nsdSzzz@ns9zzz

NS9BOB-5} sp bob@mwc.com

SMTP will discover that there are MX records which match ns9zzz
and mwc.com, and will forward accordingly.

44.199.76.76

client

SMTP Gateway

ni 58

Fig 23-9: SMTP to an unknown IP address. If there is no entry
for an addressee in domain.txt, the mail is sent to an SMTP
gateway (ns9sgw), which knows how to forward it to its
destination.

@@ Forwarding SMTP Mail 197

SMTP to an Unknown IP Address

The MX records just described are fine for forwarding mail to
particular stations (or to particular networks) via specified exchangers.

More generally, however, you’ll want to send messages to people
whose IP addresses you don’t know, and you have no idea how to
forward these messages to them.

To handle this situation, you can nominate a default SMTP gateway to
handle mail — see Fig 23-9 opposite. For example, in autoexec.nos:

smtp gateway ns9sgw

Thereafter, when you address mail to any station which does not have
an IN A or IN MX entry in domain.txt, SMTP will forward the mail to
the gateway. That gateway will then (hopefully!) know how to forward
it onwards.

SMTP to an AX.25 Station at a PBBS

If you want to send a message to an ordinary AX.25 station whose
local mailhost is an AX.25 PBBS, you can still launch the message
using SMTP — even though neither the addressee nor his mailhost
understands SMTP.

This works because there will be an SMTP/PBBS mail gateway
somewhere along the route which will re-launch your SMTP message
into the PBBS network (see Fig 23-10).

To address such messages, you simply use the same method as you
would with an ordinary AX.25 PBBS. For example:

ﬂ NSSBOB-5] sp AXIXXX@BB7BXA !I

NOS will loock in domain.txt as usual for the IP address of the
destination mailhost (BB7BXA), but won’t find it there — remember
that domain.txt contains IP addresses, not AX.25 callsigns. BB7BXA
is an AX.25 PBBS, so it doesn’t have an IP address.

Thus SMTP treats BB7BXA as an IP station whose address is not
known, so all it can do is forward it to the default SMTP gateway

198 Forwarding SMTP Mail @ ©®

station. The gateway will then either forward the message on to
another SMTP gateway, or will re-launch it onto the the PBBS
network. The setting up of an SMTP/PBBS gateway is described in
full in Chapter 25.

SMTP/PBBS
Gafeway

Fig 23-10: SMTP to an AX.25 station at a PBBS. The
SMTP/PBBS gateway converts the message to PBBS format then
forwards it to the target PBBS.

ni 59

®® Forwarding SMTP Mail 199

The REWRITE File

There will be many times when you want to simplify the addressing of
your mail, or when you want to send a particular message to more than
one recipient. The NOS files /spool/rewrite and /alias are especially
useful here.

The rewrite file gives us great flexibility in addressing mail, being
particularly useful for handling incomplete addresses, inaccurate
addresses and hierarchical addresses.

Essentially, NOS uses rewrite to map the original destination address
to a new destination address. This is a one-to-one mapping, whereby
the original address changes to a new address in a different format.

This is in contrast to alias expansion, where you can specify several
new destinations for one original message.

Each record in rewrite is a single line containing a template for the
original destination and a mapping for the corresponding replacement
address — see Fig 23-11.

'@ §1%s2ansosss |

[S"bbb@m?bbb

[s cccanscee 1 sp coctnsocccansesss J

1)[P usermailhost@nsgsss |

[5P user@mairost

niéll

Fig 23-11: The file /spool/rewrite translates addresses from one
format to another to suit forwarding.

200 Forwarding SMTP Mail @@

A simple example of a rewrite record:

@ $1%52@nsY9sss

The template for the original destination is *@*. The asterisk is a
wildcard, and so the template matches any user name and mailhost; e.g.
aaa@ns9aaa.

In the mapping for the replacement address ($1%$2@ns9sss), the
variables $1 and $2 correspond to the first and second asterisks in the
template. Thus for a message addressed to aaa@ns9aaa, $1 is aaa
and $2 is ns9aaa, and so the new destination address will become
aaa%nsBaaa@ns9sss.

In other words, any message originally addressed to user@mailhost
will be re-addressed to user%mailhost@ns9sss.

Note that the order of the rewrite records may be important. NOS
starts at the beginning of rewrite when attempting to match an address
to a template, and when a match is found the scanning stops (except in
the special case of a matching record containing a letter r at the end,
when scanning re-starts from the beginning — this is described in more
detail below).

It’s also important to note that the new destination address goes into the
nwrk file for the message. The original address (user@mailhost)
remains unchanged in the associated n.1xt file. In other words, rewrire
changes the forwarding information in n.wrk to make it easier to launch
messages in the right direction, but does not change the message itself
(in n.£xf) in any way.

Using the Post Office analogy again, you may write the To: address on
both the letter and the envelope, but someone may change the address
on the envelope afterwards to make it easier to deliver — the To:
address on the letter inside the envelope remains unchanged.

Using wildcards for partial addresses

As well as using the asterisk wildcard to represent complete items such
as user names or callsigns in the template field of the rewrite file, you
can also use the asterisk to match part of an item.

®© Forwarding SMTP Mail 201

For example, if you want to send all traffic addressed to German
stations with callsign prefixes dj or dk via the gateway nsSdeu, you
could set up a rewrite record something like:

@di $13dj52ens9deu
@dk $1%dk$2@ns9deu

Then a message addressed to fritz@dj9zzz is re-addressed to
fritz%dj9zzz@ns9deu, and similarly a message to hans@dk9zzz is re-
addressed to hans%dk9zzz@ns9deu.

Rewrite File Processing

When does NOS read the rewrite file? It depends on how the message
gets into the system (Fig 23-12). If you are sending a message using
the NOS BBS (or if someone has logged in to your NOS BBS via
telnet or an AX.25 connect), then the rewrite mapping takes place
when the message goes onto the outgoing mail queue. (N.B. This only
happens when you use the NOS BBS, External mailers such as PCEIm
are unaware of the rewrite file).

On the other hand, if the message comes into NOS from a remote
system via the SMTP server, rewrife mapping takes place then.

But if a message enters the SMTP server locally, rewrite mapping does
not take place; the mapping was alrcady done when the message was
put onto the outgoing mail queue.

Re-Scanning the rewrite File

In certain circumstances it’s useful to include several records in the
rewrite file to handle incorrectly addressed mail. For example, the
address fritz@dj9zzz.deu would not match any of the templates in the
rewrite records listed so far. We’ve seen that the simple address
fritz@dj9zzz does match one of the templates, but any other form of
this address is unrecognisable.

To handle this situation, NOS provides a re-scan capability for the
rewrite file. Where a rewrite record has the letter r at the end, this tells
NOS that if the address matches the template in that record, perform

202 Forwarding SMTP Maii @ ©

the mapping and then go back to the beginning of the rewrite file to
scan through it again.

Madilbox Server
(NOS Maller) -

ni 60.]

Fig 23-12: The rewrite file is read either when a message arrives
from a remote system via the SMTP server, or when a locally-
addressed message is written to the outgoing mail queue by the
NOS mailer.

@ ® Forwarding SMTP Mail 203

So, to handle incorrectly addressed messages to DJ stations, the rewrite
file could contain:

@dj $1%¥dj$28ns9deu
@dj . deu $10dj82 r

The address fritz@dj9zzz.deu does not match the template in the first
line, but it does match in the second line, and so the address changes to
fritz@dj9zzz. Because the second line contains the letter r at the end,
the scan now re-starts at the beginning of the file, and this time the new
address does match the template. The address changes again, to its
final form: fritz%dj9zzz@ns9deu.

Handling Incoming Bulletins
Another use for rewrite is to handle incoming bulletins (Fig 23-13).

fcpip@* tcpip

S8 TCPIP@EU |

from remote
smip client

ni 62]

Fig 23-13: The rewrite file re-addresses incoming bulletins for
delivery into the mail queue.

204 Forwarding SMTP Mail ©®

For example, you may wish to save incoming bulletins addressed to
tcpip@gbr or tepip@eu or tcpip@www.

In this case, the rewrite mapping is simple:

tepip* tepip

Thus any incoming bulletins addressed to tcpip@anything will go into
your local tepip area.

The Alias File

The alias file contains a look-up list which the SMTP server and
external mailers use to address mail. For example, if the file contains
the alias:

ken nsSkenénsdSken

you can send a message to Ken using the BBS command sp ken, and
the BBS will automatically re-address the message to ns9ken@nsSken.

(Of course, you could have put this entry in the rewrite file instead,
where it would have the same effect).

More typically, you can set up a mailing list of several recipients:

thegirls nsSpam@ns9pam ns9sue@nsPsue ns9liz@ns9liz outtray

and then simply send messages to the list members with the command
sp thegirls. The last entry on the line (outtray) is a local mailbox file
for saving a copy of each outgoing message.

There are three important points to keep in mind when setting up the
alias file:

1. The alias name (the first entry on each line) must be a local
name. That is, it must not contain an @ character,
2. There must be exactly one space between each field in the file.

3. If the hist of recipients is more than one line long, you can
continue the list on subsequent lines. These continuation lines
must start with a space or tab.

©® Forwarding SMTP Mail 205

For example:

thevorld ns9cccfnsfddd ns9eeefns9fff ns9ggginsShhh
ns%1iiéns9®3j) ns9kkkEéns9lll outtray

There is a space before nsSiii at the beginning of the second line.

Alias File Processing
It’s interesting to see how NOS uses the alias file (see Fig 23-14).

ni 63

Fig 23-14: The SMTP server uses the alias file to create multiple
copies of messages.

206 Forwarding SMTP Mail @ ®

Starting at the top lefi-hand corner, you can address a message to the
girls with the BBS command sp thegirls. The BBS places the message
as usual in the outgoing mail queue.

When the SMTP client processes the message, it finds that it is
addressed to a local user (thegirls), and so the SMTP client makes an
internal connection with the local SMTP server.

It is the SMTP server which reads the alias file. For each non-local
recipient in the alias list (ns9pam@ns9pam, ns9sue@ns9sue and
ns9liz@ns9liz), the server now places a separate copy of the original
message in the outgoing mail queue. Thus when the SMTP client next
wakes up it will then attempt to deliver these messages to the remote
hosts.

And for each local recipient in the alias list (i.e. outtray), the server
places a copy of the message in the incoming mail queue.

The important point to remember, then, is that it is the SMTP server
which uses the alias file when handling mail. When you address a
message to a local user name which matches an alias (like thegirls), the
message leaves the outgoing mail queue under the control of the SMTP
client, but immediately re-appears as incoming mail under the control
of the local SMTP server.

It is only then that the server expands the alias and creates the
necessary copies of the original message for forwarding.

Using alias to forward Incoming Messages

Because the SMTP server expands aliases for all messages, regardless
of whether the messages originated locally or came from another host,
you can use the alias file to forward incoming messages onwards to
other hosts.

For example, if Ken addresses a message to thegirls@ns9bob, the
SMTP server at ns9bob will automatically create new copies for
onward transmission to all the recipients in the alias list for thegirls,
plus a copy for Bob’s outtray.

@ ® Forwarding SMTP Mail 207

Finding out somebody else’s aliases

If Ken sends a message to thegirls@ns9bob as just described, the end
result may be totally unexpected if Ken thought that thegirls was
simply a single local user at ns9bob, not an alias for several other
users! Ideally Ken would like to interrogate Bob’s alias file first, to
see what would happen if he subsequently addressed a message to
thegirls.

When NOS is set up as described in this book, it’s not possible directly
to read somebody else’s alias file (by means of FTP or a BBS
download for example). This is a security precaution; the alias file is

at the NOS root level (N:\), and we certainly don’t want other users
snooping around with FTP or the BBS at this level.

The way around this small difficulty is for Ken to ask SMTP to do the

snooping for him (Fig 23-15). He does this by giving a special telnet
command:

I net> telnet ns9bob 25 Iﬂ

The number 25 is the “well-known port” number for SMTP — most of
the popular protocols have a fixed port number, and 25 is always the
port number for SMTP.

When Ken’s TELNET client connects with port 25 on Bob’s system,
he is actually talking to the SMTP server there. The server first gives
him a friendly welcome:

l 220 ns%bob SMTP ready ll

From now on Ken has to talk in language which the server understands.
Fortunately SMTP-speak is very simple, with a limited vocabulary of
just 9 command words: HELO NOOP MAIL QUIT RCPT HELP DATA
RSET EXPN.

To find out if Bob has an alias list for thegirls, all Ken has to do now is
give the EXPN (expand) command:

u expn thegirls II

208 Forwarding SMTP Mail @ ©

EXPN thegiris

felnet nsobob 25]

ns9bob

ni 64

Fig 23-15: Using telnet to well-known port 25 allows you to talk
direct to the SMTP server, which you can then interrogate with
the EXPN command to get the alias file.

Bob’s SMTP server will then respond with the alias file entry for
thegirls:

250-outtray

250-ns91iz@ns9liz
250-ns9%suelns9sue
250-ns9%pam@ns%pam

Bingo! Now Ken knows what will happen if he sends a message to
thegirls@ns9bob!

And finally, when he has finished with Bob’s SMTP server, Ken

simply gives the quit command to terminate the special TELNET
session.

@® Forwarding SMTP Mail 209

Using rewrite and alias to handle Incoming Bulletins

We’ve already seen how to set up a simple rewrite record to redirect
incoming bulletins addressed to tcpip@anybody into the local tcpip
area.

A reminder of the rewrite file entry:

topipR* topip

If you also wish to forward such bulletins on to Ken, you can now set
up an alias entry something like:

tepip tepipénsSken tepip

Now, when a incoming message arrives addressed to tcpip@eu, the
rewrite mapping will first change the address to the local name tcpip.
This now matches the alias name (the first tcpip in the alias record), so
the SMTP server will place a copy of the bulletin in the outgoing mail
queue for tepip@ns9ken, and a second copy in the local tcpip area for
your own system.

Note the order in which the SMTP server manipulates destination
addresses: rewrite mapping takes place before alias expansion.

Listing the SMTP Mail Queue

From time to time you may want to see what messages are still on the
outgoing mail queue awaiting forwarding. The smtp list command
gives you this information:

net> smip list

3 Job Size Date Time Host From

L 123 244 09/13 07:13 ns9liz ns%obéns%ob ns%lizé@ns9liz
274 1987 08/13 08:26 ns9%om nsSboblns9bob tom@ns9tom

The left-most column (S) indicates the status of the message. If there
is a letter L in this column, the message is locked. That is, SMTP is in
the process of forwarding it. In this case, the lock file
/spool/mqueue/n.Ick will exist (where n is the job number); e.g.
/spool/mqueue/123.Ick.

210 Forwarding SMTP Mail & ©&

The last three columns show the contents of the work file
/Spool/mqueue/n.wrk.

To remove a job from the queue, use the smtp kill command. For
example:

net> smtp kill 123

211

24: POP MAIL COLLECTION

A NOS station can operate as a “poste restante” system; that is, it can
hold mail indefinitely on behalf of other stations which are not normally
operational. When those stations are ready to receive their mail, they
connect with the poste restante host, which then forwards any
outstanding mail, using POP (Post Office Protocol). See Fig 24-1.

nsoliz

ni 651

Fig 24-1: The POP client requests the server to forward any

outstanding mail (assuming there is a suitable entry in the
/popusers file to authenticate the client).

212 Pop Mail Collection & @

Setting up the POP Server Host

There are two current versions of the POP protocol: POP2 and POP3.
Both of these servers do essentially the same job.

When setting up a host, you should start both POP2 and POP3, so that
the system will understand requests from clients running either of these
protocols.

The place to start the servers is in qutoexec. nos:

start pop2
start pop3

It is also necessary to set up the file /popusers, which contains the
name and POP password of every user for whom you will be holding
mail.

For example:

SsSYNTAX: usernams:password:
ns9liz:lizpasswd:
mary:poppins:

Note that both the username and the password terminate in a colon (:).

Finally, you need to ensure that all incoming mail addressed to Liz and
Mary finishes up in the incoming mail directory (/spool/mail), as the
text files ns9liz.txt and mary.txt. This is where the POP clients will
collect it from.

In other words, if you want to send mail to ns9liz, you use a local
address (sp ns9liz), not a remote address (sp nsOliz@ns9liz).

To handle mail coming in from other stations addressed to
ns9liz@ns9liz, you will need an entry in the rewrite file to force NOS
to put the mail into /spool/mail/ns9liz. txt:

ns9liz@naSliz ns9%liz

See Fig 24-2.

@O Pop Mail Collection 213

:.;-. from remote foremote
5P nsgiizensoliz) smtpclient pop client

ni 66

Fig 24-2: Incoming mail addressed to Liz must be directed to
the incoming mail queue (/spool/mail), ready for the POP server.
This means that an entry in /spool/rewrite is needed, to map the

remote address ns9/iz@ns9liz to the local address ns9liz.

Setting up the POP Client

For a POP client to collect mail from a POP server, it is necessary on
the client system to specify the server name (in aufoexec.nos). The
syntax is (all on one ling):

popmail addserver host [seconds] [hh:mm-hh:mm] protocol
mailbox usernams password

For example (all on one line):

popmail addserver nsSbob 1800 00:00-03:00 pop3 ns9liz ns9liz
lizpasswd

214 Pop Mail Collection & @

This means that ns9bob is running a POP3 server, which Liz’s POP
client is to contact at 1800-second (30-minute) intervals between
midnight and 3am, to see if there is any mail in Bob’s
/spool/mail/ns9liz.txt to be collected. The last two parameters (nsliz
and lizpasswd) must match an entry in Bob’s popusers file.

The seconds and hh:mm-hh:mm parameters may be omitted. This
means that the POP client never wakes up automatically to collect mail.
In this case, to force the client to contact the server, Liz must give the
command:

|| net> popmail kick ns8bob !I

You can define more than one POP server, by adding more
popmail addserver commands.

To list all the current POP server hosts:

net> popmail list |

and to remove a server from the list;

l! net> popmail dropserver nsSbob ﬂ

When POP mail arrives, NOS will announce its arrival if you give the
command:

“ net> popmail quiet no ' II

You can change the setting to yes if you don’t want to see the
announcement.

Tracing POP Mail Collection

To check that POP mail collection is working properly, you can
activate the POP trace.

@© Pop Mail Collection 215

The trace commands are:

popmail trace 0 {no trace, turn trace off])
popmail trace 1 {report serious errors)

popmail trace 2 {report transient errors}
popmail trace 3 {report complete POP sessions}

Trace output goes to the session log file (/dump/session.log). Note that
for trace level 3, POP creates a large amount of data in the session log,
so don’t forget to turn the trace off if you don’t need it.

-

Ca
(L

1

AL

o B - b, -~ " - i& ™
" [. 1 '- i . . o - - 8= . - = |.__-
L - i 1,.] -y) | ! = .
B B Iia B .‘1: i L = i .
- . Wl
- - . . . -.
" .
- - . = u
i
v
. - g | . -1. L] i - -
i [I -— = o
: . . '
1 []
- - S (S S
" 1 F e I - Ta - s - ol .: i -
[} - w ‘-
i
¥
R » - y 1 y
w . : ‘
- - kg -] .--
= T
- i N LE
b -
] i -j
- - N ‘ ‘-{
.-
-
] LR
i
=]
a¥
L
- . W
-
- 1.
B]
=
[
]
1
L]
W . \.’.
3
ra
) -
F
. L]
x
W
i
¥
-

217

25: PBBS MAIL FORWARDING

In Chapter 23 we saw how to launch mail onto AMPRnet using
SMTP. This works well for sending mail to other stations on
AMPRnet, and even to ordinary AX.25 PBBS stations, provided that
your immediate neighbour understands SMTP and can somehow
forward your mail to an SMTP/PBBS mail gateway for re-launch onto
the PBBS network.

Unfortunately, if you don’t have a neighbour that understands SMTP,
you are forced to launch all of your mail directly onto the AX.25 PBBS
network instead (Fig 25-1). Fortunately NOS is fully equipped to do
this. Your station will appear to your PBBS neighbour just like any
other PBBS, able to forward and reverse-forward private messages and
public bulletins in exactly the same way as an ordinary PBBS.

Of course, you may choose to use both methods of launching your
mail: SMTP mail goes to an SMTP neighbour and PBBS mail goes to
an AX.25 PBBS neighbour. You could even choose to be an
SMTP/PBBS mail gateway yourself, and forward SMTP mail received
from other people onto the PBBS network (and vice versa).

The Principles of PBBS Forwarding

The basic procedure for forwarding mail onto the PBBS network is
very straightforward (Fig 25-2). You address the mail in a similar way
to SMTP mail, and through a combination of rewrife mappings and
alias expansions you contrive to collect all the mail for PBBS
forwarding into one or more /ocal mailbox files in your system (i.e. in
directory /spool/mail).

You also set up a forward file (/spool/forward.bbs), in which you
specify how each of these local mailbox files is to be forwarded. The
forward.bbs file contains a list of neighbouring PBBS callsigns, and
for each PBBS there are one or more commands specifying how and

218 PBBS Forwarding ©® ©

when NOS is to connect to that PBBS, together with a list of the
mailboxes to be forwarded there.

mbox server
(NOS Mailer)

SMTP/PBBS
Mail Gateway

ni 67J

Fig 25-1: Forwarding mail to a NOS station via the PBBS
network. The mailbox client forwards .txt files in the mail queue
(/spool/mail) to a neighbouring AX.25 PBBS (BB7BBS). This
BBS then forwards the mail to an SMTP/PBBS mail gateway.
The gateway converts the mail to SMTP format, and forwards it
via AMPRnet to the final destination.

®® PBBS Forwarding 219

to remote
AX.25 PBBS

ni 68
Fig 25-2: Forwarding mail to an AX.25 station. The rewrite file
maps all messages addressed @BB7BXA to a local address
(PBBS_NET). These messages finish up in the mail queue in
pbbs_net.txt. From there the mailbox client forwards them to
the PBBS specified in /spool/fforward.bbs.

The NOS mailbox client is responsible for reading the forward.bbs file
and initiating the forwarding process — usually at regular intervals
specified by the NOS mbox timer command, but you can force the

220 PBBS Forwarding ©®©

client to read the file immediately with the mbox kick command if you
want.

For each PBBS listed in the forward.bbs file, the mailbox client
attempts a connection, and then forwards the messages contained in the
nominated local mailbox(es) to the PBBS. On completion, the PBBS
then automatically reverse-forwards any outstanding mail which has
been waiting at the PBBS for delivery to the NOS station.

Preparing for PBBS Forwarding

The biggest job in preparing for PBBS forwarding is setting up the
rewrite and alias files, so that the PBBS network will recognise the
destination addresses in your mail. These files will probably be quite
long and complicated, as there are many and varied ways of addressing
PBBS mail in different parts of the world.

And because there are so many ways of addressing PBBS mail, the
potential for getting it totally wrong is enormous! So the rewrite and
alias files have to catch and correct any incorrectly addressed mail as
well.

By comparison, the forward.bbs file is straightforward to set up. All
you have to decide is which PBBS mailhost(s) you want to forward to,
what time(s) of day the forwarding is to take place, how to make the
connections to the mailhosts (e.g. by an ordinary AX.25 connect, or
via a NET/ROM node), and which NOS mailbox files are to be
forwarded.

Finally, you have to tell the NOS mailbox client the hierarchical AX.25
address of your neighbouring PBBS. NOS automatically appends this
to your own AX.25 callsign in the R: line of outgoing messages, so that
any replies will be routed back to you correctly.

Let’s Start Simple

To illustrate the basic mechanism for forwarding mail onto the PBBS
network, let’s look at what happens when you want to send a correctly
addressed message to an ordinary AX.25 station (see Fig 25-3).

The message is addressed to AXOXXX@BB7BXA, somewhere across
the PBBS Network, and BB7BBS is the callsign of the neighbouring

©® @ PBBS Forwarding 221

PBBS to which you will launch the message. For the moment, we’ll
assume that you can simply address the message with the command
sp AX9XXX@BB7BXA, and that your neighbour BB7BBS knows
how to add the necessary hierarchical address extension for the target
mailhost BB7BXA.

Remembering that PBBS forwarding requires the message to be placed
in a local mailbox, the first step is to set up a rewrite file record to
translate the address AX9OXOX@BB7BXA to a local address (i.e. an
address without the @ symbol). Refer back to Fig 25-2, If we
arbitrarily call the local mailbox PBBS_NET, the rewrite record looks
like this:

+*@BB7BXA PEBS_NET

e

ni 86 |

Fig 25-3: Forwarding to a remote AX.25 PBBS.

That is, any message addressed to anyone at BB7BXA goes into the
local mailbox PBBS_NET (i.e. into the file /spool/mail/pbbs _net.txt).

The second step in preparing for PBBS forwarding is to set up
/spool/forward.bbs. This needs an eritry for your neighbour BB7BBS:

BBTBBS
connect tncO BB7BBS
PEBS_NET

The first line specifies the AX.25 callsign of the neighbouring PBBS to
which NOS will forward the message.

The second line tells the mailbox client the method of connecting to the
neighbour; in this case, it makes an ordinary AX.25 connection.

The last line states which local NOS mailbox file is to be forwarded to
BB7BBS.

The PBBS Routing Header

The final step in preparing for PBBS forwarding is to tell the mailbox
client certain information for inclusion in the PBBS routing header (the
R: line) of your outgoing messages. Without this information you may
not receive any replies to your messages and you will probably cause
chaos to the PBBS forwarding network as well (not to mention
thoroughly confusing any White Pages servers which happen to come
across your messages...).

To ensure that the mailbox client sets up the R: line correctly, you
should include lines like the following in your aufoexec.nos file:

mbox gth " [London]"
mbox haddress "BEB7EBS. #41.GER. EU"
mbox utc [¢]

This will result in a line appearing automatically in the routing header
of your PBBS messages; e.g.

R:920514/1543z @:NSSBOB.BB7BBS. #41.GBR.EU [London] #:234

©® PBBS Forwarding 223

That is, the R: line contains a date/timestamp for the message, the full
hierarchical PBBS address of your station (i.. your own callsign
followed by the address of BB7BBS), your QTH and the message
number.

The mbox utc command lets you specify a * time offset from UTC.
NOS uses this offset to calculate the UTC time which appears in the
routing header,

You can add some more information to the routing header, with these
commands in qutoexec.nos:

mbox zipcode 123456
mbox fwdinfo "HNLNET BBES"
mbox smtptoo off

The first two of these are only for background information, and are not
really required for forwarding. It’s probably best to omit them
altogether, as they only make the R: line longer than necessary.

The mbox smtptoo command specifies whether or not the full SMTP
message headers are to be included in the message. These headers are
often very long (sometimes running to dozens of lines) and are
completely unnecessary if you are sending a message to an AX.25
station that doesn’t understand SMTP. In that case, you should set this
option to off.

On the other hand, if the addressee is running NOS and you expect a
reply, you will need to set smtptoo to on.

Sending the Message

Having set up the necessary files, you are now ready to send the
message. When you log into your NOS BBS and give the command
sp AX9XXX@BB7BXA, the BBS scans the rewrite file and converts
the address to PBBS_NET (but recall from Chapter 23 that this
conversion only affects the nwrk file in the outgoing message
queue — the To: address in the n.1xf file remains exactly as you typed
it: AXIXXX@BBT7BXA).

When you’ve finished composing your message, the NOS BBS places
it in the outgoing message queue as usual. Then the SMTP client
connects with the local SMTP server, which delivers the message to the

224 PBBS Forwarding ®®

local PBBS_NET mailbox file (/spool/mail/pbbs net.txt), in exactly
the same way as described in Chapter 23.

The SMTP server now displays an alert on the screen, saying that new
mail has arrived for PBBS_NET. You just ignore this — the server
thinks this is ordinary local mail, and has no way of knowing that it’s
really PBBS mail waiting to be forwarded.

Finally, when the mailbox client wakes up, it examines the forward.bbs
file and finds that local mailbox PBBS_NET is to be forwarded to
BB7BBS. So the mailbox client connects to BB7BBS and transfers the
message in PBBS_NET to BB7BBS. Your message is on its way at
last! (If the mailbox client doesn’t wake up, you can bring it to life
with the command mbox kick to force it to connect to the PBBS).

More rewrite Records

Nice n’ easy so far. Trouble is, you'll certainly want to send messages
to PBBSs other than BB7BXA, so you’ll need many more records in
the rewrite file.

If you live in the United Kingdom, the situation is not too bad. Almost
every UK PBBS has a GB7 callsign, with a few GB3 stations as well.
In this case, the rewrire file looks like this:

@GB7 PBBS_NET
@GB3 PBBS_NET

In addition, the UK PBBS network already has a well-organised system
of hierarchical addressing which is understood and maintained by all
PBBS stations, so it’s not necessary to think about hierarchical
addresses when forwarding from NOS onto the PBBS network (and
this is how it should be!).

Thus in the UK, a NOS user can simply address a message to
G3NRW@GBT7BIL, for example, without having to know the full
hierarchical address of GB7BIL.

The situation in many other countries is much more irregular, and in
the extreme you may neced a separate rewrife record for every
individual PBBS station you send messages to.

@® PBBS Forwarding 225

A Closer Look at Hierarchical Addressing
In general, a full hierarchical address is one of these:

CALLSIGHNRPEES CALLSIGH.COUNTRY . CONTINENT
CALLSIGIRPEBS_CALLSIGH.STATE.COUNTRY . CONTINENT
CALLSIGHEPBEBS_CALLSIGN.AREA.STATE. COUNTRY . CONTINENT

For example:

AX9YYYRBB7EBS. #41.GBR.EU

The Continent (EU) and Country (GBR) codes are internationally
agreed.

The state/county/area codes (e.g. #41) are allocated locally within a
country.

The problems arise when people use different codes for the same thing
(e.g. some people use NA for North America, whereas others use
NOAM), or when they only supply part of the full hierarchical address.

To overcome these difficulties, the rewrite file is a little more
complicated. To handle incomplete/incorrect addresses for New York,
for example, the rewrife file may look something like this:

* NOAM $1.NA r
* . Us $1.USA.NA r
* USA $1.USA.NA r
* NY S1.NY.USA.NA r

*@¥ % NY.USA.NA $1%52.$3.NY.USA.NAREBTEBS

*@BE7BES PBBS_NET

The first three lines change NOAM to NA, and US to USA.
The fourth lines handles a message addressed to ANYONE.NY.
The fifth line re-addresses NY mail to the local PBBS.

The last line re-addresses local PBBS mail to PBBS_NET.

226 PBBS Forwarding © 8

Get the idea? Note the letter r at the end of most lines; this forces NOS
to re-scan the rewrite file after a match, so that you progressively work
down the file as the address is refined for the PBBS_NET mailbox.

All you have to do now is finish off the file, adding all the remaining
possible combinations of addressing that you are likely to
encounter — that’ll wipe the smile off your face for an hour or two!

M2
&

One of the main objectives of the rewrite file is to re-address
PBBS mail correctly.

This means that you have to get it right, which in turn means
that you have to test it.

In other words, you should send dummy messages which
exercise every record in the rewrte file, and check that the
correct addresses are set up in the n.wrk files.

It hopefully goes without saying that you should turn off the tnc
and the radio before you start testing. You should afterwards
remove all the dummy messages from the outgoing mail queue
(with the NOSview command CLEANQ.BAT) before turning
the tnc and radio back on again!

Otherwise you’ll set the network on fire

M2
é"

The rewnte file handles the re-addressing of all mail,
irrespective of whether the mail originates locally or comes
from a remote system, and irrespective of whether it is SMTP
mail or PBBS mail. So there may be many address
combinations you need to consider.

More on the forward.bbs File

Thus far we have only seen an example of a very simple forward.bbs
file. Let’s look at the more general form:

PBEBS Callsign {optionally followed by forwarding timeslots)
Connection Method

.Connection Command(s) {zero or more lines}

HOS Maillbox(es) to be forwarded {one per line}

i {end of record}

Each forward.bbs record contains at least three lines, plus an end-of-
record line (a line starting with a minus character).

The first line contains the AX.25 callsign of the PBBS to which mail is
to be forwarded. Optionally, you can also include one or more
timeslots during which the forwarding is to take place.

Each time slot is expressed as a 4-digit number (e.g. 0003): the first
two digits (00) specify the start hour, and the second two digits (03)
specify the finish hour,

Thus the timeslot 0003 means that forwarding can take place between
midnight and 0359am. You can specify several timeslots if you wish,
separating the timeslots with commas. The default timeslot is 0023,
1.e. from 0000 to 2359.

So, for example, to forward to BB7BBS during the timeslots
0000-0359 and 1100-1159 hours, the first line in the forward.bbs
record will be:

BB7BEBES 0003,1111

The second line in the forward.bbs file specifies how NOS is to make a
connection to the PBBS. There are several possible methods, but the
only two which you are likely to use are an ordinary AX.25 connect or
a NET/ROM connect.

The syntax of an AX.25 connect in the forward.bbs file is:

connect interface callsign ({or}
ax25 interface callsign

228 PBBS Forwarding @ ®

For example:

connect tnc0 BB7BBS

To access a PBBS via the NET/ROM network, the syntax of the
connection commands is:

netrom NET/ROM alias | callsign
. connection_command(s)

For example, if Bob wants to forward mail from his local mailbox
EURO_NET to BB7EUR via his local NET/ROM node NRA the
complete forward.bbs file record looks like this:

EB7EUR
netrom NRA
.C BB7EUR
EURO_NET

That is, NOS will issue a NET/ROM connect request to NRA, and
when connected will issue a connect request (C BB7EUR) to the
NET/ROM node.

Note that the line containing this request starts with a dot. Note also
that there must be an entry in the NET/ROM routing table for NRA;
see Chapter 29 for details on how to set this up.

Bulletin IDs

The PBBS network uses bulletin identifiers for public bulletins, and
uses these identifiers to check whether an incoming bulletin has already
been received. NOS understands these identifiers, and you can add
them yourself to your own bulletins if you wish (with the $ parameter;
e.g. SB TCPIP@WWW $1234).

NOS maintains a list of bulletin IDs (BIDs) already received, in the file
/spool/history. See Fig 25-4. When a bulletin arrives, NOS checks to
see if its BID is already in the history file. If it is, NOS tells the
sending station that it already has the bulletin. Otherwise, NOS
accepts the bulletin and adds its BID to the Aistory file.

@ ® PBBS Forwarding 229

Note that bulletin IDs are a PBBS network phenomenon. SMTP mail
does not understand the concept of bulletin IDs, and so doesn’t do
anything with the history file.

Bullefin
IDs

nié9_|

Fig 25-4: When a bulletin arrives at the NOS BBS, its bulletin ID
is checked against the history file. If the BID exists in the
history file, the BBS tells the originating station that it has got
the bulletin already.

.
1
h
L
i -
[g
|
"] i
U - ._—
i
|
fa
- o
.f.-
i
LJ
) [
[)
1
pi
]
L
i
b | -
il I
1 o
" ¥
o
[P
q v
i
=
i
- -
.1.”._.-.
o
I HETH
[
[l
.
1
mo
'
..
B KA

v
a
[
-- iu
. (Y]
i,
[
L
- .
- _.__..-
I
L]
i
|
i &1 0t
v.-l .._
.
L=
1
i o
-..- L]
el i
I |
[} -r
[L
L]
L]
[
. i,
N b
|
r
L
L]
.
[
f
-
- "
i

vy

i
]
o
L}
".
1 e
-h 1
L
’
il ..
.
L a
.
& |
L) »
d [}
e
<o
- "
v Llig t
wia o e
. 0 ...*
- -._.
- T
- i

ht L
b
i
"
L]
¥
I
T
§ -
el
{ LI
[
-
N
W
-
L]
¥
¥
i
i -
9
a -..
i
.
o
" a
- "
L}
I
i
i
"
-
la -
L
[+ a4
L L...
.
.
i
o
.
-
- i
"
& i
¥r
vk
Er
- Fa
.

¥
b
|
[
F
i .
Te
i
-
i '
- B
a e i'a I
y 1
- - T Ll
ne o o
T
| I | -
1)
L]
i
ad " Y
N
M [
i i
N R
i &
. il
B!
¥
[
-.-
" i
i
_-r i
I [
[
.
.y
|
1
i .
-
L -
i - ¥ 1
.-
1
o
Fa
i
L]
N Ea ol
-
o d
1
ra
.
[
- -
* H
i
1 i ¥ . ¥
[1
1 EZ
i i
. .
L] L .
4
i =
i
¥

.m: N
[T
- . N
i
i i
L]
i
T
i
¥
Lt
= =
¥s
b o
o »
-
L bl "
-t -
-
: a4
- bl
- &
.
[_. i
= L™
[
e | , i
»
1
L]
.-
= 1
-
® ..
[l
a
-
i
v
]
N [

[
i
e
g
R
ia
.l-..l
]
r..l.
L]
I '
;b iL=
j Vo
] .
i "
ol
C e
i
I
)
i

LN -
L =
e b
'l &
§ § -
.
. vl
" -
" "
- 1 i
_.r " ¥
]
e ' rd .
La _‘T...
G o
[Lia e -
Ll i
a B =y
i » 5
W Ty
-
. . i lw
. "
1 rF- L L
1 "
.
= SR i e i
i WM fa L]
A W L aF i
L [T
o ' . o
i 1) . - : "_ il a
i i 1. e y
(P "I A ullt .—.,r it)
i -] B
. | L] i,
i ¥ " - @ |
I L .. i
- . r-
. LA |
"a
il
" . "
i 1
" w "
i Rk AR
i L] -
[- L
" i i
.r
" . [
_.-. L]
i -.I
o i
_ f . I e
1
1] 'R - . " b
r.l v
= 'y
1 -
i F ¥ i ..._
a ¥l L)
i A :
| _ e _.-__ .
- - L]
i .
_ \
i A .
Lh
i . <
Hl "
=i i
b 0yl .
i Ty, B
-
. r, i .
= N [
ror L] p_=
i .
r
- 1
' v
i,
» 4 & .
i Lo
. L&
"
w e
1 ' i
L] -
' = .-
i [
1
.
. A
- i -
et
. " Jr.l
e L 1| a N " b
i] e
[} ._-. - o i B
- i
| \
. ik . 2 B

231

26: AX.25 ROUTING

Routing is to do with how NOS forwards packets from one station to
another. The rules for forwarding packets are contained in routing
tables — in general, these tables specify the next station “down the
line” to which packets will go on their way to their eventual destination.

NOS provides three separate levels of routing, and thus three separate
routing tables:

o AX .25 routing

e Internet Protocol (IP) routing

e NET/ROM routing

In this chapter we look in detail at AX.25 routing.

AX.25 Routing

AX 25 routing is perhaps the easiest of the three levels to understand,
as you're probably familiar with it already, under its more common
name: digipeating.

To set up the AX.25 routing table, all you need to do is include the
ax25 route add command for each of your neighbours who is
accessible via one or more digipeaters.

So, for the scenario in Fig 26-1, Bob needs the following commands in
autoexec.nos:

ax25 route add AX9PAT AX9DGA AX9DGB
ax25 route add NSSPAM-5 AX9DGC

Note that there is no letter v (for via) in these commands.

232 AX.25 Routing @@

If Bob wants to make an ordinary AX.25 connection to Pat, he simply
gives the command:

I net> connect tncd AMIPAT Iﬂ

and NOS will automatically make the connection via the digipeaters
AX9DGA and AX9DGB.

net> connect incO0 NS9PAM-

(neb connect incO0 AX9PPAT]
5

autoexec.ne

ax25 roufe add AX9PAT AXI9DGA AX9DGB
ax25 route add NS9PAM-5 AX9DGC

ni 73]

Fig 26-1: The AX.25 routing table specifies digipeater paths.

@@ Ax.25 Routing 233

In the second routing table entry, NSOPAM-5 is the AX.25 callsign of
the NOS station ns9pam. Bob could make an ordinary AX.25
connection via AX9DGC to Pam if he really wanted to, using
connect tnc0 NS9PAM-5 (but because Pam is running NOS, Bob is
much more likely to use telnet ns9pam).

These two entries are permanent entries in the AX.25 routing table.
They will remain there indefinitely unless you forcibly remove them
(e.g. with the command ax25 route drop AX9PAT).

Another way of adding permanent entries to the table is to include the
digipeater routing in the connect command:

ﬂ net> connect tnc0 AX9ZZZ AXSDGA u

(N.B. Some versions of NOS don’t allow you to include digipeaters in
the connect command in this way; in that case you are forced to use
ax25 route add to specify the digipeater chain).

In addition to permanent entries, it’s also possible that temporary
entries will find their way into the AX.25 routing table. These appear
automatically if someone connects to you via a digipeater path (but if
you already have an entry for that station in the table, the incoming
connection will not change what you entered).

To find out the current status of the AX.25 rbutjng table, use the
ax25 route command:

net> ax2§ route

Target Type Mode Digipeaters
AXOPAT Local VC AX9DGA AXSDGB
NS9PAM-5 Local IF AX9DGC

AXOXYZ Auto IF AX9DGA

The first two entries are Local entries, corresponding to the permanent
routes which Bob added to the table. The third entry appeared
automatically when AX9XYZ connected to Bob via AX9DGA.

234 AX.25 Routing © 8

AX.25 Mode

In NOS it’s possible to specify the mode for transmitting Level 2
AX.25 frames. For ordinary AX.25 connections —not using
TCP/IP — the mode needs to be ve (virtual circuit). That is, when you
connect to another AX.25 station, each information frame is numbered
(from 0 through 7) to allow stations to check for missing or duplicate
frames, and flow control is handled with RR (Receive Ready) frames.

With TCP/IP traffic however, there is no need to number each level 2
frame, because TCP/IP packets have their own numbering scheme.
Likewise, there is no need to handle flow control at level 2, because the
TCP/IP protocols do this at higher levels.

Because of this, the use of AX.25 virtual circuit mode for TCP/IP
traffic is an overkill (and in fact leads to excessive and unnecessary
level 2 traffic).

Instead, it’s normal to use datagram mode at level 2 for TCP/IP
traffic. This means that information is transmitted in Ul (Unnumbered
Information) frames, without frame sequence numbers, and there is no
flow control at level 2. If a level 2 frame is lost in transit, the higher
level protocols detect this and request re-transmission. Similarly, if the
receiving station needs to impose flow control, it is the higher level
protocols which handle this.

So, as most of our NOS traffic will be via TCP/IP rather than ordinary
AX.25 connections, it’s usual to set the default mode to datagram, in
autoexec.nos:

mode tne0 datagram

This won’t do for ordinary AX.25 connections, however, which need to
run in virtual circuit mode. So for each station with whom you
normally connect in AX.25 mode, you need to add an ax25 route mode
command. Thus Bob will have the following additional commands in
his autoexec.nos:

ax25 route mode AXSPAT wvc
ax25 route mode AXIDGA ve
ax25 route mode AXSDGB vc
ax25 route mode AX9DGC vc

235

27: ADDRESS RESOLUTION PROTOCOL

The question now arises: if Bob gives a command like ftp ns9ken, how
does NOS relate the hostname in the ftp command (ns9ken) to Ken'’s
AX.25 callsign (NS9KEN-5)? The answer is found in another table:
the ARP (Address Resolution Protocol) table.

It’s in the ARP table that you can enter the association between IP
hostnames and AX.25 callsigns, for stations within radio range. Thus
in Bob’s case, there could be the arpadd command in his
autoexec.Ros.

arp add ns9%ken ax25 NSSKEN-5

The command arp shows the current state of the ARP table:

net> arp

rcvd 0 badtype 0 bogus addr 0 regst in 0 replies 0 regst out 0
IP addr Type Time Q Addr
44,199.41.2 AX.25 0 NS9KEN-5

Thus when Bob gives the command ftp ns9ken (see Fig 27-1), NOS
first looks in domain.txt for Ken’s IP address (44.199.41.2), and then
uses this address when looking in the ARP table for Ken’s AX.25
callsign (i.e. NS9KEN-5). Now that NOS knows the callsign, it can
build the AX .25 frame for transmission to Ken.

Dynamic ARP Table Updates

The arp add command puts permanent entries into the ARP table; they
will stay there for all time (unless you forcibly remove them with the
arp drop command; e.g. arp drop ns9ken).

236 Address Resolution Protocol @ @

However, it’s not always a good idea to put permanent entries in the
ARP table — Ken may change his AX.25 callsign from NS9KEN-5 to
NS9KEN-9 without telling Bob, and so the entry for ns9ken in Bob’s
ARP table will now be wrong (and ftp ns9ken will no longer work).

nef> fip 9\39ken]

arp add ns%ken ax25 NSPKEN-5 -

ns@ken 44.199.41.2

44.199.41.2 ax25 NSIKEN-5

AX.25

fa from from to

5

ax25 mycall NS9BOB-

ni 74
Fig 27-1: When building an AX.25 frame for transmission, NOS
looks in domain.txt and then the ARP table to find out the AX.25
calisign of the target station. This callsign goes into the AX.25
"to" field in the frame. The ax25 mycall and ip address
commands specify what goes into the "from" fields.

@® @ Address Resolution Protocol 237

A better solution is to forget about putting permanent entries in the
ARP table, and let NOS find out for itself the AX.25 callsign of any
station you wish to contact. For example, if Bob gives the command
ping ns9mxa, NOS will look in the ARP table as usual for an entry for
ns9mxa, but won’t find a match. NOS will then broadcast an
ARP Request onto the network, asking for NSOMXA’s callsign. See
Fig 27-2.

ARP Request
>

ARP Reply

AX.25 ARP RECIUEST

fo from | from fo
NSQBOB-S insobgb| 222227 insomxa

AX.25 ARP REPLY

from from

e e

ni 75

Fig 27-2: When there is no entry for a target station in the ARP

table, NOS broadcasts an ARP Request (addressed to QST, the

general AX.25 broadcast address). The target responds with an

ARP Reply containing its AX.25 callsign. Using this reply, NOS
then creates a dynamic ARP table entry.

238 Address Resolution Protocol © @

The request packet contains NSOMXA’s IP address (44.199.41.90).
Assuming NSOMXA is in radio range, it will then automatically
respond with an ARP Reply packet containing its AX.25 callsign
(NSOSMXA-5). Bob’s NOS places the callsign his ARP table, and can
now use it to address subsequent packets direct to NSOMXA.

The callsign that NOS places in the ARP table in response to an ARP
Request is a temporary entry which has an initial lifetime of 900
seconds (15 minutes). You can see the current lifetime with the arp
command;

net> arp

revd 1 badtype O bogus addr 0 regst in 1 replies 0 regst ocut 0
IP addr Type Time Q Addr
44.199.41.80 AX.25 879 NS9MXA-5

If no further packets are heard from the station within this lifetime, the
entry will eventually disappear.

If you want to remove dynamic ARP table updates, use the command:

net> arp flush |

This will not affect any entries which you set up manually.

The advantage, then, of allowing NOS to maintain the ARP table
automatically is that you always know that the AX.25 callsigns in the
table are correct. You don’t have to find out these callsigns yourself,
and you don’t have to worry about people changing them.

A further benefit is that the ARP table now only contains temporary
entries from stations that are currently active, and thus potentially
contactable. If you try to make contact with a station that has a
permanent entry in the table, you don’t know if the station is actually
reachable (it may be switched off). In consequence, NOS may waste a
lot of air-time repeatedly trying to make contact with a non-existent
station.

239

28: IP ROUTING

AX.25 routing, as described in the Chapter 26, is a form of source
routing; that is, the entire route to the target is pre-defined at the
sending end (the source). At the IP and NET/ROM layers, however,
the sending end doesn’t need to know the entire route. Instead, each
station along the route forwards packets in roughly the right direction
towards the target, on the assumption that the next station down the
line does likewise.

This method of routing gives us much more flexibility in getting
packets to their destination. The packet radio network is an ever-
changing and unpredictable environment — nodes appear and
disappear overnight — and so it’s unrealistic to try to plan every hop
along the route. Instead, we let individual stations along the way
decide how to forward our packets, hoping that those stations can
handle local circumstances which we may be blissfully unaware of!

Thus the only likely situation where we need to use AX.25 routing is
for local links via digipeaters to neighbouring NOS (IP) stations. Once
our packets reach a NOS neighbour, routing will then take place at the
IP layer.

This chapter is concerned with how packets are routed at the IP layer.
This means setting up the IP routing table to make sure that when NOS
receives a packet addressed to another station, it knows where to
forward it to.

IP Forwarding

It’s important to recognise which packets NOS will forward. By
default, when not actually transmitting, NOS listens on the channel,
and will hear packets from all and sundry, addressed to all and sundry.
For forwarding purposes, NOS will ignore all of these packets unless

240 IP Routing @@

they happen to be broadcasts packets, or they are addressed to itself ar
the AX.25 level.

AX.25 ‘ P
fo from from to

NS9KEN-5 [NS9BOB-5

ni77.
Fig 28-1: The route add defauit entry in the IP routing table
handles all direct connections; i.e. all connections to stations
within radio range and not passing through intervening IP
gateways (routers).

For example, in Fig 28-1, the AX.25 destination address is
NS9KEN-5, so only Ken’s station will act on the packet — any other
stations which hear the packet will ignore it. When the packet passes
up to the IP layer at Ken’s station, NOS discovers that the IP
destination address is ns9ken, so the packet has reached the end of the
line. NOS then passes the packet up to the higher protocol layers for
further processing in Ken’s system.

The generic command to add an entry into the IP routing table is
route add, and the entry for this particular scenario is very simple:

route add default tneO

That is, by default all IP packets are transmitted via the tncO interface
and are intended for local stations within radio range. If you only
want to talk to local NOS stations within radio range, and forwarding

@© 1P Routing

241
by other stations is not required, this is the only entry you’ll need in the
IP routing table.

Forwarding packets via an IP Gateway

When the target system is not within local radio range, it will be
necessary for an intermediate station, called an IP Gateway (or router)
to forward your traffic in the right direction. Fig 28-2 shows this
situation.

AX.25

P

from | from fo

HH

from !rom

roufe add defou# rncO
roure add nszob mco ns?ken i

!
T

Fig 28-2: Forwarding via an [P gateway. The routing tables at
ns9bob and ns9liz contain an entry to route traffic for each other
via the gateway (nsSken).

242 IP Routing @@

Bob wants to contact Liz, but as she is out of direct range, Bob uses
Ken’s station as a gateway. To launch packets on their way to Liz,
Bob needs this line in qutoexec.nos:

route add ns?2liz tncl ns9ken

This tells NOS that the eventual target is ns9liz, but that the packets
must initially be addressed to ns9ken. That is, the last parameter on the
line (ns9ken) is the IP hostname of the gateway, which must be within
radio range. Using ARP, NOS will discover that the AX.25 address of
ns9ken is NSOKEN-5, and will use this address in the AX .25 “to” field.

When a packet for Liz arrive at Ken's station, it passes as usual up to
the IP layer. Here, NOS discovers that the IP destination address is
ns9liz. As Liz is within radio range of Ken, the existing default IP
routing table entry is all that’s required, so NOS just inserts Liz’s
callsign (NS9LIZ-5) into the AX.25 “to” field and sends the packet to
her.

Liz also needs the following entry in her autoexec.nos:

route add ns9bcb tnel nsSken

so that if she wants to talk to Bob, her packets will go via ns%en.

To summarise then, if a target station is out of direct radio range, you
need to set up an IP routing table entry which incorporates the
hostname of the next-door NOS station designated to forward your
packets towards the target.

Multiple Hops

Taking this a stage further, it should now be clear how to forward
packets through a chain of gateways. For example, in Fig 28-3, Bob is
sending a packet to Jim via Ken and Liz. To do this, Bob needs
another entry in his IP routing table:

route add ns9jim tncO0 nsSken

@ ©® P Routing

243

This causes the packet to be addressed to NS9KEN-5. When the
packet arrives at Ken’s system, it has to be forwarded on towards Jim,

but (unlike Liz), Jim is not within range.

from .1 from

AX.25 ‘ 1P
from from

o= o o]

Cnowe
: NS9HZ-5

& EEIE.':.'EEEEE?K‘&‘-@

AX.25

from !fom

-

roure add default incO
Hroute add ns9ken c0 nsliz

route add ns?bob r‘ncO ns9liz

R

ni 76

Fig 28-3: Muiti-hop Forwarding. Each station needs IP routing

table entries to forward to the next gateway.

244 IP Routing @ ©

So Ken needs this entry in autoexec.nos:

route add nsS$jim tncO ns’liz

to forward the packet to Liz.

When the packet arrives at ns9liz, her default IP routing table entry is
sufficient for the final leg of the journey to ns9jim.

In other words, as each station along the route forwards a packet, the
AX.25 destination address in the packet is the address of the next
station down the line, and this changes as it passes through each
station. On the other hand, the IP destination address is the ultimate
destination of the packet, and this remains the same all the way down
the line.

Locally Generated Packets

Not only do all of the above forwarding rules apply when a station
receives packets addressed to it at the AX.25 layer, they also apply
when packets originate from within the station itself (for example,
during an FTP transfer started at the keyboard). Thus when Ken gives
the command ftp ns9jim, for example, NOS will forward his packets to
Liz, on the assumption that Liz will then send them on to Jim.

Other IP Routing Table Commands

To see the current state of the IP routing table, use the route command:

net> roufe

Dest Len Interface Gateway Metric P Timer Use
nsSliz 32 tncl ns%ken 1 man 3
ns9%jim 32 tncl ns%ken 1 man 4
default v} tncl 1 man 5

The route add commands described earlier place entries in the IP
routing table which NOS will include in routing table broadcasts if you
have enabled broadcasting (e.g. with the RIP protocol). If you want to
add some private entries that you don’t want broadcast to the outside

® 0 P Routing 245

world, you can use the route addprivate command instead. For
example, to add an entry for a LAN station via interface en0:

route addprivate lanbox en0

In this case, the route command will display the entry with a capital P
to show that it is private:

net> route

Dest Len Interface Gateway Metric P Timer Use
lanbox 3z enl 1 P man 3

To remove an entry from the IP routing table, use the route drop
command. For example:

route drop ns3ken

Routing to a group of Stations

In practice you’ll probably find that many of the remote stations you
want to contact have similar IP addresses, and that most of them are
contactable via just one or two gateways. See Fig 28-4.

NOS provides a convenient shorthand method of setting up the IP
routing table for this situation. For example, the IP addresses for Liz
and Jim are 44.199.45.17 and 44.199.45.18 respectively. The first 24
bits of their addresses are the same, and Bob forwards traffic for both
Liz and Jim through ns9ken. So instead of having separate entries for
Liz and Jim, Bob could set up an address mask for all addresses whose
first 24 bits correspond to 44.199.45. The mask is given a meaningful
name such as region45, and is defined in domain. txt:

regiond5.ampr.org. IN A 44.199.45.0

Then Bob can use this mask in IP routing table entries in autoexec.nos.
For example:

route add regiond45/24 tncO0 ns9ken

The /24 part of the target address indicates that only the first 24 bits of
this address are significant. Liz’s address and Jim’s address both
match this mask, so packets for them will be routed to nsSken.

roufte add region45/24 nc0 nsPken
route add nsPsue tncO ns?poL

regiond5 IN A 44.199.45.0
I

ni 79

Fig 28-4: The route add region45/24 command in autoexec.nos
handles routing of packets to Liz and Jim via Ken. A separate
entry is required for Sue, to force her traffic to be routed via Pam
(otherwise it would also pass through Ken).

®©® P Routing 247

The route command shows this IP routing table entry as follows:

net> route

Dest Len Interface Gateway Metric P Timer Use
regionds 24 tneo ns9ken 1 man 3

Note that the Len (mask length) column now contains 24, instead of the
usual 32,

Overriding General Routes

Another complication: what happens if Bob also wants to forward to
ns9sue, whose IP address is 44.199.45.19, via ns9pam? (See Fig 28-4
again). If Bob only has the region45/24 entry as above, Sue’s traffic
will also go via ns9ken, not via ns9pam as intended.

The workaround here is to put a specific entry for Sue in aufoexec.nos:

route add ns9sue tnel nsSpam

The routing table now looks like this:

net> route

Dest Len Interface Gateway Metric P Timer Use
ns9sue 32 tncO ns9%pam 1 marn 1
regiond5s 24 tnco ns9%ken 1 marn 3
default 0 tncl 1 man 5

Because Sue’s entry refers specifically to her full 32-bit IP address,
this takes precedence over the region45/24 entry.

In general, then, when NOS refers to the IP routing table to see how to
route to a particular station, it attempts first to match the destination
address against full 32-bit addresses in the table. If no match is found,
NOS then takes the next lowest bit mask size in the table (24 bits in
this example) and attempts the match again. This process continues
with progressively shorter mask sizes until cither a match is found, or
until no match is found.

248 IP Routing ©®©

This latter case (i.e. no match at all) corresponds to the default entry in
the routing table; i.e. this entry has a bit mask size of zero. Thus if
there is no match, the packet will not be forwarded to another gateway,
and will only be heard by local stations within radio range.

TheNet X1G

Until recently, the only practical way of forwarding IP packets has
been to use NOS in the way just described. This relies on there being
an IP route from end to end.

If there are any gaps in the route (i.e. no IP gateways to forward the
traffic), it then becomes necessary to use NET/ROM links to bridge the
gaps — in this case, IP packets are encapsulated inside NET/ROM
packets whilst traversing the NET/ROM network, then decapsulated
when they reach another IP gateway.

The way to use NET/ROM to do this is described in the next chapter.

A new development which has removed the need to descend to the
NET/ROM level is the emergence of version X1G of TheNet, the
NET/ROM “work-alike”. See Fig 28-5 opposite.

This version of TheNet contains an IP router as well as a NET/ROM
router, making it possible for NOS stations to use the NET/ROM
network without encapsulating IP packets inside NET/ROM packets
first. Version X1G of TheNet is now popping up all over the place, so
it’s likely that NET/ROM encapsulation of IP packets will virtually
disappear in the fairly near future.

i .:_:_ s -“\‘
441994775

44.199.41.1
NS9BOB-5

#TOM:NSITOM-6.

ni 80

Fig 28-5: Version X1G of TheNet supports both IP and NET/ROM
forwarding. This allows NOS stations to communicate with each
other via the NET/ROM network, without having to encapsulate
IP packets inside NET/ROM packets.

251

29: NET/ROM ROUTING

Everything we have covered thus far will be enough for setting up your
AX.25 and IP routing tables, provided that you have a next-door
neighbour who understands TCP/IP, If this is the case, and you are
fortunate enough to live in an area where TCP/IP is well established,
you should have no difficulty in IP routing, and you can skip this
chapter on NET/ROM.

If, on the other hand, your nearest TCP/IP neighbour is out of direct
radio range (or more than one or two digipeater hops away), you may
need to consider using NET/ROM to transport your TCP/IP traffic.
To do this, you need to configure NOS to act as a NET/ROM node.

You can configure NET/ROM to run as:

e a NET/ROM end-node, or
e a NET/ROM switch

When NET/ROM is configured as an end-node (see the top part of Fig
29-1), you are simply using it as a means of getting into the NET/ROM
network, and thence into the AMPRnet, with the sole intent of
transporting your own IP traffic. This is the probable way that you’ll
use NET/ROM under NOS.

When NET/ROM is configured as a switch (see the middle of Fig
29-1), you will be letting your station participate fully in the
NET/ROM network, forwarding NET/ROM traffic for other people
alongside your own NET/ROM and IP traffic. This is not really
recommended, as third-party traffic through the switch may place an
unacceptably high load on your NOS system.

Once NET/ROM is set up, you can then use it to transport your IP
packets across the NET/ROM network to other TCP/IP stations; i.e. IP
packets are encapsulated inside NET/ROM packets, which pass over
the NET/ROM network as data — the NET/ROM network is unaware

252 NET/ROM Routing @ @

that it is carrying IP traffic. When these NET/ROM packets arrive at
their destination, NOS strips away the NET/ROM envelope, and

passes the remaining IP data to the upper protocol layers for further
processing.

END-NODE END-NODE

netfrom verbose

off

ni71_|

Fig 29-1: The netrom verbose off command configures NOS to
run as a NET/ROM End Node. In this case, NOS only uses
NET/ROM to encapsulate IP packets for transport over the

NET/ROM network. The nefrom verbose on command

configures NOS to function as a network switch; i.e. it

participates fully in the NET/ROM network. This is not
recommended if traffic levels are likely to be high.

©®® NET/ROM Routing

NET/ROM Initialisation

To tell NOS that you wish to use NET/ROM forwarding, you need
several initialisation commands in qufoexec.nos:

attach netrom
start netrom
mode netrom ve

Let’s look at each of these commands.

attach netrom: This command tells NOS that it is to encapsulate
higher level protocol packets inside NET/ROM packets when
communicating with other NET/ROM stations.

start netrom: This starts the NET/ROM server (listener), so that
other NET/ROM nodes can connect to this station.

mode netrom: This command sets the default mode for the packets
which pass between this station and other NET/ROM nodes. This
will usually be ve (virtual circuit); i.e. there is an error-corrected
and flow-controlled link.

NET/ROM End-Node or Switch?

To set up your station as a NET/ROM end-node or a switch, you
should include commands like the following in autoexec.nos:

netrom verbose off
netrom benodes tnel

netrom verbose: This command specifies whether your NET/ROM
node is to act as an end-node (netrom verbose off) or as a swirch
(netrom verbose on).

When operating as an end-node, your NET/ROM broadcasts will
contain only your own NET/ROM calisign and alias; this is
required by other stations in the NET/ROM network so that they
know how to contact you,

When operating as a switch, NOS broadcasts the whole of your
NET/ROM routing table to the NET/ROM network.

254 NET/ROM Routing @ @

netrom benodes: This command broadcasts the current state of the
NET/ROM routing table onto the network (just your own callsign
and alias if verbose is off, or the whole of the table if verbose is
on).

Thus when NOS starts up, your NET/ROM neighbours will know
of your existence right away (To make sure of this, it’s a good idea
to include two or three netrom benodes commands in aufoexec.nos,
to ensure that your neighbours hear you). NOS will also re-
broadcast the NET/ROM routing table at regular intervals
thereafter; see the netrom nodetimer command below.

Timers and Counters

For NET/ROM, you need to set up a number of counters and timers.
Most of the values assigned to these variables are system defaults
which work for most situations, and it’s unlikely you’ll need to change
them.

Thus in autoexec.nos:

netrom acktime 3000
netrom choketime 180000
netrom derate on
netrom irtt 15000
netrom minquality 10
netrom nodetimer 900
netrom cbsotimer 1200
netrom glimit 2048
netrom retries 10
netrom timertype linear
netrom ttl 10

netrom window 4

netrom acktime: This command sets the NET/ROM acknowledge
timout period, in milliseconds. This is analogous to the AX.25 T2
timer.

netrom choketime: This specifies the time (in milliseconds) to wait
before breaking a send choke (flow control) condition.

netrom derate: When derate is set to off, NET/ROM will only try
alternative routes if a link completely fails. When derate is on, and
retries on a particular route occur, the NET/ROM quality for that

@ © NET/ROM Routing 255

route is progressively reduced. If the quality falls below that of
another alternative route to the same destination, the alternative is
used instead.

netrom irtt: This sets the Initial Round Trip Timer (in milliseconds).

netrom minquality: This sets the minimum acceptable quality of
incoming NET/ROM routes. If the quality of a route is less than
this value, it is not placed in the NET/ROM routing table (unless
promiscuous is set to on; see below).

netrom nodetimer: This specifies the interval in seconds at which
this station will broadcast the NET/ROM routing table to the
NET/ROM network. If netrom verbose is set to off, only your own
callsign and alias are broadcast. If verbose is on, the whole of the
table is broadcast.

netrom obsotimer: This sets the obsolescence timer (in seconds) for
NET/ROM routing table entries received in broadcasts from other
NET/ROM stations. This indicates how long any received entries
remain alive in the NET/ROM routing table.

A new or refreshed entry in the table has a lifetime of 6 times the
obsotimer value. Thus, for example, if the obsotimer is set to 1200
seconds (20 minutes), entries will disappear after 2 hours (i.e.
6 x 20 minutes) if they are not refreshed.

Note that your own entries (added with the netrom route add
command) remain in the NET/ROM routing table indefinitely,
unless you forcibly remove them with the netrom route drop
command.

netrom qlimit: This sets the maximum length (in bytes) of the
NET/ROM receive queue. If this queue fills up, NET/ROM sends
a choke request to suspend incoming data flow.

netrom retries: This sets the maximum number of connect and
disconnect retry attempts.

netrom timertype: The timertype command lets you set the
NET/ROM timer backoff mode. You can set it to linear or
exponential; the linear setting is recommended for an amateur radio
environment.

256 NET/ROM Routing @ ®

netrom ttl: This specifies the NET/ROM Time-to-Live; i.e. the
maximum number of hops a packet can take before it is discarded.
This prevents packets circulating for ever in an endless loop.

As a packet passes through a NET/ROM node, its TTL counter is
decremented by one, and when the counter reaches zero the packet is
discarded.

netrom window: This sets the maximum NET/ROM window size.
This is the largest negotiable send and receive window.

Names and Addresses

To see how to identify your station to other NET/ROM users, let’s look
at the scenario in Fig 29-2. Bob and Tom are NOS stations without
immediate TCP/IP neighbours, but they are each within range of
conventional NET/ROM nodes (NROAAA and NR9ZZZ respectively).

Bob needs the following commands in his qufoexec.nos (Tom needs
similar commands, of course):

netrom call NSSBOB-6
netrom alias #BOB
netrom interface tnc0 192

netrom call: This specifies the AX.25 callsign to be included in
NET/ROM packets. The callsign will usually be the same as the
ax25 mycall, but it doesn’t have to be.

netrom alias: This is the NET/ROM alias for this station, and may be
up to six characters long. There are no hard and fast rules for NOS
station aliases — except, of course, they must not exist elsewhere
on the NET/ROM network, otherwise some interesting routing
problems may arise!

In some parts of the world the first letter of the alias is the #
character (e.g. #BOB), whereas in other areas the alias starts with
the letters IP, followed by the last part of the IP address in
hexadecimal. For example, a station with IP address 44.199.32.10
could have the NET/ROM alias IP200A — i.e. 200A hexadecimal
corresponds to 32.10 decimal.

In any case, it’s a good idea to make sure that aliases for NOS
stations have an obviously different format from regular NET/ROM

@@ NET/ROM Routing 257

aliases, so that ordinary NET/ROM users can distinguish between
them.

X

netrom call NS9BOB-6
nefrom alias #80OB
netrom interface inc0 192

ni 72
Fig 29-2: Bob and Tom communicate via the NET/ROM network,
using the NET/ROM software buiit in to NOS.

258 NET/ROM Routing @ @

netrom interface: This command specifies an interface through
which NET/ROM packets pass. The value 192 is the quality
coefficient (in the range 0-255) which this station contributes to the
calculation of individual route qualities; 192 is a sensible value for
1200 bps links.

Note that in older versions of NOS, the netrom call and
netrom alias commands do not exist. In that case, the netrom call
is the same as the ax25 mycall, and the NET/ROM alias is included
as a parameter in the netrom interface command. For example:

netrom interface tnec0 #BOB 192

Filtering Incoming NET/ROM Broadcasts

The NET/ROM routing table may contain permanent entries which you
place there yourself (described below), plus temporary entries extracted
from incoming NET/ROM broadcasts from other stations.

Normally you won’t be interested in broadcasts having a low quality
value — these entries will probably relate to long or unreliable routes.
To control which incoming broadcasts you will or won’t accept, you
can include commands like the following in autoexec.nos:

netrom promiscuous off
netrom nodefilter mode accept
netrom nodefilter add WR9AAA tncO

netrom promiscuous: When set to off, NET/ROM will ignore any
incoming routing table broadcasts whose quality is less than the
value set up in the netrom minquality command. When set to on,
NET/ROM will accept all incoming NET/ROM routing table
entries (irrespective of any nodefilters you may set up).

netrom nodefilter mode accept: This command allows you to build a
list of NET/ROM nodes whose NET/ROM routing table broadcasts
you are willing to accept. The list itself is built with individual
netrom nodefilter add commands (see below).

On the other hand, you may wish to accept broadcasts from all
stations except for one or two, in which case you can use the
command netrom nodefilter mode reject instead. In that case, the

®©® NET/ROM Routing 259

netrom nodefilter add list specifies which NET/ROM stations you
don’'t want to hear from.

Yet another alternative is to say netrom nodefilter mode none, in
which case there will be no filtering; i.c. you want to listen to
NET/ROM broadcasts from all other stations.

netrom nodefilter add: This command specifies a NET/ROM station
to be added to the metrom nodefilter accept or reject list. You
need a separate netrom nodefilter add command for each station in
the list.

Note that routing table broadcasts from stations in the list are either
accepted or rejected, depending on the netrom nodefilter mode,
described above; you can’t accept some stations and reject others.

If you wish to remove a station from the filter list, you use the
netrom nodefilter drop command. For example:

netrom nodefilter drop NRSAAA tncO

Permanent Routing Table Entries

To communicate with other NOS stations over NET/ROM, you need to
add entries to the IP routing table, the ARP (Address Resolution
Protocol) table and the NET/ROM routing table. For example, Bob’s
entries will look like this:

route add region47/24 netrom ns%tom
arp add nsStom netrom NS9TOM-6

netrom route add NRA NRSAAA tncO 192 NRSAAA
netrom route add #TOM MNS9TOM-6 tncO 192 NROAAA

route add ... netrom: An IP route add command with the netrom
parameter is needed for every IP connection that is to be made over
NET/ROM. As Tom happens to be in Region 47 (his IP address is
44.199.47.75), it’s convenient to route all Region 47 traffic to him
over NET/ROM.

260 NET/ROM Routing © @

This requires a suitable entry for Region 47 in domain. txt:

regiond7.ampr.org. IN A 44.19%.47.0

(If Tom were the only station in Region 47, then Bob could use the
specific command route add ns9tom netrom instead).

arp add ... netrom: The ARP table is usually used to associate IP
addresses with link addresses (such as AX.25 callsigns), as
described in Chapter 27. However, when using NET/ROM, the
arp add ... netrom command associates IP addresses with entries in
the NET/ROM routing table instead.

netrom route add: This is the command to put an entry into the
NET/ROM routing table. At least two entries are required here.
The first entry is for the next-door neighbouring NET/ROM node
(NRYAAA), and the second is for the remote node (NS9TOM-8).

The first two parameters in the netrom route add command (NRA
and NROAAA in the first example) are the NET/ROM alias and
AX.25 callsign of the NET/ROM node, and the last parameter
(NRSAAA) is the AX.25 callsign of the next-door NET/ROM
neighbour to which NOS will send the NET/ROM traffic for that
node.

Note that in the second example, the first two parameters apply to
the NET/ROM node inside Tom's NOS system, not to the node
NRO9ZZZ at the end of the ordinary NET/ROM chain.

What’s in a NET/ROM Packet

To see how NOS builds a NET/ROM packet, let’s follow what
happens when Bob gives the command telnet nsSben (Fig 29-3). To
reach Ben, the telnet connection request has to go via the NET/ROM
network to Tom, then Tom will forward it at the IP level to Ben.

Starting at the top of Fig 29-3, NOS gets Ben’s IP address from
domain.txt (44.199.47.76) and then looks in the IP routing table for an
entry for ns9ben. There isn’t one, but the first 24 bits of Ben’s IP
address do match the region47/24 entry, so NOS determines that the
request has to be routed to ns9tom via NET/ROM.

@O NET/ROM Routing 261

f Ueb felnet ns9ben
: 7\

=TT / autoexgc.nos
~wroute add regiorfd7/24 netrom, nstomn

arp add ns nefrom NS9TON-6
| _netrom r add #TOM NSTOM:6 ncO 192 NRIAAA

——

ns®ben 44.199.47.76
regiond7 44.199.47.00

reg.'on47/24 nefrom ns%tom :
T R T ;
3 ns'?fom nefrom NS9TOM-6 |

il e
#TOM:NSITOM-6. NRIAAA

M Routing Table

AX 25 NET/ROM
NS9BOB-5 |[NS9BOB-6 |NSPTOM-6 -
'

ax25 mycall NS9BOB-5
nefrom call NS9BOB-6
ip address nsYbob

ni 70_]

Fig 29-3: The AX.25, NET/ROM and IP addresses in a NET/ROM
packet.

262 NET/ROM Routing © ®

NOS then looks in the ARP table for a NET/ROM entry for nsStom,
and finds that Tom’s AX.25 callsign is NS9TOM-6. Finally, NOS
looks in the NET/ROM routing table for an entry for NS9TOM-6, and
finds that traffic for Tom is to be sent to the local NET/ROM node
NROAAA (which knows how to forward it on towards Tom).

Thus the telnet connection request packet which leaves Bob’s system
contains a lot of address information for use at the three network levels:
AX 25, NET/ROM and IP (again see Fig 29-3):

¢ The AX.25 destination and source fields apply to the local AX.25
connection between NS9BOB-5 and NROAAA.

e The NET/ROM source and destination fields apply to the
NET/ROM nodes inside Bob’s and Tom’s NOS systems.

e The IP source and destination fields apply to Bob’s and Ben’s IP
addresses.

When this packet passes through an ordinary NET/ROM node, the
node simply forwards it on to the next NET/ROM node, ignoring the IP
information encapsulated within the packet. Eventually the packet
reaches the NET/ROM destination (NS9TOM-6), where the IP
information is extracted and passed up to the IP layer in Tom’s system.

Because the packet is addressed at the IP level to Ben, Tom now
forwards it to Ben (Tom’s route add default tnc0 command handles
this). Finally, when the packet arrives at ns9ben, it will pass up to the
TELNET server and the connection will (at last!) be established.

Ordinary NET/ROM connections

With NET/ROM routing in place, you can of course use NOS to make
connections to ordinary NET/ROM nodes, using the netrom connect
command. For example, Bob can define a NET/ROM route to
NROZZZ in autoexec.nos:

netrom route add NRZ NRSZZZ tnc0 192 NRSAAA

then give the keyboard command to connect to that node:

H net> netrom connect NRZ I

263

30: GOING LIVE: PREPARING THE FILES

When you feel that you’re familiar enough with NOS to use it in a live
on-air environment, you need to modify many of the control files
already described, before turning on the radio. Otherwise you’ll pop up
on the channel as NS9BOB, and then everyone will know which book
you 've been reading ..!

This chapter summarises the changes that you need to make. In several
instances you may delete a file altogether if you don’t need it — you
still have a read-only master copy in /public/masters to fall back on if
you change your mind.

The Files to Change

/alias: (see page 311) Set up a list of aliases appropriate for your
environment (or delete the file altogether if you don’t need it).

/domain.txt: (pages 318-319) Replace domain.txt with a file
containing real hostnames and IP addresses. To minimise address
seek times, put the most frequently contacted stations at the front of
the file, and remove all unnecessary comments. Make sure that the
loopback address is included.

/ftpusers: (pages 322-323) Add real user entries to this file. For all
users having access to sensitive directories, assign a login name
which is longer than 6 characters, to prevent access by ordinary
AX .25 stations. Check this file very carefully, and test it off-line
with the bbs and ftp loopback commands, to make sure that nobody
can do dangerous things to your filesystem.

/net.rc: (page 324) Remove this file if you don’t need it. Otherwise
replace the existing entries with real parameters.

/popusers: (page 326) Remove this file if you don’t need it.
Otherwise replace the existing entries with real names/passwords.

264 Going Live: Preparing the Files ® ©

/signatur: (page 327) Change the text in this file to suit your own
environment. Note that this file is used by PCEIm, which appends it
to the end of every message which you send. The file is ignored by
the built-in NOS BBS.

/autoexec.nos: (pages 312-317) Change the following lines, or
comment them out with the # character:

motd

domain addserver
ip address
hostname

ax25 mycall

ax25 betext
ifconfig tncd description
netrom call
netrom alias
netrom route add
netrom nodefilter add
arp add netrom
route add

ax25 route add
third-party

smtp gateway
mbox motd

mbox gth

mbox zipcode
mbox fwdinfo
mbox haddress
mbox password
popmaill addserver
popmail kick

Remember that you can create many different aufoexec.nos files,
with different names. Then you can specify which particular file to
use in STARTNOS.BAT (or even create several versions of
STARTNOS. BAT files for different scenarios).

/finger/sysop: (page 329) Delete this file, and replace with one or
more files for users on your system. Filenames in this directory do
not have an extension.

/scripts/kisson.dia: (page 324) If you permanently run your tnc in
KISS mode, this script is superfluous. Otherwise change:

MYCALL
MID

©® ©@ Going Live: Preparing the Files 265

/spool/areas: (page 311) Change this file as required. N.B. The first
character on all comment lines must be a space.

/spool/forward.bbs: (page 321) Remove this file altogether if you are
not planning to forward mail onto the AX.25 PBBS network.
Otherwise replace the existing entries with real data.

/spool/rewrite: (page 327) Remove this file altogether if you don’t
need it. Otherwise replace the existing entries with real data. Test
the file thoroughly with the radio switched off, to make sure that
addresses are replaced correctly,

/spool/signatur/ns9bob.sig: Delete this file. Replace with similar .sig
files for every NOS BBS login username (if you really need
signatures, that is). N.B. The built-in NOS BBS uses these files;
PCEIm does not.

NANOSENV.BAT: (page 325) Change the timezone (TZ) variable to
the local timezone abbreviation; e.g. SET TZ=PST

NAPCELM.RC: Change the parameters as required if you plan to use
PCEIm.

The First Tests

Having made the necessary changes to all these files, start NOS with
the radio switched off, and make sure that no errors are reported during
startup, If strange things happen when NOS reads aufoexec.nos, it
may be useful to start up with the -v (verbose) option, to get a detailed
trace of what happens at startup time. For example:

ﬂ N:\> NOS_20M -V /autoexec.nos !I

Then try sending mail to yourself, and transferring files to and from
yourself with ftp. In fact, try everything described so far in this book,
to make absolutely sure that NOS is behaving.

If everything is looking good, you’re ready to go live!
In fact, you can now, atlast .o

266 Going Live: Preparing the Files ©® 0

Curn your radic on ...

267

31: HANDS ON — AX.25

This chapter describes some recommended on-air tests which check
that the tnc is working, and that basic AX.25 communication is
possible with NOS. You need to make AX.25 work properly before
you attempt to use TCP/IP — if AX.25 doesn’t work, TCP/IP won’t
either.

We'll continue to use NS9BOB’s parameters here, but you’ll now be
using real callsigns etc.

Start NOS as usual, and then try some commands to check that AX .25
is working.

The trace Command

One of the most useful commands in NOS is the trace command. This
lets you monitor every incoming and/or outgoing packet at various
levels of detail. You can display the trace output on the screen for
immediate viewing, or direct it to a file for later analysis.

The syntax of the trace command is:

|! trace [interface [off | BTIO flags | tracefile]]] II

For example:

|| net> trace tncO 0211 /dumplirace/trace123 ||

The digits 0211 here are the BTIO (Broadcast/Trace/Input/Output)
flags. The full list of flags is as follows:

268 Hands On — AX.25 & @

B=0: Display broadcast packets

B=l: Only display packets addressed to this node
T=0: Decode protocol headers, but no data displayed
T=1: Decode protocol headers, and display data
T=2: Display decoded headers and entire packet data
1=0: Ignore input packets

I=1: Display input packets

0=0: Ignore output packets

0=1: Display output packets

Thus, in the example, 0211 means:

B=0: Display broadcast packets
T=2: Display decoded headers and entire packet data
I=1: Display input packets
O=1: Display output packets
You can omit leading zeros — 211 means the same as 0211.

For convenience in the NOSview distribution, five function key
combinations are pre-programmed for tracing packets:

F9 trace tnc0 0211 to the screen (all packets)
SHIFT-F9 trace tnc0 0211 to a file (all packets)
CTRL-F9 trace tnc0 0011 to the screen (headers only)
ALT-F9 trace tnc0 0011 to a file (headers only)
ALT-F10 trace tnc0 off

Try CTRL-F9 (or trace tnc0 11). You should see something like
Fig 31-1 on the screen (for clarity, transmitted packets are shown
outdented in italic text).

Here you can see the header of every packet, showing how NOS
decodes the packet at each protocol level (AX.25, IP, ARP, ICMP etc).

If you want to save the trace in a file, hit ALT-F9, and add a filename
to the end of the command (alternatively, give the command
trace tnc0 11 /dump/trace/filename).

To stop tracing at any time (either to the screen or to a file), hit
ALT-F10, or give the command trace tnc0 off.

©®©® Hands On — AX.25 269

Sun Sep 06 07:18:04 199%2 - tncD recv:

KISS: Port 0 Data

AX25: GBTKHW-5->QST UI pid=ARP

ARP: len 30 hwtype AX.25 prot IP op REQUEST
sender IPaddr 44.131.5.68 hwaddr GB7KHW-5
target IPaddr 44.131.19.30 hwaddr

Sun Sep 06 07:18:13 1992 - tncl recv:

KISS: Port 0 Data

A¥25: GICDK-5->G4HPE-5 UI pid=IP

IP: len 44 44.131.5.86->44.131.19.13 ihl 20 ttl 24 prot TCP
TCP: 1027->3600 Seq xf2d72000 SYN Wnd 1024 MSS 512

Sun Sep 06 07:18:19 1992 - tnc0 sent:
KISS: Port 0 Data
AX25: NS9BOB-5->ID UI pid~Text

Sun Sep 06 07:18:25 1992 - tnch recv:

KISS: Port 0 Data

AX25: G4HPE-5->G7CDK-5 UI pid=IP

IP: len 56 44.131.19.96->44.131.5.86 ihl 20 ttl 9 prot ICMP

ICMP: type Unreachable code Host

ReturnedIP:len 44 44.131.5.86->44.131.19.13 ihl120 ttl 23 prot TCP
TCP: 1027->3600 Seq xf2d72000 Wnd 60192

Fig 31-1: A header trace (trace tnc0 11).

A Full Trace

The trace tnc0 11 command just described usually gives enough detail
about what’s going on, but sometimes you may want to see every byte
in every packet, including the data.

To do this, hit F9, or give the trace tnc0 211 command. You will now
see something like Fig 31-2.

To save the trace in a file instead, hit SHIFT-F9, and add a filename to
the end of the command (alternatively, give the command
trace tnc0 211 /dump/trace/filename).

Needless to say, a full trace can produce an enormous amount of
output in a very short time if the channel is busy. Just remember to
turn the trace off with ALT-F10, or give the trace tnc0 off command,
when you’ve finished. Otherwise you may find that everything stops
because the disk has completely filled!

270 Hands On — AX.25 @@

Sun Sep 06 08:35:21 1%92 - tncl recv:

KISS: Port 0 Data

A¥25: G4HPE-5->GBKVP-5 UI pid=IP

IP: len 40 44.131.19.96->44.131.,19.196 ihl 20 ttl 9 prot TCP
TCP: 3600->102Z8 Seqg %0 Ack x2cl109001 ACK RST Wnd 0

0000 008e 7096 acal 406a Be68 90a0 Bad40 6b03 ..p., Bji.h. .8k.

0010 cec45 0000 2802 ObOO 0008 062f 9c2c B313 LE..(....../. ;..
0020 602c 8313 c40e 1004 0400 0000 002¢ 1090 “,..D........ powe
0030 0150 1400 0061 8100 00 - PP B

Sun Sep 06 08:36:23 1992 - tncl recv:

KISS: Port 0 Data

A¥X25: G3NRW-5->ID UI pid=Text

0000 0092 8840 4040 40e0 Be66 9%cad aed0 6b03E@EEE" .f.5.E8k.
0010 £047 334e 5257 2d35 2054 4350 2£49 5020 pG3NRW-5 TCP/IP
0020 2434 2e31 3331 2e35 2e32 205b 4861 726c 44.131.5.2 [Harl
0030 696e 6774 6f6e 2c20 4265 6473 5d ington, Beds]

Sun Sep 06 0B:36:23 1992 - tncl recv:

KISS: Port 0 Data

A¥25: GBTKHW-5->QST UI pid=ARP

ARP: len 30 hwtype AX.25 prot IP op REQUEST

sender IPaddr 44.131.5.68 hwaddr GBTKHW-5

target IPaddr 44.131.19.30 hwaddr

0000 00a2 abaB 4040 40eD BeB4 6e96 90ae 6b03 . "&(BRE ..n...k.
0010 ed00 0300 cc07 0400 0l8e 846e 9690 ae6a M...L...... o TR
0020 2ecB83 0544 0000 0000 OOOOD 002c B313 le pr eI S ¢

Fig 31-2: A full trace (trace tnc0 211)

In Fig 31-2, the data in each packet is shown in bold text, in
hexadecimal, in blocks of 16 bytes. The numbers in the left-most
column (0000, 0010, 0020 etc) are block numbers.

To decode the data, you'll need the relevant protocol documentation
describing the details of the data formats. Appendix 6 contains a list of
suitable references.

As an example, let’s decode part of the last packet shown above (the
packet sent by GB7TKHW-5 to QST). See Fig 31-3.

The first line of this packet reads:

00a2 a6aB 4040 40e0 BeB4 6e56 S0ae 6b03 I

©® Hands On—AX.25 271

AX.25

destination source

00 (a2 a6 a8 40 40 40 e0 |8e 84 6e 96 90 ae 6b |03

(rest of the packet)

ni 87

Fig 31-3: The first 17 bytes of a packet.

The first byte (00) is the KISS fype byte. Type 00 means that this is a
data block.

The next 7 bytes (a2 a6 a8 40 40 40 e0) are the AX.25 destination
address, left-shifted by one bit. Appendix 4 contains a list of these left-
shifted codes. Thus a2 means Q, a6 means S, a8 means T, and 40
means SPACE. Hence the packet is addressed to QST (the AX.25
broadcast address). The last of these 7 bytes (e0) contains the SSID.

The next 7 bytes (8e 84 6e 96 90 ae 6b) contain the AX.25 source
callsign and SSID, in this case GBTKHW-5.

The last byte on the first line (03) is the AX.25 control field; this is a
UI (Unnumbered Information) frame. .

The second line reads:

“ cd00 0300 cc07 0400 018e B46e 9690 aeba “

The first byte (cd) is the AX.25 PID (Protocol ID) field. This byte
decodes as follows:

ce Internet Protocol (IP)

ed Address Resolution Protocol (ARP)
cf NET/ROM

£0 AX.25

272 Hands On— AX.25 ©©

So this is an ARP packet.

The next 2 bytes (00 03) are the ARP Hardware Code. The codes
you’re likely to come across are:

00 01 Ethernet
00 03 AX.25
00 06 IEEE

Thus this ARP packet contains AX.25 hardware addresses (callsigns).
These follow later in the packet, and are again in bit-shifted form.

The rest of the packet contains the usual ARP information, which is
summarised in the header part of the trace:

ARP: len 30 hwtype AX.25 prot IP op REQUEST
sender IPaddr 44.131.5.68 hwaddr GB7KHW-5
target IPaddr 44.131.19.30 hwaddr

Trying AX.25

Now that you can see things happening on the channel, you’re ready to
try a simple AX.25 connection. First, you may care to see who has
been on the channel recently, using the ax25 heard command (F4):

net> ax25 heard
Interface Station Time since send FPkts sent

tncod NSSBOB-5 0:00:00:07 K

Station Time since Pkts : Station Time since Pkts
heard rcvd heard rcvd

NS9BOB-5 0:00:00:07 2 : NRO9XYZ-5 0:00:00:13 2

BE7BBS 0:00:00:18 17 : NS9KEN-5 0:00:00:21 2

Choose an ordinary AX.25 station from the list and connect to it:

‘l net> connect tnc0 BB7BBS II

Remember to include the interface name (tnc0) in the command.

©®® Hands On — AX.25 273

The screen will clear, and a new session will start, with NOS trying to
make the connection. Assuming this is successful, you will see:

Trying BBTBBS on tncO...
R¥25 session 1 connected to BBTBBS

You should now be able to talk to BB7BBS in the usual way. (N.B. if
you connect to a PBBS as in this example, you may need to hit CR
once or twice to bring the connection to life).

Now hit F2, or return to the Session Manager and give the session
command. You will see:

S# Type Rcv-Q Snd-Q State Remote Socket
*1 143 RX25 0 0 Connected bb7bbs (BBTBBS on tne0)

To disconnect from the AX.25 station, give the disconnect command:

net> disconnect 1 II

Then hit CR again, to return to the AX.25 session. You should now
see the message:

AX¥25 session 1 closed: Normal
Hit enter to continue

Hit CR again. This will finish the session, and take you back to the
Session Manager,

If disconnect does not seem to work, you can try the reset command
instead:

|I net> reset 1 Il

This is a brute-force reset, and should always work.

274 Hands On —AX.25 © @

An AX.25 Connection to a NOS BBS

Now try another AX.25 connection, this time to a station known to be
running NOS:

|| net> connect tnc0 NSSKEN-S |I

Note that you use the AX. 25 callsign of the NOS station in the connect
command, not the IP hostname — vanilla AX.25 knows nothing about
IP.

With luck you’ll now be connected to NSO9KEN’s NOS BBS. Because
you used AX.25, you won’t be asked for a login name or password,
and you should be able to use the BBS immediately. Give the ?
command at the BBS prompt to find out exactly what commands are
available, and you’re away! When you’ve finished, give the B
command to say goodbye, then hit CR to terminate the session.

AX.25 Beacon Broadcasts

There are several command which control the broadcasting of AX.25
beacons (in autoexec.nos):

ax25 be tnel0 on
ax25 becinterval 840
ax25 bectext "NS9BOB-5 TCP/IP 44.191.41.1 [London]"

These commands enable the broadcasting of beacons on interface tnc0
every 840 seconds (14 minutes).

To force a beacon broadcast:

Il net> ax25 bekick tncl II

275

32: HANDS ON — NET/ROM

If everything has worked so far, and if you don’t need to use
NET/ROM to talk to NOS stations, you can skip this chapter.

On the other hand, if you are forced to use NET/ROM to transport
your IP traffic, you must first check that you can make ordinary
NET/ROM connections, and that your NET/ROM alias is propagated
properly to neighbouring nodes.

Making a NET/ROM Connection

You should first check your NET/ROM routing table, to make sure it
has correct entries:

net> netrom route
NRA: NRIARA #TOM:NS9TOM-6

NRA is a neighbouring conventional NET/ROM node, and #TOM is the
NET/ROM node built in to Tom’s NOS system.

Then use the netrom connect command to connect to the conventional
NET/ROM node:

I net> netrom connect NRA E

The screen will go blank, and NOS will attempt to make the
connection. Assuming it is successful, the screen will look like this:

Trying NROARA @ NROAAA...
NET/ROM session 1 connected to nra

276 Hands On — NET/ROM © &

You can check the connection with the session command (or F2):

net> session
S§ Type Rev-Q Snd-Q State Remote socket

*1 143 NET/ROM 0 0 Connected nra (NRSAAA @ NRIAAA)

Returm to the NET/ROM session (with CR), and give the
“N * ” command to get the NET/ROM routing table from NRA. You
should see something like this:

N *
NRA:NRIAAA> Nodes:

#BOB:NSSBOB-6 #NHM:GELOH #OXON:G6IKQ fTOM:NS9TCM-6
AVN:GODFP AYLS4:G30ZF-4 BDMBX:GB7ZPU BEDBOX : GBTZPU-1

Look very carefully through the list, and verify that it contains both
your own NET/ROM callsign (NS9BOB-8) and your alias (#80B).

It’s quite possible that it only contains your callsign, without the alias:

NRA:NROAAA> Nodes:

NES9BOB-6 #NHM: G6LOH #OXON: G6IKQ #TOM: NS9TOM-6

M

{missing alias}

This means that the node has heard one or more NET/ROM
transmissions from you, but hasn’t heard your NET/ROM routing table
broadcast. To correct this situation, escape to the Session Manager
and give the command:

" net> nefrom bcnodes tncl II

This will re-broadcast your alias. Now return to the NET/ROM
session, and give the “ N * ” command again, to get an up-to-date
copy of NRA’s routing table. This time you should find that both your
alias and callsign are in place. If not, you’ll have to repeat this
procedure until they are (or maybe persuade the node operator to
include your entry permanently in his routing table).

©®® Hands On — NET/ROM 277

Finally, when you are satisfied that ordinary NET/ROM is working
properly, disconnect from the node with the usual node B command.
The session will terminate with the message:

NET/ROM session 1 closed: By Peer
Hit enter to continue

If this doesn’t work, you can force the session to terminate with the
NOS reset command.

Saving the NET/ROM Routing Table

When you first start up NOS, the entries in the NET/ROM routing
table will be the ones you included in aufoexec.nos. As time passes,
you’ll find that new entries appear, gleaned from broadcasts by other
nodes.

At any time you can give the netrom route command, or SHIFT-F7, to
find out the current state of the table.

If you wish you can save these new entries, by giving the command:

! net> netrom save !I

This puts them in the file /nefrom.sav. Then, on some future occasion,
you can fetch them back with the command:

! net> netrom load , II

If you put the netrom load command in autoexec.nos, NOS will load
these entries from /netrom.sav into the NET/ROM routing table every
time you start NOS. This means that you can start to use the entries
immediately, without having to wait for perhaps half an hour for
broadcasts from other nodes.

On — NET/IROM ©@

Making a NET/ROM Connection to a NOS BBS

You are now ready to try making a NET/ROM connection to a remote
NOS BBS (e.g. #TOM). First you must check that your routing table
is correct:

net> netrom route info #TOM
Node Meighbour Port PQual Obsocnt

#TOM:NSITOM-6 NRA:NROARA tncO 192 6

In addition, check that your neighbour NRA also has an entry for
#TOM; there’s no point in forwarding a connect request through NRA
if NRA doesn’t know how to forward it onwards to #TOM.

Finally, check with Tom that he has actually set up his station to accept
NET/ROM requests. In areas where IP is well established, many users
don’t start the NET/ROM server, so even if your connect request
makes it through several NET/ROM nodes, it may fall at the last fence
because the target doesn’t want to talk NET/ROM!

So, assuming you’re reasonably confident that the NET/ROM network
knows how to find #TOM, and that Tom is willing to talk NET/ROM,
you can now attempt a connection:

l! net> netrom connect #TOM !I

With luck you will eventually make a connection, and find yourself
logged straight into Tom’s NOS BBS. Again, as with an AX.25
connection, you don’t need to provide a login name or password, and
should be able to use the BBS immediately.

If you need to find out the current status of the NET/ROM system, you
can give the netrom status command:

net> netrom status
&CB Snd-W Snd-Q Rev-Q Llser RUser BNode State

8d8c0008 0 0 0 NS9BOB-6 Listening
94b60008 0 0 0 NS9BOB-6 NSSTOM-6 NS9TOM-6 Connected

Finally, if all of this works as expected, you are now ready to try
TCP/IP.

279

33: HANDS ON — PING AND HOP

One of the very first TCP/IP commands which you’re likely to use on-
air is ping, which sends test packets to another station. If that station
is within range and operational, it should reply to those packets. Ping
then displays the round-trip time (rtt) between sending each test packet
and getting a reply.

If the rtt is low (of the order of a few seconds for a 1200 bps radio
link), you know that all is well. Hence, if you’re not certain that you
can talk to another TCP/IP station, ping is the command to use.

The ping command tells you how long it took to send out a test packet
and get a reply, but it doesn’t tell you which route it took in doing so.
Sometimes it’s useful to know this, particularly if the rtt is
unexpectedly long — someone could have changed their routing tables,
so that your packets are now travelling over completely different
terrain. The command to find out which way your packets are going is
hop.

This chapter explains in detail how to use the ping and hop commands.

The ping Command

The syntax of the ping command depends on the version of NOS which
you are using, It will be one of the following:

ping bhost [length [milliseconds [incflag]]]

ping host [length [seconds [ineflag]]]

The only difference between them is the way you specify the time
interval between sending out test packets. This should be about 5000
milliseconds, or 5 seconds. If you get the units wrong, you will either

280 Hands On — Ping and Hop ©®

send out packets every 5000 seconds or every 5 milliseconds — neither
of these are particularly helpful!

To find out which version you have, try pinging yourself, with the
ping loopback command:

net> ping loopback 0 1000 {or}
net> ping loopback 0 1

(The digit 0 is the number of additional bytes to include in each test
packet — there is usually no need to increase this).

A new session will start, and you will see an output something like this:

Resolving loopback... Pinging loopback (127.0.0.1); data O
interval 1000 ms:

sent revd % rtt avg rtt mdev
1 1 100 32 32 8]
2 2 100 15 30 4
3 3 100 14 28 7
4 4 100 14 26 9

To stop the ping, escape back to the Session Manager and give the
reset command.

Note that the rit values are short (just tens of milliseconds). This is
because the loopback path is entirely within your system.

If you ping a real station (Fig 33-1), you’ll find the times are very
much longer:

net> ping nsdmxa 0 5000

Resolving ns9%mxa... Pinging ns9%mxa (44.199.41.90); data 0
interval 5000 ms:

sent revd % rtt avg rtt mdev
1 1 100 4923 4923 0
2 2 100 2305 4596 655
3 3 100 2818 4374 936
4 4 100 2399 4127 1196

ARP
reply

ping

rel

ping
reply

ni 82

Fig 33-1: The ping command checks that a remote station is
active. If the sending station does not know the AX,25 callsign
of the target, an ARP request is sent out first to get the callsign.

Note here that the rtt for the first ping (4923 ms) is about twice as long
as the remaining rit values. This is because the AX.25 callsign for
ns9mxa is unknown at the start (there is no ARP table entry), and so
ns9bob needs to send out an ARP Request to get it. Station ns9mxa

282 Hands On — Ping and Hop © ®

responds with an ARP Reply containing its callsign (NSOMXA-5),
giving ns9bob the necessary AX.25 destination address for the ping
packets.

The incflag parameter in the ping command is an experimental feature
to allow a group of stations to be pinged. If you set the flag to a non-
zero value, the Internet address will be incremented by one after each

ping.

The hop commands
There are several hop commands:

hop check: This command initiates a hop check session to the
specified target host. It sends a series of UDP probe packets to
determine the sequence of gateways in the path to the target.
For example:

net> hop check ns8liz !I

A new session starts, reporting the progress of the probe packets
through the network to the target:

Resolving ns9liz... hopcheck to 44.199.45.17:33434
1: 44.199.41.1 ns9%ob.ampr.org. (20 ms) (12 ms)
2: 44.199.41.2 ns9ken.ampr.org. (2047 ms) (1946 ms)

3: 44.199.45.17 ns9liz.ampr.org. (4237 ms) (4163 ms)
hopcheck done: normal (Unreachable Port)

This shows that there is a route from Bob to Liz via Ken. Exactly
how this works 1s described in detail below.

hop maxttl: This command sets the limit of your search; ie. the
maximum number of IP gateways through which the probe packets
pass on their way to the target. For example, to limit the search to
10 gateways:

|| net> hop maxitl 10 |I

hop maxwait: This command lets you set the maximum time in
seconds that a hop check session will wait for responses at each
stage of the trace. For example:

ﬂ net> hop maxwait 60 II

hop queries: This command sets the number of UDP probes that will
be sent at each stage of the trace. For example:

I net> hop queries 2 !I

hop trace: You can record the progress of the check with this
command. For example:

H net> hop trace on !I

The trace goes into the session log file (/dump/session.log).
Predictably, the command hop trace off turns the trace off.

How hop check works

The hop check command works by sending a series of UDP probe
packets to the target, with progressively increasing values of the time-
to-live (ttl) parameter — see Fig 33-2. That is, the first packet has a ttl
value of 1, the second has a value of 2, and so on, up to the maxttl
value. [Each packet is addressed to a dummy UDP port number
(33434) at the target.

As cach probe packet passes through a gateway, the gateway
decrements the ttl value by one. If this results in a value of zero, the
gateway sends an ICMP Time Exceeded packet back to the originating
station, ns9bob.

284

Hands On — Ping and Hop © ©

net> hop check mﬁfzj

nigll

Fig 33-2: The hop check command sends a series of UDP probe
packets towards the target. As each probe passes through a
gateway, the time-to-live is decremented by one. If the ttl
becomes zero, the gateway returns Time Exceeded. When the
final target receives a probe, it returns Unreachable Port.

©®® Hands On — Ping and Hop 285

The first probe passes to ns9bob’s own gateway, which decrements the
ttl to zero and returns a Time Exceeded packet. The second probe
reaches ns9ken, which likewise returns Time Exceeded.

The third probe gets as far as the target, ns9liz. As the packet is
addressed to ns9liz, an attempt is now made to connect to UDP port
33434, This port doesn’t actually exist, so ns9liz sends an ICMP
Unreachable Port packet back to ns9bob. This tells ns9bob that the
hop check is complete, and it can finally display the complete report.

287

34: HANDS ON —

DOMAIN NAME SYSTEM

Most NOS users keep all of their IP name and address information in
domain.txt — because there is no alternative. In some areas, however,
certain NOS stations provide a Domain Name System (DNS) server
that contains a much more comprehensive list of names and addresses.

If a DNS server exists in your area, you can make use of it (Fig 34-1).
The first step is to tell NOS the hostname of the DNS server; e.g.

ﬂ net> domain addserver nsSdns !I

DNS Queries

Once you have defined a DNS server as above, you can virtually forget
about it.

Now, when you make a request to talk to a particular station, NOS first
looks in your domain.txt for the station’s IP address. If NOS doesn’t
find it there, it then sends a query to the DNS server for the address.
Hopefully the server will then respond with the address you need, and
then NOS can go ahead with your original command.

To see what is happening when NOS sends a query to the DNS, you
can turn on a trace:

‘l net> domain trace on II

288 Hands On — Domain Name System © @&

domain addserver ns?dns

I

domain.
Syyy)

{ no enfry for ns

IN NS ns9dns.ampr.org.

ns@yyy.ampr.org. IN A 44,199,524

S ——-

ni84_|

Fig 34-1: If there is no entry in the local domain.txt file for the
target host, NOS makes a request to the DNS server (ns9dns).
The server then provides the wanted IP address.

Let’s see what happens when you give the command ping ns9yyy.
Station nsOyyy is not in domain.txt. A new session starts, and the
domain trace output appears on the screen;

Reselving ns9yyy...

dns_query: querying server ns9dns for ns9yyy.ampr.org.
dns_gquery: received message length 62, errno 0

response id 21208 (rtt BO26 ms) gr 1 opcode 0 aa 1 tc O rd 1
ra 0 rcode 0

1 guestions:

ns9yyy.ampr.org. type A class 1

1 answers:

ns9yyy.ampr.org. 3600 IN A 44.199.52.4

Now that NOS knows the IP address for ns9yyy (44.199.52.4), it can
go ahead with the ping command. (If the DNS server doesn’t have an
entry for the station you want, it returns an IP address of 0.0.0.0).

The Domain Cache

As well as using the new-found address for the ping command, NOS
also puts this new address into the domain cache, an area of memory
which contains a list of currently used IP addresses.

To discover the state of the cache, you can give the domain cache list
command;

net> domain cache list
nsSyyy.ampr.org. 3505 IN 44.199.52.4

ns9ken.ampr.org. IN 44.199.41.2
ns%bob.ampr.org. IN 44.199.41.1

The entries for ns9ken and ns9bob were derived from domain. txt, but
the entry for ns9yyy came from the DNS server. Note that a time-to-
live value (3505) also appears in this entry. By default, the entry has a
time-to-live at birth of 3600 seconds (one hour),

When the time-to-live eventually falls to zero, NOS marks the entry as
“old”. The entry may then disappear from the list, depending on the
setting of the cache clean flag.

You will normally set the flag to off (in aufoexec.nos), which means
that the entry will not be removed. But you can set the flag to on:

290 Hands On — Domain Name System © &

]| net> domain cache clean on |I

In this case the entry will disappear when its time-to-live has expired.

Updating domain.txt

Another thing happens when NOS puts a DNS entry into the domain
cache. After the entry has been there for a certain time, NOS will copy
it into domain.txt. Thus you should look at domain.txt from time to
time, when you may find something like this:

nsSyyy.ampr.org. 3193 IN A 44.199.52.4 {new DHS entry}
ns9qggqg.ampr.org. 3024 IN A 0.0.0.0 {new DNS entry}
ampr.ampr.ordg. IN A 44.0.0.0 [original entry}

nosland.ampr.org. IN A 44.199.0.0 {original entry}

{etc}

That is, new DNS entries have appeared at the front of the file. Note
that this includes 0.0.0.0 entries for which the DNS server couldn’t find
a real IP address; you should remove these entries with a text editor.

You can control the time that NOS waits before updating domain. xt,
using the domain cache wait command:

“ net> domain cache wait 300 II

This sets the waiting time to 300 seconds (5 minutes) before NOS
updates the file.

Other Domain Commands
There are several other domain commands which you may find useful.

e To list the server(s) which you can access, and certain related
performance statistics:

©® Hands On — Domain Name System 291

net> domain list
Server address srtt mdev timeout queries responses timeouts
ns9dns 7540 2746 18524 6 4 2

e To remove a DNS server:

net> domain dropserver nsSdns ﬂ

e To set the number of entries which the domain cache can hold:

net> domain cache size 30 ll

e To set the timeout value (in seconds) for a DNS query:

net> domain maxwait 120 II

Note that you must give this command before adding any servers.

EES

293

35: TRAILING FLAG

That’s NOSintro. If this is the first time you’ve reached this chapter,
you should now have a rough idea about what NOS and TCP/IP can
do. Now return to the start, and collect a copy of NOSview on the
way — you’ll need it later to make sense of the detail next time around.

If this is the third or fourth time through, you’re probably ready to try
NOS on the air. After you’ve edited all the control files to suit your
own environment, please check everything thoroughly once again
before switching on the radio. You’'ll need all the help you can get to
make everything work properly, and the last thing you want is to upset
your friends by flooding the network with broadcasts from NS9BOB!

If this is the umpteenth time you’ve passed this way, you should be
fairly fluent in using NOS. Now is the time to start experimenting. Set
up or join a packet group to try things out together. Tell the world
what you’re doing, write articles for newsletters and magazines (or
even write a book), and pledge to help others who are just starting out
on this fascinating adventure.

And finally, if you can spare a few moments, please let me know what
you think of this book. Have you found it helpful, was it clear to
understand, were some topics too detailed or not detailed enough, how
can the book be improved? There are almost certainly some (hopefully
minor) mistakes in it—in a book of this nature, it’s virtually
impossible to guarantee 100 percent accuracy, however thorough the
checking. Let me know what they are.

Your feedback is important to me, complimentary or not, and I will of
course reply.

Happy pinging!

295

APPENDIX 1:

WHERE TO GET THE SOFTWARE

NOS (and related versions such as NET) are available on many
platforms today. The table below contains a list of people whom you
can contact to get a copy.

PLATFORM CONTACT

Amiga G1lYYH @ GBTHWP
G4UFG €& GBTCRG

Apple Macintosh PA2AGA @ PIBEAE.NLD.EU
GOOAN @ GB3XP

Archimedes G4KLX @ GB7HMZ

Atari G1PLT @ GB3XP
PEL1CHL @ PISUTR.NLD.EU

DEC VAX/VMS SMOIJZ @ SMOETV.A.SWE.EU
GlOXB & GB3XP

HP-UX (WAMPES) DK5SG/NOPRA
Interactive UNIX GBZHR @ GB3XP
PC DOS (JNOS) WET7J

PC DOS (PAOGRI) G3NRW @ GB7BIL
PC DOS (WNOS) G6DHU @ GB7IMB

DE3FL @ DBOGV.DEU.EU

296 Where to get the Software ©

08/2 (PMNOS) KZ1F

8CO Xenix/Unix G1lPLT @ GB3XP
G8ZHR B GB3XP
PEICHL @ PISUTR.NLD.EU
DGTDAE @ DBOMWE.BA.DEU.EU

Sunos G1PLT @ GB3XP

The Clarkson Packet Drivers

The Clarkson drivers (aka the Crynwr drivers) are distributed in three
files: drivers.zip (executables and documentation), driversl.zip (first
half of the .ASM files) and drivers2.zip (second half of the .ASM
files).

By Post Office Mail: 9-track 1600 bpi tapes in ANSI, tar, or OS SL
format, or PC diskettes (360K 5%" and 720 KB 3!4"). Exact terms
and conditions have yet to be worked out. Please call USA (212)
854-3703 for ordering information, or write to Kermit Distribution,
Dept PD, Columbia University Center for Computing Activities,
612 West 115th Street, New York, NY 10025, USA, or send e-mail
to kermit@watsun.cc.columbia.edu (Internet) or KERMIT
@CUVMA (BITNET/EARN).

By FTP/email: The packet driver collection has its own directory
devoted to it on simtel20.army.mil, pdl:<msdos.pktdrvr>. The
drivers are there, along with many free programs that use the packet
drivers.

For more details contact Russell Nelson at 11 Grant St, Potsdam, NY
13676, USA.

297

APPENDIX 2

NOS COMMAND SET REFERENCE

This appendix contains details of all of the commands to be
found in the major NOS packages generally available. Note that not all
commands are available in every package.

Command names and literal strings shown in bold type.
Parameters shown in italics.

Default parameters shown in braces; e.g. {30).

NOS Startup Options
nos [b] (console BIOS)
[d root_directory]

[-m heap_memory_in_KB]

[-s socket_array_size]

[-v] (verbose — startup trace)
[nos_autoexec_filename |

NOS Command Set

? (help: list of top-level NOS commands)
| (break out to shell)
(comment line)
F10 (escape to NOS command level)
abort [session_number] (FTP)
arp

arp add host ether | ax25 | netrom | arcnet ether_address | callsign

arp drop host ether | ax25 | netrom | arcnet

298 NOS Command Set Reference @
arp flush
arp publish host ether | ax25 | netrom | arcnet ether_address | callsign
asystat
attach 3c500 ioaddress vector arpa interface glen mtu [ip_address]
aftach asy ioaddress vector ax26 | nrs | ppp | slip | raw interface buffers mtu
speed [options]
option ¢: enable RTS/CTS
r: enable RLSD/CD
v: enable compression
attach axip inferface miu their_host my_axip_calisign
attach drsi ioaddress vector ax26 interface bufsize mtu chan_a_speed
chan_b_speed [ip_address_a] [ip_address_b)]
attach eagle ioaddress vector ax25 interface buffers mtu speed
lip_address_a)] [ip_address_b]
attach hapn joaddress vector ax25 interface rx_bufsize miu csma | full
[ip_address)
aftach hs ioaddress vecfor ax286 interface buffers mtu txdelay persistence
lip_address_a)] [ip_address_b]
attach kiss existing_asy_interface port interface [mtu)
attach netrom
attach packet vector interface tx_queue_length miu [ip_address]
attach pc100 Jjoaddress vector ax28 interface buffers miu speed
lip_address_a] [ip_address_b]
attach pi
aftach scc devices init ioaddress spacing Aoff Boff Dataoff intack vector
[plclock [hardware_type] [param]
attach scc chan slip | kiss | nrs | ax25 interface mfu speed bufsize [callsign]
attach slfp
attended [on | off] fon)
autoroute [on | off] {ofi}
ax25 bc interface [on | off] {off}

ax26 beinterval [seconds) {0}

@ NOS Command Set Reference 299

ax28 bekick interface
ax26 bctext ["broadcast_text™]
ax2$ blimit [count) {30}
ax26 dest [interface)
ax26 digipeat [on | off] fon}
axas filter [0]1]2]3] O=src+dest {0}
1=dest only
2=src only
3=neither
ax26 flush
ax26 heard linterface)
ax25 hearddest [interfacs]
ax25 irtt [millisecs) {5000}
ax28 kick SAXB
ax25 maxirame [window_size] {1}
ax26 mycall [callsign]
ax26 paclen [bytes) {256}
ax26 pthresh [bytes] {128}
ax26 reset &AXB
ax26 retry [n {10}
ax26 route
ax25 route add target_callsign [digi_calisign ...]
ax25 route drop target_callsign
ax25 route mode target_callsign [vc | datagram | interface]
ax26 status [AXB]
ax26 13 [miisecs] {0}
ax25 t4 [seconds) {300}
ax25 timertype [original | linear | exponential] {exponential}
ax26 version [112]
ax26 window [bytes] : {2048}
bbs
Help 7 (command list)
Area A [area_name]
Bye B
Chat Cc
or Connect C netrom_node
C port calisign
Download D filename (ASCII file)
DU filename (uuencoded binary file)
Escape E [esc_char X}
Finger F @host

F usemame@host
Gateway G interface callsign [digi_callsign...]

Help H [command_name)
Info I

Heard J [interface)

Kilt Kn..

List Lin.]

Mbxusers M

300 NOS Command Set Reference @

Nodes N
or Netrom N ¢ callsign
i
n callsign
u
Operator o)
Ports P
Read R n..
Send S username[%hostj|@host] [< from_addr [$bulletin_id]
Forward SF usemname[%hosf|[@host] [< from_addr] [$bulletin_id)
Reply SR [n]
Telnet T host [well_known_port_number] {23}
Upload U filename (ASCII file)
Verbose vV n..
What W [directory]
Expert X
Zap Z filename
Sysop @

bootp defauitfile [boot_fite | default]

bootp dns [ip_address]
bootp dyip [interface | interface ip_addr1 ip_addr2 | interface off]
bootp homedir [directory | default]
bootp host [host_addr hardware_type hardware_address
ip_address [boot_file] |
bootp logfile [flename | default] [on | ofi]
bootp logscreen [on | off]
bootp rmhost ip_address
bootp start
bootp stop
bootpd
cd [directory]
close [session_number]
cls
comm interface "string”
connect interface callsign [digi_callsign ...]
delete filename
detach interface
dialer interface [file [seconds (pings [hosf]]]]
control up | down
send string

speed 9600 | 4800 | 2400 | 1200 | 300
status up | down
wait millisecs [string [speed] |

dialer interface seconds targel_host dialer_filename

dialer interface 0 (turns dialer off)
dir [directory | filename]
disconnect [session_number] (AX.25)
domain addserver host [host ...]
domain cache clean [on | off] {ofi}
domain cache list
domain cache size [entries] {20}
domain cache wait [seconds] {300}
domain dropserver host [host ..]
domain list
domain maxwait [seconds] {60}
domain query host
domain remote add host [host ..)]
domain remote drop host [host...]
domain remote list
domain remote retry [n]
domain remote trace [on | off]
domain retry [n] {2}
domain suffix [domain_suffix] {ampr.org.}
domain trace [on | off] {off}
domain translate [on | off] {off}
domain verbose [on | off] {on)
domain xyzzy
drsistat
dump hex_memory_address | « [decimal_rangs]
{memory address is 8 hex chars without colon)

eaglestat
echo [accept | refuse] (telnet) {accept}
eol [standard | null] (telnet) {standard}
escape literal_character A%}

(A[is the ESC key)
etherstat

exit

302 NOS Command Set Reference @
finger [usermame]@host (no spaces between parameters)
fkey [key_number [value | "string™]] (use *M for CR)

key normal shift control alt
|F1 59 84 94 104 IPgUp 73
IFz Iso 85 95 106 FPgDn 81
IF:: |s1 26 96 106 |Home |71
|F4 Isz 87 97 107 |End |79
|Fs Isa 88 o8 108 * |72
lFs Fs4 89 99 109 ¥ [s0
IFT 65 90 100 [110 € |75
|r-'s 66 91 101 [111 > |77
[Fs 67 92 102 112 |ins |82
IF10 68 93 103 (113 [Del |83
fip host
ascii
batch [on | off]
binary
cd remote_dir
dele remote_file
dir [remote_dir | remote_file [focal_file]]
flow [on | off]
get remote_file |[local file]
hash
list [remote_dir | remote_file [local_file]]
Is [remote_dir | remote_file [local_file]]
mget remote_file [remote_file ...)
mkdir remote_dir
mput local_file [local_file ...]
nist [remote_dir | remote_file [Jocal_file])
pass password
put local_file [remote_file
pwd
quit
rmdir remote_dir
type [a|i|Ibytesize] {a)
user usemame
verbose [n] n=0: errors only
1; + summary
2: + progress

3: + hash

303

ftype [ascii | binary | image | logical size] {ascii}
F10 (to escape to NOS command level)
hapnstat

help (list of top-level NOS commands)
hop check host

hop maxtt! [hops] {30
hop maxwait [seconds] {5}
hop queries [count] {3)
hop trace [on | off] {off}
hostname [hostname)

hs

icmp echo [on | off] (must be on for one-shot ping) {on}
icmp status

icmp trace [on | off] (turn off for hop check) {off}
ifconfig

ifconfig [inferface)

ifconfig interface broadcast bcast_ip_address
ifconfig inferface description [“description™]

ifconfig interface encapsulation none | ax25 | encap | ether | slip |
netrom | ppp

ifconfig interface forward fwd_interface

ifconfig interface ip_address ip_address

ifconfig interface linkaddress callsign | ether_addr

ifconfig interface mitu bytes

ifconfig interface netmask [0x]hexmask

ifconfig interface rxbuf buffer_size

info

ip access permit | deny | delete fp_addmss{/ms] interface
[low_port_no [high_port_no]]

ip address lip_address]

ip rtimer [seconds] {30}
ip status

iptil [hops] {255}
isat [on | off] {off}

kick [session_number]

304 NOS Command Set Reference @

lock [password “password_string”]

log [log_filename | stop]

lzw mode [fast | compact]

lzw bits [n] {9)
mail

mbox

mbox attend [on | off]

mbox expert [on | off] {off}
mbox fwdinfo [“forward_info™)

mbox haddress ["home_address™]

mbox jumpstart [on | off] {off}
mbox kick

mbox maxmsg [n {200}
mbox motd [“string™)

mbox nrid [on | off]

mbox operator [ip_address)

mbox password “password_string"

mbox gth ["gth_string”]

mbox secure [on | off]

mbox smiptoo [on | off]

mbox status

mbox timer [seconds] {0}
mbox tiptimeout [seconds] {180}
mbox trace [on | off] {off}
mbox utc [+ -lim

mbox zipcode ["zipcode™)

mem circular [on | off] {off}
mem debug [on | off] {off}
mem efficient [on | off] {off}
mem free

mem garbage

mem ifbufsize [bytes] {2048}
mem minheap [n]

mem nibufs [n] {5}
mem sizes

mem status

mem thresh [bytes] {8192}
mikdir directory

mode interface [vc | datagram] (AX.25)
mode netrom [vc | datagram)

more filename [filename ...] (q: quit)

(space: next page)
(CR: next line)

motd ["string™]

multitask [on | off] {on}

netrom acktime [milisecs] {3000}

netrom alias [node_alias]

netrom bcnodes interface

netrom call [caflsign] {ax25 mycall}

netrom connect node_callsign | node_alias

netrom choketime [millisecs] {180000}

netrom derate [on | off] fon}

netrom interface interface quaiity

netrom interface interface alias quality

netrom irtt [milisecs) {15000}

netrom kick &cs

netrom load

netrom minquality [n {10}

netrom nodefilter

netrom nodefilter add neighbour_callsign interface [quality]

netrom nodefilter drop neighbour_callsign interface

netrom nodefilter mode [none | accept | reject] {accept}

netrom nodetimer [seconds] {0}

netrom obsotimer [seconds] {0}

netrom promiscuous [on | off] {off}

netrom qlimit [bytes) {2048}

netrom reset &CB

netrom retries [n] {10}

netrom route

netrom route add alias target callsign interface quality neighbour_callsign

netrom route drop target_callsign neighbour_callsign interface

netrom route info target_callsign | target_alias

netrom save

netrom status [&CB]

netrom timertype [linear | exponential]

netrom ttl [hops] {10}

netrom user [username]

netrom verbose [on | off] {off}
*netrom window [frames] {4}

nntp addserver nntpserver_host [interval_in_seconds] [time_range]

[group | group ...]]

nntp directory [spool | control directory]

nntp dropserver nnipserver_host

nntp groups [rewsgroup_name ... |

nnip kick nnipserver_host

nntp listservers

pop userdata

306 NOS Command Set Reference @
nntp quiet [on | off]
nntp trace [n] n=0: no trace
1: serious errors
2: transient errors
3: session progress
4: received articles
5: errors
nrstat
param interface
param interface param [param ...]
param interface 0 data frame
param interface 1 TX_delay (10mS units)
param interface 2 persistence (0-255)
param interface 3 slot_time (10mS units)
param interface 4 TX tail (10mS units)
param interface §n (n=0: HDX)
(n>0: FDX)
param interface (] (hardware dependent)
param interface 7 (TX mute)
param interface 8| dtr [n) (n=0: DTR low}
(n=1: DTR hi)
param interface 9 |ris[n] (n=0: RTS low)
(n=1: RTS hi)
param interface 10 (speed)
param interface 1" (end delay)
param interface 12 (group)
param interface 13 (idle)
param interface 14 (min)
param interface 16 {max key)
param interface 16 (wait)
param interface 17 parity (n=0: none)
(n=1: even)
(n=2: odd)
param interface 129 (down)
param interface 130 (up)
param interface 254 (return2)
param interface 256 (exit KISS)
ping host [length [seconds [incflag]] |
ping host [length [miliseconds [incfiag] |]
pop kick
pop mailbox mbox_name
pop mailhost [hosf]
pop quiet [on | off] {off}
pop timer [seconds) {0}

[username password]

@ NOS Command Set Reference 307
popmail addserver host [seconds] [hh:mm-hh:mm] protocol mailbox
usemname password
popmail dropserver host
popmail list
popmail quiet [on | off]
popmail trace [n) (n=0: no trace)
(n=1: serious)
(n=2: transient)
(n=3: session)
pPpp interface
PPPp interface ipcp open active | passive
PPPp interface ipcp timeout [seconds]
PPp interface ipcp try configure [counf]
ppp interface ipcp try failure [count]
ppp interface ipcp try terminate [counf]
PPp interface ipcp local | remote address [host | allow [on | off]]
PPp interface ipcp local | remote compress
[tcp slots [flag | none | allow [on | off]]
ppp interface lcp close
ppp interface icp local | remote
ppp interface lcp local | remote accm [bitmap | allow [on | off]]
ppp interface icp local | remote authenticate [pap | none | aliow [on | off]]
ppp interface lcp local | remote compress address | control
[on | off | allow [on | off]]
ppp interface lcp local | remote compress protocol
[on | off | allow [on | off]]
Ppp interface icp local | remote default
ppp interface lcp local | remote magic [on | off | allow [on | off]]
ppp interface lcp local | remote mru [size] | allow [on | off]]
Ppp interface lcp open active | passive
Ppp interface lcp timeout [seconds]
ppp interface lcp try configure [counf]
ppp interface lcp try failure [count]
ppp interface lcp try terminate [count]
PPPp interface pap user [usemame [password]]
Ppp interface trace [flags]
ps
pwd [directory]
rarp
rarp query interface ether_addr | calisign [ether_addr | callsign...]
record [filename | off] {off}

308 NOS Command Set Reference @
remote [-p porf] [k key] [-a kickaddr] host exit | reset | kick
remote -5 key
rename old_filename new_filename
reset [session_number]
rip accept incoming_gateway_host
rip add destination_host secs [flags] flags=1: include route to self
2: spiit horizon
4: triggered update
rip drop destination_host
rip merge [on | off] {off}
rip refuse incoming_gateway_host
rip request incoming_gateway_host
rip status
rip frace [n) n=0: no trace
1. changes only
2: full trace
rip ttl [seconds] {240}
rlogin host
rmdir directory
route
route add target_hostl/bits] | default interface [gateway._host [metric]]
route addprivate target_hosti/bits] | default inferface [gateway_host [metric] |
route drop target_host{/bits]
route flush
route lookup target_host
rspf interface [interface quality horizon)
rspf maxping [n] 5
rspf message ["message_string”|
rspf mode [ve | datagram | none] {none}
rspf routes
rspf rrhtimer [seconds] {0}
rspf status
rspf suspecttimer [seconds]
rspf timer [seconds] {0}
sccstat
session
session [session_number]
session session_number flowmode [on | off] {off}

shell

@ NOS Command Set Reference 309
skick socket_number
smtp batch [on | off] {ofi}
smtp gateway [host]
smitp kick
smtp kill Job_number
smtp list
smitp maxclients [n {10}
smip mode [queue | route] {route}
smtp mxlookup [on | off] {off}
smtp guiet [on | off] {off}
smip recizw [on | off] {on}
smtp sendizw [on | off] fon}
smitp timer [seconds] {0}
smtp trace [n] n=0: trace off

1: trace on
smitp usemx [on | off] {off}
socket [socket_number] [flowmode [on | off] |
source script_filename
start ax25 | discard | echo | finger | ftp | netrom | pop | pop2 | pop3 |
remote | rip | smip | telnet | tylink
start tip sync_interface
status
stop ax25 | discard | echo | finger | fip | netrom | pop | pop2 | pop3 |
remote | rip | smitp | teinet | ttylink

stop tip sync_interface
tail filename
tep irtt [millisecs) {5000}
tep kick &TCB
tcp mss [bytes] {512)
tcp reset &TCB
tcp rit &TCB milisecs
tcp status [&7CB]
tcp syndata [on | off] {off}
tcp timertype [linear | exponential] {exponential)
tcp trace [on | off] {off}
tcp view
tcp window [byfes] {2048}
telnet host [well_known_port_number] {23}
telnet host 25 (SMTP)
telnet host 87 (CHAT/TTYLINK)

310 NOS Command Set Reference @
test
third-party [on | off] fon)
tip async_interface
ttylink host [well_known_port_number] {87}
trace
trace interface [ofi | BTIO_flags [trace_filename)] |
BTIO_flags:
B=0 Broadcast fiter off (trace all packets)
B=1 Broadcast filter on (ignore broadcasts)
T=0 Display protocol headers only
T=1 Display headers + ASCII text
T=2 Display headers + ASCII text + hex
I=0 Ignore input packets
I=1 Trace input packets
O=0 Ignore output packets
O=1 Trace output packets
udp status
upload
upload filename
watch [on | off] {off}
watchdog [on | off] {off}

311

APPENDIX 3

NOS CONTROL FILES

alias

= NOSview [244]

/alias

$ —

#

SMTP server ALIAS file. This is for resolving a given

target address into a single- or multiple-entry mail list.

#

Format

o,

mail list name call 1fhost_1 [call_2fhost_2]... # comments

________________ B

N.B. There must be exactly ONE SPACE between each field.

#

ken ns9ken€ns9ken !

thegirls ns9paméns9pam ns9suefns9sue ns9liz@ns9liz outtray
areas

NOSview [244]

/spool/areas

*=-===l=l=_

HS9BOB Public Message Areas

& & N e General chit-chat.
toplp0.. General TCP/IP and NOS messages.

To enter an area, type "a" followed by the area name:
e.g. "a all"

312 NOS Control Files @

AUTOEXEC.BAT

REM NOSview [244]
REM C:\AUTOEXEC.BAT
REM

REM All the usual AUTOEXEC.BAT commands here

REM BSET UP THE NOS ENVIRONMENT
CALL C:\WNOS\NOSENV.BAT

autoexec.nos

/autoexec.nos
e

B e W

This is the configuration file for HOS.
This file must be at the NOS root.

There are many commands which HOS needs to configure the
program each time it starts. To save typing them by hand
each time, you can put them in this file.

- e

AUTOEXEC.NOS is the default name for the configuration
file. You can also produce alternative versions with
different names. This is a very convenient way of setting
up different scenarios. To use one of these alternatives,
you include its name as the final parameter in the NOS
command line.

e.g. nos_20m /autoexec.bob

Many of the commands below are commented out with the #
sign. As you gain experience with HOS8 you can then remove
the # signs to try out these commands.

o= W S LR B K B &

If NOS hangs when starting up, it could be due to errors in
this file. To help discover what is wrong, you can trace
the startup using the -v option in the NOS command line.

LR]

Miscellaneous setup *Ekkkdkkkrkkrhkkhh b kAR kAR kR kR ARk kR R Ak
attended on

escape ESC # <ESC> character
isat yes # 286/386 clock
multitask on

log /dump /session. log

watchdog off

memory ibufsize 256
memory nibufs 1

motd "If I'm not here, please leave a message in mailbox."

s Set up domain defaults 2R 2222 R SRR S2E AR iRt iRl s
domain cache size 30

domain suffix ampr.org.

domain translate on # display host names

domain verbose off # do not display suffix
domain addserver nsSdns

Station Identification #*dkkdkwdhddddd bbb hddbbhddbhbthdatis

ip address ns9bacb

hostname nsSbob

ax25 mycall NS9BOB-5 # This MUST precede 'attach'’

Set uUp the THC #hkdddaddthdddbhthdhdbhhadrthh it bhdhdodins
attach asy 0x3£f8 4 ax25 tnc0 2048 256 4800 # comi

attach asy Ox2f8 3 ax25 tncO 2048 256 4800 # comM2

attach asy 0x3e8 4 ax25 tnc0 2048 256 4800 # coM3

attach asy 0x2e8 3 ax25 tnc0 2048 256 4800 # comM4

trace tnec0 211

Initialise the tnc to KISS mode *hkkkhkkkdddhrdhbrkhbhhnhhhs
dialer tne0 /scripts/kisson.dia

param tnc0 120 # TX delay (x 10ms)
param tncoO 2 63 # Persistence (0-255)
param tnc0 310 # Slot Time (x 10ms)
param tncO 4 10 # TX tail (x 10ms)
param tncO 50 # O=HDX

param tnco dtr 1

param tncO rts 1

Baycom AX.25 Packet Driver *rsddddttrsidrdthdrtdattattrdn
attach packet 0x60 tne0 5 512

Set Up AX.25 Aekrkkhhd Rt rhdkdhh b hd ki kR r AR A AR AR RN AR kR k
ax25 be tnel0 on

ax25 beinterval 840

ax25 bctext "NS9BOB-5 TCP/IP 44.199.41.1 [London]"

314 NOS Control Files ©
ax25 digipeat on
ax25 irtt 2500
ax25 maxframe 2
ax25 paclen 256
ax25 pthresh 128
ax25 retry 10
ax25 t3 65000
ax25 t4 300
ax25 timertype linear
ax25 version 2
ax25 window 2048
mode tncl datagram

Set up the Ethernet interface *hkdddkddrhddbhddb kbbb bdbdddrd

%

attach packet 0x61 en0 8 1500

arp add ns9%wrm ether 00:00:C0:11:22:33
route add ns9%wrm en0
#
#

8et up

attach axip ai0 256 nsSwrm NSSBOB-11

the AXIP wormhole *#kkkddkdkhddhdddhdhkh et dhhth bk dhd

Set Up ifCOnNFig AW Akt dhhhdddhbdhddtahhhdrbdhbddhbhhbhtndtn
ifconfig tneco broadcast 44.255,255.255

ifconfig tnecO netmask OxFF000000

ifconfig tnel description "144.625 MHz port"

Set up TCP/IP defaults **xkkkddkddddddddddbdadbddbdrddddddts
ip ttl 10

tcp mss 216

tep irtt 65000

tep window 216

tcp timertype linear

‘ Start network services 2222222222222t a 22 Rt R RR2l
start ax25

start discard

start echo

start finger

start ftp

start pop2

start pop3

start remote

start rip

start smtp

start telnet

start ttylink

Configure NET/ROM #*&hhAshbkbhhhhhohhhd i b ddad kb d b b h N R RN hRR

start netrom
attach netrom
netrom call NS9BOB-6

netrom alias #BOB
netrom interface tnec0 192
netrom nodetimer 900
netrom cbsotimer 1200
netrom verbose off
netrom minquality 10

netrom ttl 15
acktime 3000
netrom glimit 1024
netrom retries 5
netrom irtt 5000

netrom promiscuous off
netrom timertype linear
mode netrom ve

E R R R R R R R R

Broadcast your alias for local nodes - 3 times for luck
netrom bcnodes tneco
netrom bcnodes tneco
netrom bonodes tnel

Set up NET/ROM filtering IR SRR R 2SR SEESR 2R SR 222222222
netrom nodefilter mode accept

netrom nodefilter add NRSAAA-Z tncO

netrom nodefilter add NSSKEN-6 tncO

Set up the IP routing table for HET/ROM tf#etsdsddadddaddddd
route add region47/24 netrom ns9tom
route add regiond4l/24 netrom ns%ken

* W L R LR

Set up the ARP table for NET/ROM *#¥dsadadsddveasthbadsinds
arp add ns9tom netrom NSSTOM-6

L

Set uUp NET/ROM routing **## st st s bt adddd R e ad kR AR FRARF AR K ER

#
netrom route add #NRA NRIAAA tncO 192 NRSAAA
netrom route add #TOM NSSTOM-6 tncO 192 NROAAA

Set up AX.25 routing S T R gy
ax25 route add AXSTIM AX9DGA AXIDGB
ax25 route add NSIPAM-5 AXODGC

Set up AX.25 mOdes *FkFk kR R AR AR RN ERERER AR A S AR AR AR IR IR RN AR
ax25 route mode AXSAAA vc

Set up the ARP table * e dtt b bt d kit dhttdr sttt b dba bt b b ds s sty

arp add nosland ax25 QST-0
arp add nsSpam ax25 NSIPAM-5

sSet up IP :guting s 2t R A R s R e s s et e L d

route addprivate default tned
route addprivate nosland tnco
route add ns9liz tnec0 nsSken

route add nsSjim tncl0 ns9%ken

316 NOS Control Files @
route add region45/24 tnc0 ns9%ken
route add ns9sue tnc0 ns9pam
Set up RIP Rkddkkdkkhdhhdhbddndbdhhbdk b et b ek bk R AR RRRRARARARE
rip merge no
rip add nosland 900 6
rip refuse ns9bbb
rip refuse nsScce
rip request nosland
‘ Set up RBPF (R TR RS S TSRS RS X RSS2SR di 2t i st st sl
rspf interface tnc0 8 32
rspf rrhtimer 900
rspf suspecttimer 2000
rspf timer 900
rspf message "RSPF routing in use. RIP disabled"

Set up the hop check (route tracer) environment *¥kkkkkkikdi

hop maxwait
hop maxttl
hop queries

60
10
2

Get every NOS node in range to emit their NET/ROM broadcasts
to load our tables. Very heavy on bandwidth!!!

remote -s dummy

remote nosland kick

' Set up the mailbox Akt kbbb kbbbt bbbtk hd
third-party on

smtp timer 600

smtp gateway ns9sgw

smtp usemx on

smtp mode route

smtp kick

mbox attend on

mbox motd "Please use sp ns9bob to leave a message for NSSBOB"
mboX expert off

mbox gth " [London]"

mbox ute 0

mbox zipcode "123456"

mbox nrid on

mbox fwdinfo "HNLNET BBS"

mbox haddress "BB7BBS. #41.GBR.EU"

nmbox password "Maximum 30-character password."
mbox kick

Wake up POP to start shipping any outstanding mail ###kskiks
popmail addserver nsSken pop3 nsSbob bob bobspasswd

popmail trace 3

popmail quiet no

@ NOS Control Files 317

popmail kick nsS9liz

Set up FTP defaults *rk ks d bt hd kAR SR AR R KA N ARA AR NI E AR RN AA
ftype binary

eol standard

Set up function keys Whwddddrdhbrh bt hd bkt b r bbbk Ak b
source /seripts/fkeys. scr

ed /dump/record

THE END

CLEANQ.BAT

REM
REM N:\CLEANQ.BAT

REM =—aasm————

HOSview [244]

EECHO OFF

IF EXIST Q:*.lck DEL Q:*.lck
IF EXIST Q:*.txt DEL Q:*.txt
IF EXIST Q:*.wrk DEL Q:*.wrk

IF EXIST M:\pbbs net.txt DEL M:\pbbs net.txt
IF EXIST N:\tmp\tmp*.$$$ DEL N:\tmp\tmp*.555

CONFIG.SYS

REM
REM C:\CONFIG.SYS
REM

NOSview [244]

REM All the usual CONFIG.SYS commands

LASTDRIVE=Z
SHELL=C: \DOS\COMMAND .COM /e:1024 /p

318

NOS Control Files @

domain.txt

§ e————
/domain.txt

f ————

NOosview [244]

#
SPECIAL ADDRESSES

#

ken.ampr.org.
ns9pam. ampr.org.
ns9mxa.ampr.org.

An MX record. You

ns9zzz.ampr.org.
ns9sgw.ampr.oxrg.
Domain Name Server
nsddns.ampr.org.

#

IN CHAME ns9ken.ampr.org.

IN A 44.199.41.3
IN A 44.199.41.90
need 'amtp usemx on' for

IN MX 0 nsSmxa.ampr.org.

SMTP Gateway for unknown mail destinations

IN A 44.199.41.91

RADIO REGION 45
#

ampr.anpr.,org. IN A 44.0.0.0
nosland.ampr.org. IN A 44.198%.0.0
regiondl.ampr.org. IN A 44.199.41.0
regiond5, ampr.org. IN A 44.199.45.0
regiond7.ampr.org. IN A 44.199.47.0
loopback. ampr.org. IN A 127.0.0.1

* _____
RADIO REGION 41

" ______ T ey e A L P
nsSbob. ampr.org. IN a 44.199.41.1
nsdken. ampr.org. IN A 44.199.41.2

Nickname

Mail exchange

this to work.

ns9liz.ampr.org.
nsSjim.ampr.org.
nsSsue.ampr.org.

IN NS ns9dns. ampr.org.
IN A 44.199.41.99
IN A 44.199.45.17
IN A 44.199.45.18
IN A 44.199.45.19

S
RADIO REGION 47
- ——
ns9tom. ampr.org. IN A 44.199.47.75
nsSben. ampr.org. IN A 44.199.47.76
| T ——— -
LOCAL AREA NETWORK
s
alpha.acme.com. IN A 192.93.94.95
beta.acme.com. IH A 192.93.94.96

fkeys.Ist
NOSview [244]
/scripts/fkeys.lst
#

HORMAL SHIFT CTRL ALT

F1 fkey help KISs ON THNC RESET session 1
F2 session socket mbox session 2
F3 kick smtp kick mbox kick session 3
F4 ax25 heard ifconfig close session 4
F5 arp hop check reset session 5
Fé ping route route lookup session 6
F7 netrom status netrom route netrom route info session 7
F8 smtp list bbs top view session B
F3 trace 211 scrn trace 211 file trace 01l scrn trace 011
F10 BSession Mgr record to file record off trace off

320 NOS Control Files @

fkeys.scr
NOSview [244]
/scripts/fkeys.scr
#
Format:
' ____________ AR
fxey <key number> [<value> | "<string>"]
-
E
Use * for a contrel character; e.g. "M = CR
N.B. A line containing a # character ANYWHERE on
5 the line is a comment. AAAAAAAA
f1 59 | sf1 84 | cfl 94 | afl 104 | pgup 73 |
f£2 60 | s£2 85 | c£2 95 | af2 105 | pgdn 81 |
£3 61 | sf3 86 | ¢f3 96 | af3 106 | home 71 |
f4 62 | sf4 87 | cf4 97 | af4 107 | end 79 |
£5 63 | s£5 B8 | c£5 98 | af5 108 | arup 72 |
£6 64 | s£f6 B89 | cf6 99 | af6 109 | ardn B0 |
£7 65 | sf7 90 | cf7 100 | af7 110 | ar 1 75 |
f£f8 66 | sf8 91 | cf8 101 | af8 111 | ar ¢ 77 |
f9 67 | sf9 92 | cf9 102 | af9 112 | ins B2 |
i3 | s£10 93 | cf10 103 | afl10 113 | del 83 |

DELETE KEY (to abort a keyboard command with CTRL-U)
fkey 83 nage

DISABLE THE ARROW KEYS
fkey 72 "4B"

fkey 75 v

fkey 77 "

fkey BO "o

NORMAL

fkey 59 "“[tail /scripts/fkeys.lst M"
fkey 60 "Alsession®M"

fkey 61 "A [kick/ AM"

fkey 62 "4 lax25 heard"M"

fkey 63 "A[larp”M"

fkey 64 "4 lping "

fkey 65 4 [netrom status®M"

fkey 66 "~[smtp list M"

fkey 67 "4 [trace tncO 211°M"

® NOS Control Files 321

SHIFT

fkey 84 "Ardialer tned /scripts/kisson.dia"
fkey 85 "A[socket M"

fkey B6 "A[smbp kick M"

fkey 87 "A[ifconfigiM"

fkey 88 "Alhop check "

fkey 89 "~[route*M"

fkey %0 "A[netrom route”M"

fkey 91 "~ [bba*M"

fkey 92 "Altrace tnc0 211 /dump/trace/"
fkey 93 "~ [record /dump/record/"

fkey 94 "~ [source /scripts/tncreset.scr"
fkey 95 " [mbox M"

fkey 96 "~[mbox kick M"

frey 97 "Alclose "

fkey 98 nAlreset "

fkey 95 "Alroute lookup "

fkey 100 "*[netrom route info "

fkey 101 "~[tcp view M"

fkey 102 "*[trace tncO 011°M"

fkey 103 "*[record off"M"

fkey 104 "“*[session 1°M"

fkey 105 "*[session 2°M"

fkey 106 "“[session 3"M"

fkey 107 "~[session 4°M"

fkey 108 "“[session 5"M"

fkey 109 "~[session 6"M"

fkey 110 "“[session 7 "M"

fxey 111 "“[session B"M"

fxey 112 "“~[trace tnc0 011 /dump/trace/"
frey 113 "“[trace tnc0 O"M"

forward.bbs

NOSview [244]
/spool/forward.bbs
#

BB7BBS
connect tnc0 BB7BBS
PEBS_NET

322 NOS Control Files @

ftpusers

HOSview [244]
/ftpusers

Format:

<login_name> <password> <root_dir> <permissions>

=

.B. EXACTLY ONE SPACE between fields.

<password> is any string of characters, without spaces/tabs.
An asterisk in this field indicates that any password will
be accepted; by convention, users then give their callsign
as the password.

<root_dir> is the highest directory level which the user is
permitted to access. This must be expressed as an absolute
full pathname from the DOS root, but without drive letter.

N.B. In the examples included in NOSview, the DOS root is
N: (because of the SUBST N: command in NOSENV.BAT) .
This removes the risk of accidentally allowing users
to access directories outside the scope of NOS.

<permissions>
ftp and telnet

1 read file
2 create new file
4 write/delete file
telnet only
B8 AX.25 Gateway access
16 Telnet Gateway access
32 WET/ROM Access
64 Remcte control
128 Disallow access
PPP only
256 PPP connection
512 peer ID/password lookup

R RSN RS S e e e e e e dE e O

NOS Control Files 323

B oSk e Sk N N N e N N e N N W

misc

1024 disallow send commands (except to sysop)
2048 disallow read commands

4096 disallow third-party mail

8192 this station is a known BBS

Be wvery careful about giving access to sensitive
directories. # Although you can theoretically prevent
unauthorised access through password protection, remember
that anyone can monitor the channel and discover user
passwords as they are being transmitted.

If a user connects to the BBS using vanilla AX.25 or NET/ROM
(not telnet), access is granted without having to provide a
login username or password. In this case the user name is
assumed to be the AX.25 callsign (without 8SID).

IF THIS CALLSIGN MATCHES A USER NAME IN FTPUSERS, THE CALLER
GAINS THE PERMISSIONS ASSIGNED TO THAT USER. THUS ANY USER
HAMES THAT LOOK LIKE CALLSIGHS SHOULD HAVE A SAFE SET OF
PERMISSIONS.

Therefore if you wish to prevent vanilla AX.25 users gaining
directory access, user names should be 7 or 8 characters

long.

Miscellaneous accounts requiring no password:

anonymous * /public 3
anon * fpublic 3

bbs * /publiec 3
guest * /public 3

Special accounts:

ns%bch bobby /public 7
roberto robertspw / 127 # Login name > 6 characters
superuser supasswd /public 67 # Remote syscp permission

Friendly visitors

ns9ken kenneth /public 7
ns91iz lizzie /public 7

Unwanted visitors:

NSSNRD * /public/tmp 128 # Sorry, no access

NOS Control Files @

kisson.dia

#
/scripts/kisson.dia
#
control down
control up
speed 4800
send "%

wait 200

send "*"

wait 200

send "*"

wait 200

send "&"

wait 1000
send "\r"
wait 1000 camd:

send "MYCALL NSSBOB-5\r"

wait 1000 omd:
send "MID B4\r"
wait 1000 cmd:
send "XMITOK ON\r"
wait 1000 cmd:
send "KISS ON\r"

NOSview [244]

loopback nsSbcb bobby
ns%ken nsSbob mypasswd

wait 1000
net.rc
P Nosview [244]
/net.rc
‘ —
#
NET.RC contains hostnames, user names and passwords for
automatic FTP logins.
#
Format:
A g e ey
<hostname> <username> <password>
§ S e e e e e e e S S ST
#
N.B. EXACTLY ONE SPACE between each field.
#

NOSENV.BAT

REM
REM N:\NOSENV.BAT
REM

NOosview [244]

@ECHO OFF

REM This script is CALLed from AUTOEXEC.BAT and defines the
REM NOS environment.

REM Make sure you have sufficent DOS environment space
REM (e.g. use "/E:1024" in CONFIG.SY¥S).

REM All NOS files are relative to the NOS root directory, N:

SUBST W: C:\nos

SUBST M: MN:\spool\mail
SUBST Q: N:\spool\mqueue
SUBST R: N:\dump\record
SUBST T: M:\dump\trace
SUBST V: N:\public\nosview

PATH=$PATHS% ;N:\

REM The SET HOME command below specifies the directory

REM containing the PCELM startup file (PCELM.RC). This
REM definition M-U-S-T be relative to a DOS drive letter,
REM not to a SUBSTituted drive letter, otherwise PCELM

REM complains that it cannot find its startup file.

SET HOME=C:\nos

SET MAILER=N:\pcelm.exe
SET TMP=N:\tmp

SET T2Z=UTC

SET USER~nsSbcab

REM Start the file-viewer
N:\VIEW

REM 1Install the Baycom AX.25 driver
REM N:\AX25 -B3f8 -I4

REM Install the Clarkson WDB003E Ethernet Adaptor Driver
REM (if fitted).
REM M:\wdB003e 0x61 2 0x240 0xd000

326 NOS Control Files @

popusers

Nosview [244]
/popusers

- L R o

List of known POP users

Format:

<username>:<password>:

Note that both the username AND the password are terminated
with a colon.

R

ns9liz:lizpasswd:
mary:poppins:

REMOTE.BAT

REM NOsview [244]

REM N:\REMOTE.BAT

REM This DOS batch file puts NOS in an endless loop, and is
REM intended for use in a remote location.

REM Thus if NOS is exited for any reason, it is automatically
REM restarted.

:loop
STARTHOS
GOTO loop

rewrite

NOosview [244]
/spool frewrite

Eaa——— —————————3

Read the rewrite file for lines where the first word is a
regqular expression and the second word are rewriting rules.

The special character '$' followed by a digit denotes the
string that matched a '*' character.

The '*' characters are numbered from 1 to 9.

Sk %% W e I N O e e

Example: the line "#*@#*_ * $2851.ampr.org" would rewrite the
address "foofbar.xxx" to "bar@foo.ampr.org".

* =&

#

*@gb7bil pbbs_net

@gb7 $1%gb7$28gb7bil r
*@ns9bch.ampr.org $1
*@gns9bob.ampr $1
*@ns9bcb 51

signatur

—— NOSview [244]
/signatur
s

73 de Bob
NS9BOB [44.199.41.1]

328 NOS Control Files Q
REM NOSview [244]
REM N:\STARTNOS.BAT
REM
BECHO OFF
REM Before starting NOS, the PROMPT is changed to a special
REM flashing prompt. This is for when you shell out of NOS:
REM the flashing prompt reminds you that you are not in the
REM the top-level shell.

REM The second PROMPT statement at the end of the script
REM restores the prompt to its original setting when you
REM exit NOS.

PROMPT $e[5SmEXIT TO RETURN TO NOS $e[Om$e[44mSpSgSe[m
SET COMSPEC=c:\command.com

REM For DR-DOS, make unused video RAM available:
MEMMAX +v > NUL

IF EXIST Q:*.LCK DEL Q:*.LCK

N:
N:\NOS_20M.EXE /autcexec.nos

REM Finished with NOS. For DR-DOS, restore videoc RAM:
MEMMAX -v > NUL

N:
cD N:\

PROMPT $e[41mSpSg $elm
SET COMSPEC=c:\command.com

sysop

#
/finger/sysop

#_-:-g-:::.

User:
Real Name:
Class:
Address:

Telephone:
8ystem Config:

Occupation:
Hobbies:

HOSview [244)]

Hello and welcome to nsSbob

bob (HS9BOB)

Robert R Roberts

Extra

12345 Anystreet

Anytown, Anystate, AnyZIP
(111) BOB-3456

PK-88

Yaesu FT-27RB

144.625 MHz

Professor of Anglo-Saxon
Sheepshearing

tncreset.dia

#
/scripts/tncreset.dia
i
control down
control up
speed 4800
send n \rll

wait 1000 cmd:
send "\r"
walt 1000 cmd:
send "RESET\r"
wait 1000

NOosview [244]

330 NOS Control Files @

am UK R}

wait 200

aend LE R

wait 200

send kh

wait 200

send "R

wait 200

send "%"

wait 200

send """

wait 200

send "&"

wait 200

send "*"

wait 1000
send "\r\r"
wait 1000 cmd:
send \r"

wait 1000 cmd:
send "¥MITOK OFF\r"
wait 1000
send "XMITOK OFF\r"
wait 1000

tncreset.scr

i NOSview [244]
/scripts/tncreset.scr
#

param tncO 254
param tnec0 255

dialer tnc0 /scripts/tncreset.dia

331

APPENDIX 4

CHARACTER CODES

Hexadecimal Conversion Table

Dec Hex Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
]] 1001
10 a 1010
11 b 1011
12 c 1100
13 d 1101
14 @ 1110
15 £ 1111

332 Character Codes @

ASCII Character Set

In addition to listing the ASCII character codes in their usual form, the
hexadecimal codes for ASCII digits 0-9 and upper-case letters A-Z are
also expressed in shifted form; i.e. shifted one bit left. This helps when
decoding callsigns in AX.25 information frames and in ARP packets.

Dec Hex Char

4] 00 NUL

1 01 SCH CTRL~-A start of header

2 02 sSTX CTRL-B start of text

3 03 ETX CTRL~-C end of text

4 04 EOT CTRL~-D end of transmission
5 05 ENQ CTRL-E enquiry (poll)

6 06 ACK CTRL-F acknowledge

7 07 BEL CTRL-G bell

8 08 BS CTRL-H backspace

9 09 HT CTRL-I horizontal tab

10 Oa LF CTRL-J line feed

i1 0ob VT CTRL-K vertical tab

12 0Oec FF CTRL-L form feed

13 0d CR CTRL~M carriage return

14 Oe SO CTRL-H shift out

15 O0f sI CTRL~-0O shift in

16 10 DLE CTRL-P data link escape

17 11 DC1l/XON CTRL-Q device control 1/XON
18 12 DC2 CTRL-R device control 2

19 13 DC3/XOFF CTRL-8 device control 3/XOFF
20 14 DC4 CTRL-T device control 4

21 15 NAK CTRL-U negative acknowledge
22 16 B8Y¥N CTRL-V synchronous idle

23 17 ETB CTRL-W end of transmission block
24 18 CAN CTRL-X cancel

25 19 EM CTRL~-Y end of medium

26 1la SUB CTRL-Z substitute

27 1b EsC CTRL-[escape

28 1c FS CTRL-\ file separator

29 14 cs CTRL-] group separator

30 le RS CTRL-* record separater

31 1f Us CTRL- unit separator

I

@ Character Codes 333
Dec Hex Char Dec Hex Char
32 20 SPACE (shifted:40/41) 80 50 P (shifted: a0/al)
33 21 ! 81 51 Q (shifted: a2/a3)
34 22 = 82 52 R (shifted: ad4/a5)
35 23 # 83 53 8 (shifted: a6/a7)
36 24 $ 84 54 T (shifted: a8/a9)
37 25 % 85 55 U (shifted: aa/ab)
38 26 & 86 56 V (shifted: ac/ad)
39 27 ' apostrophe 87 57 W (shifted: ae/faf)
40 28 | 88 58 X (shifted: b0/bl)
41 29) 89 59 Y (shifted: b2/b3)
42 2a » S0 5a 2Z (shifted: b4/b5)
43 2b + 81 5b [
44 2¢ , comma 92 5¢ \
45 2d - minus 93 54]
46 2e . 94 Be *
47 2£ / 95 5f _ underscore
48 30 0 (shifted: 60/61) 96 60 =~ grave(back quote)
49 31 1 (shifted: 62/63) 87 61 a
50 32 2 (shifted: 64/65) 98 62 b
51 33 3 (shifted: 66/67) 89 63 c
52 34 4 (shifted: 68/69) 100 64 d
53 35 5 (shifted: 6a/6b) 101 65 e
54 36 6 (shifted: 6ec/6d) 102 66 £
55 37 7 (shifted: 6e/6f) 103 67 g
56 38 8 (shifted: 70/71) 104 68 h
57 39 9 (shifted: 72/73) 105 65 1
58 3a 106 6a 3j
59 3b ; 107 6 k
60 3¢ < 108 6c 1 .
61 3d = 109 6d m
62 3e > 110 6e n
63 3f =7 111 6f o
64 40 @ 112 70 p
65 41 A (shifted: B2/83) 113 71 g
66 42 B (shifted: 84/85) 114 72 r
67 43 C (shifted: 86/87) 115 73 s
68 44 D (shifted: 88/89) 116 74 t
69 45 E (shifted: 8a/Bb) 117 75 u
70 46 ¥ (shifted: Bc/8d) 118 76 v
71 47 G (shifted: 8e/8f) 1198 77 w
72 48 H (shifted: 90/91) 120 78 =
73 49 I (shifted: 92/93) 121 79 ¥y
74 4a J (shifted: 94/95) 122 7a z
75 4b K (shifted: 96/97) 123 76 |
76 4c L (shifted: 98/99) 124 7¢ |
77 4d M (shifted: 9a/9b) 125 7d }
78 4e N (shifted: 9¢/94) 126 7e ~
79 4f 0O (shifted: 9%e/9f) 127 7£f DEL delete

334 Character Codes @

Dec Hex Dec Hex Dec Hex Dec Hex
128 80O 160 a0 192 c0 224 e0
129 B1 161 al 193 c1 225 el
130 B2 162 a2 194 c2 226 e2
131 83 163 a3 185 e3 227 e3
132 84 164 a4 196 c4 228 e4
133 85 165 a5 197 5 229 e5
134 86 166 a6 198 cé 230 e6
135 87 167 a7 199 7 231 e?
136 88 168 as 200 <B 232 e8
137 8% 169 a9 201 <8 233 e9
138 Ba 170 aa 202 ca 234 ea
139 8b 171 ab 203 cb 235 eb
140 Be 172 ac 204 cc 236 ec
141 8d 173 ad 205 cd 237 ed
142 Be 174 ae 206 ce 238 ee
143 Bf 175 af 207 ef 239 ef
144 9%0 176 bo 208 do 240 fO
145 91 177 bl 209 d1 241 f1
146 92 178 b2 210 42 242 f£2
147 93 179 b3 211 43 243 £3
148 94 180 b4 212 d4 244 f4
149 95 181 b5 213 d5 245 f5
150 96 182 bé 214 ds 246 f6
151 97 183 b7 215 47 247 £7
152 98 184 b8 216 ds 248 f8
153 99 185 b9 217 d9 249 £9
154 9a 186 ba 218 da 250 fa
155 %b 187 bb 219 db 251 fb
156 %¢ 188 be 220 de 252 fc
157 94 189 bd 221 dd 253 fd
158 9e 190 be 222 de 254 fe
159 9f 191 bf 223 df 255 ff

335

APPENDIX 5

AMPRnet IP ADDRESS COORDINATORS

The global coordinator for IP addresses for the AMPRnet (44.x.x.x) is
Brian Kantor, WB6CYT. Brian can be reached on email
(brian@ucsd.edu) or via the AX.25 PBBS network (WBBCYT @
WB6YMH.CA.USA).

In addition, there are separate address coordinators for the major
conurbations in the United States, plus country coordinators for the rest
of the world. A more-or-less complete list of coordinators throughout
the world is included in Tables A5-1 and A5-2 below.

To get your own IP address, you should contact the coordinator closest
to you. If you happen to live in a country which is not included in the
list, you could try putting out a PBBS bulletin enquiring if there is a
coordinator yet. If you get no reply, you can then contact Brian Kantor
direct for help.

In the United Kingdom, IP address allocation is handled on a regional
basis. The regional coordinators are listed in Table AS-3.

336

AMPRnet IP Address Coordinators ®

Table A5-1: United States IP Address Coordinators

44.002.%.x%x
44.004.%.x

44.006.x.%x

44.008.%x.x
44.010.x.x%
44.012.x.x%
44.014.x.x%
44 .016.x.x

44.017.%X.%

44.018.x.x%

44.020.x.x%x
44.022.x.%
44.024.x.x%

44.026.%x.%
44.028.x%x.%
44.030.x.x%
44.032. x.x
44.034.x.%
44.036.x.x%
44.038.x.%
44.040.x.x%
44.042.x.%
44.044.x.%
44.046.x.%
44.048.x.x
44.050.x.x
44.052.x%.x
44.054.x.x
44.056.x.x
44.058.x.x
44.060.x.x%
44.062.x.%
44.064.x.%x
44 .065.x.x
44.066.x.x%
44.06B.%x.X
44.069.%2.x%
44.070.x.x
44.072 . %x.%

Bob Meyer
Douglas Thom

Don Jacob

Brian Kantor
Terry Neal
Steven King
John Shalamskas
Jeff Angus

Dana Myers
Geoffrey Joy

Fred Schneider
John 8tannard
Dennis Goodwin

Ron Henderson
Don Adkins

J Gary Bender
Bdale Garbee
Jeff Pierce
Doug Drye

Mike Abbott
Jeff Jaccbsen
Phil Akers

Ed Thorne
William Simmons
Jacgues Kubley
Ron Breitwisch
Gary Grebus
Ralph Stetson
Don Hughes
Rich Clemens
Howard Leadmon
Jim Dearras
Dave Trulli
Bcb Applegate
John DeGood
Bob Foxworth
Paul Gerwitz
Gary Sanders
Ken Stritzel

K6RTV
N60OYU

WBSEKU

WB6CYT
AAGTN
KD7RO
KJsu
WASFWI

KK6JQ
KE6QH

KoYyuM
KL7JL

WA7TTAS
KD5QN
WS5N
N3EUA
WDANMQ
KD4NC
N4QXV
WA7MBL
WA4DDE
WB1FEM
WBOROT
KASFJS
KCOOX
KSLT
KD1R
KA1MF
KBBAOB
WB3FFV
WA4ONG
WN2Z
WA2ZZX

K2EUH
WAZWPI
NBEMR
WASAEK

Calif:
Calif:

Sacramento
Silicon Valley -
S8an Francisco
Santa Barbara/
Ventura
Calif: San Diego
Calif: Orange County
Bastern Washington,Idaho
Hawaii & Pacific Islands
Calif: Los Angeles
8 F Valley
calif: Antelope Valley/
Kern County
Calif: San Bernardino and
Riverside
Colorado: Hortheast
Alaska
Washington state:
Western (Puget Sound)
Oregon
Texas: Dallas
Hew Mexico
Colorado: Southeast
Tennesee
Georgia
South Carolina
Utah
Mississippi
Massachusetts: western
Missouri
Indiana
Iowa
Hew Hampshire
Vermont
Eastern Mass
West Virginia
Maryland
Virginia (not DC)
Hew Jersey: northern
New Jersey: southern
Delaware
New York: Long Island
New York: upstate
Ohio
Chicage - WNorth Ill.

Calif:

AMPRnet IP Address Coordinators

337

Table A5-1:

United States IP Address Coordinators (continued)

44.074.
44.075.

44.076
44.077
44.078
44.080
44.082
44.08B4
44.086
44.088
44.090
44.082

44.094
44.096
44.098

44.102
44.104

44.108

44.112
44.114

44.118.
44.120.
44.122.

44.124

X. X
X.X

-X.X
SX.X
SX.X
-X.X
KX
XX
K.
-X.X
ZK.XK
XK. X

LK. X
LK. X
LK
44.100.
% 3
XX
44.106.
3
44.110.
XK. X
-X. X
44.116.

Xx. X

Xx.X

X.X

X.X

X.X
Xx. X
x.X

JK.X
44.125.
44.126.

X.X
XK

James Curran
Charles Layno
Kurt Freiberger
Rod Huckabay
Joe Buswell
John Gayman
Steven Elwood
Bob Ludtke
Reid Fletcher
Jon Bloom
Mike Wickolaus
Pat Davis

Gary Sharp
Don Bennett
Garry Paxinos
Ken Adkisson
Jeff King
Charles Greene
Tyler Barnett
James Dugal
Richard Duncan
Bob Hoffman
Steven Elwocod
Tom Kloos

Jon Andrews
unassigned
Dale Puckett
David Dodell
Earl Petersen
Karl Wagner

KA40JN NMorth Carolina (east)

WB4WOR WNorth Carclina (west)

WB5S5EBW Texas: south

KASEJX Texas: west

K5JB Oklahoma

WA3WBU Pennsylvania: eastern

N7GXP Montana

KI9MWM Colorado: Western

WB7CJO Wyoming

KE3Z Connecticut

NFON Hebraska

KDSUU Wisconsin, upper

peninsula Michigan

WDOHEB Minnesota

K4ANGC Distriet of Columbia

(waiting) Florida

WB4FAY Alabama

WBBWKA Michigan (lwr peninsula)

Wica Rhode Island

N4TY Kentucky

NEKNX Louisiana

WDSB Arkansas

N3CVL Pennsylvania: western

H7GXP H&S Dakota

wWsT7s Oregon: HNW&Portland,
Vancouver WA

WAZYVL Maine

KOHYD Kansas

WB7TPY Arizona

KF7TI Southern Nevada

KP4QG Puerto Rico

44.128 x x is reserved for testing. Do not use for operational networks.

338 AMPRnet IP Address Coordinators ®
Table A5-2: International IP Address Coordinators

44.129.x.x Japan JG1SLY Tak Kushida, JH3XCU
Joly Kanbayashi

44.130.x.x Germany DLATA Ralf D Kloth

44.131.x%.%x United Kingdom G6PWY Chris Baron (G6PWYRGB7PWY)

44.132.x.% Indonesia YB1BG Robby Soebiakto

44.133.x.% 8Spain BAADQY Jose Antonioc Garcia
Madrid (EA4DQX € EA4DQX)

44.134.x.x Italy I2KFX

44.135.x.x Canada VE3GYQ David Toth

44.136.x.x Australia VK2ZXQ John Tanner

44.137.%x.%x Holland PAOGRI Gerard Van Der Grinten

44.138.x.% Israel 4X60J Ofer Lapid

44.139.x.x Finland OHIMQK Matti Aarnio

44.140.%x.x%x Sweden SMOIES Lennart

44.141.x.% Norway LA4JL Per Eotang

44.142.%x.x BSwitzerland HBSCAT Marco Zollinger

44,143.x.x Austria OE1KDA Krzysztof Dabrowski

44.144.x.%x Belgium ON7LE

44.145.x.x Denmark 0zZ6QI Karsten

44.146.x.x Phillipines DUlUJ Eddie Manolo

44.147.%x.% New Zealand

44.148.x%x.%x Ecuador HC5K Ted

44.1459.x.% Hong Kong VS6EL

44.150.x.x Yugoslavia YU3FK Iztok Saje

44.151.x.x France FC1BQP Pierre-Francois Monet

44.152.x.x Venezuela OA4KO/YVS Luis Suarez

44.153.x.%x Argentina LU7ABF Pedro Converso

44.154.%.% Greece SV1IW Manos

44.155.x.x Ireland EISGL Paul Healy

44.156.x.% Hungary HASDI Markus Bela

44.157.x.x Chile CE6EZB Raul Burgos

44.158.x.% Portugal CTIDIA Artur Gomes

44.159.x.% Thailand HS1JC Kunchit Charmaraman

44.160.%x.x 8South Africa ZS6BHD John

44.161.x.% Luxembourg LX1YZ Erny Tontlinger

44.162.%x.x Cyprus 5B4TX C. Costis

44.163.%.x Central America TI3DJT Chuck Hast

44.164.x%.x Surinam PZ2AC Otto Morroy

44.165.x.%x Poland SPSWCA Andrzej K. Brandt

44.166.x.x Korea HLSTG Gary ?

44.167.%x.x India VU2LBW Lakshman ("Lucky") Bijanki

44.168.3x.% Taiwan BYVSAF Bolon

44.193.x.x Outer Space-AMSAT W3IWI Tom Clark

44.199.%x.x Nosland G3NRW Ian Wade ©

® AMPRnet IP Address Coordinators

339

Table A5-3: United Kingdom Regional IP Address Coordinators

44
44
44
a4
44
44
44
44
44
44
44
44

44

44

44.
44.
44.

44.
44.

.131.2.
.131.3.

.131.4.

.131.5.
.131.6.
.131.7.
.131.8.
44.
.131.10

131.9.

-131.11
.131.12

.131.15.
131.16.
131.17.
131.18.

.131.19.
131.20.
131.21.

44.131.1.x

E

E

MoK oMK

x
X

- X
X

.131.13.x
.131.14

X

R XX

Dave

Paul
Terry

Jonathan

Ian
Paul

Nick
Alan
Alan

Alan
Robin

Robin
Susan

Dave
Dave
Dave
Harry

Andrew
Mike
Dave

GATUP @ GB7BPL

GENRY & GBTNRY
GlFNQ @ GB78AM

G4FLX & GB7HMZ

G3NRW & GB7BIL
GlPLT @ GB3XP
G8GGI & GB3XP
GB8ZHR & GB3XP
G3FKN f GB7PLY
GW4HDR & GBTOAR

GW4HDR @ GB7OAR
GM4YED @ GB7EDN

GMAYED @ GBTEDN
GM48GB f GB7SAN

GIOPEZ @ GBTTED
GBKBB f GB7MXM
G4WPT f GB7ENM
G6AUC @ GB7NCL

GBFSL @ GBTHSN
G6DHU R GBTWRW
GAWPT @ GBTBNM

Lancs, Cheshire,
Merseyside, Cumbria, Gtr
Manchester, IOM

N Humberside, N/8/W Yorks
Hereford & Worcs, Staffs,
Shropshire, Warks,

W Midlands

S Humberside, Derbys,
Leies, Lincs, MHotts
Beds, Cambs, Northants
Berks, Bucks, Oxon

Gtr London Bouth, Surrey
Kent, E/W Sussex

Devon, Cornwall

Dyfed, Gwent, Powys,
Mid/8/W Glamorgan

Clwyd, Gwynedd

Grampian, Highlands,
Orkneys, Shetlands,
Tayside, W Isles
Borders, Fife, Lothian
Central, Dumfries &
Galloway, Strathclyde
Northern Ireland

Essex, MNorfolk, Suffolk
Dorset, Hants, Wilts
Cleveland, Durham,
Northumberland, Tyne &
Wear

Gtr London North, Herts
Avon, Gloucs, Somerset
IOW, Channel Is

341

APPENDIX 6

REFERENCES

This Appendix lists some worthwhile reference material for further
study.

“Internetworking with TCP/IP”
by Douglas Comer
Published by Prentice-Hall
ISBN 0-13-470188-7

(The classic theoretical reference work on TCP/IP protocols).

“TCP/IP Network Administration”
by Craig Hunt
Published by O’Reilly and Associates
ISBN 0-937175-82-X

(A new and excellent book on the practical aspects of setting
up, managing and troubleshooting a TCP/IP network. Good
coverage of routing, domain name system and mail handling.
Highly recommended).

“Your Gateway to Packet Radio”
by Stan Horzepa
Published by ARRL
ISBN (0-87259-26-34
(The bible for AX.25 “native mode™ packet radio).

342

References ®

“Computer Networking Conference Proceedings”

Edited and published by ARRL
225 Main Street, Newington, CT 06111, USA

11th Proceedings: Teaneck, New Jersey (Nov 1992)

10th Proceedings: San Jose, California (Sep 1991)
Sth Proceedings: London, Ontario (Sep 1990)

8th Proceedings: Colorado Springs (Oct 1989)

7th Proceedings: Columbia, Maryland (Oct 1988)
6th Proceedings: Redondo Beach, CA (Aug 1987)
5th Proceedings: Orlando, Florida (Mar 1986)

4th Proceedings: San Francisco (Mar 1985)

3rd Proceedings: Trenton, New Jersey (Apr 1984)
2nd Proceedings: San Francisco (Mar 1983)

1st Proceedings: Gaithersburg, Maryland (Oct 1981)

(Major contributions from the leaders in packet radio).

(This set of proceedings contains the paper on the KISS
protocol by Mike Chepponis, K3MC and Phil Karn, KA9Q).

“QEX:

The ARRL Experimenters’ Exchange”
Edited by Jon Bloom, KE3Z.
Published monthly by ARRL (address as above)

(Incorporating the “Digital Communications” column by
Harold Price, NK6K, QEX provides detailed technical articles
on all aspects of radio communication, including packet).

“Packet International — T”

Edited by Ian Wade, G3NRW.

Published quarterly by BARTG. Details from lan Brothwell,
G4EAN, 56 Arnot Hill Road, Amold, Nottingham NGS5 6LQ,
United Kingdom,

(Detailed technical articles and news of the packet radio scene).

INDEX

343

The following conventions apply in this index:

= Internet Protocol Names and DOS environment variables are in
Times New Roman upper-case; e.g. TCP, TZ

e DOS commands are in Arial bold upper-case; ¢.g. UUENCODE

e NOS commands are in Arial bold lower-case; e.g. status

e NOS command parameters are in Arial italic; e.g. status

e NOS filenames and directory names are in Times New Roman
italic lower-case; e.g. /domain. ixt

e DOS filenames and directory names are in Times New Roman
italic upper-case; e.g. AUTOEXEC.BAT.

@ (see NOS BBS commands)

7 (see help command, NOS BBS
commands)

| (see shell command)

(see Comments)

% (see Intermediate_mailhost, NOS BBS
commands)

T (sec Packet International)

3¢500 parameter (see attach command)
7-layer Reference Model: 17,49

A

Abbreviated Commands: 14,100
Abbreviations: 11

abort command: 110,111,140,297
Aborting an ftp command: 140

accept parameter (see netrom command)
8ccess parameter (see ip command)
Access permissions: 126-127
Acknowledgements: 4

acktime parameter (see netrom command)
Acronyms: 11

344 Index

add parameter (see arp, ax26 route, scc: 298
netrom route, route commands) sifp: 298
addprivate parameter (see route command) attend parameter (see MbOX command)
address parameter (se¢ ip command) attended command: 109,116,298
Address Coordinators: 335-339 ATTRIB command
Addressing Mail: 188 AUTOEXEC BAT (see Files)
addserver parameter (see domain, nntp, /autoexec.nos (see Files)
popmail commands) Autobaud: 99
Alias: 88,149,202,204-209,217,263,311 Automated FTP login: 137
alias parameter (see netrom command) autoroute command: 111,298
/alias (see Files) AWLEN command: 46,73
Amiga: 295 AX.25, Amateur X.25 Link Layer Protocol: 12
AMPRnet: 12,19,335-339 ax25 command: 29,298-299
Anon account: 123-127 be: 274,298
Anonymous account: 123-127 beinterval: 274,298
ANSI Escape Sequences: 96 bekick: 274,299
ANSLSYS (see Files) betext: 274,299
Apple Macintosh: 295 biimit: 299
Application Layer: 50 dest: 299
Archimedes: 295 digipsat: 299
Area command (see NOS BBS commands) filter: 299
Area (mailbox): 149-150 flush: 299
areas (see Files) heard: 272,299
ARP, Address Resolution Protocol: 12,28, hearddest: 299
235-238,281-282 irtt: 299
arp command: 28,111,113,235,297-298 kick: 299
adad: 28,235,259-261,297 maxframe: 299
drop: 235,297 mycalk 118,236,299
flush: 238,298 paclen: 299
publish: 238,298 pthresh: 299
ARP Hardware Code: 272 resef: 299
ARRL: 341-342 retry: 299
Digital Communications Committee: 342 route: 29,111,233,299
QEX: 342 route add: 29,231-232,299
ASCII Character Set: 332-334 route drop: 233,299
ascil subcommand (see ftp command) route mode: 234,299
asy parameter (see attach command) status: 299
asystat command: 111,298 £3: 299
Atari: 295 14299
attach command: 52,112,298 timertype: 299
3c500:298 version: 299
asy: 52,95-96,118-119,298 window: 299
axip: 298 AX.25 Mail Forwarding (see PBBS Mail
drsi: 298 Forwarding)
oagle: 298 AX.25 Routing: 231-234
hapn: 298 AXIP, AX.25-over-IP protocol: 12
hs: 298 @xip parameter (see attach command)
kiss: 298
netrom: 253,298
packat: 298
pc100: 298
pi: 298

-b Startup Option: 97
Backsiash (\): 14
batch parameter (see smip command)
Batch files
Battery-backed RAM: 71
Baudrate: 119
BAYCOM AX.25 driver: 30,37
BRBS (see NOS BBS)
BBS account: 123-127
bbs command: 70,110,112,145,161,299-300
BBS Commands (see NOS BBS
Commands)

BBS Login: 143-146,161-162
be parameter (see ax28 command)
beinterval parameter (see ax25 command)
bekick parameter (see ax26 command)
bcnodes parameter (see netrom command)
betext parameter (see ax26 command)
Beacons (AX.25); 274
binary subcommand (see ftp command)
Binary file transfers

BBS: 167,168,175-177

FTP: 138-139
blimit parameter (see ax26 command)
BM, Bdale's Messy Mailer: 16,25
BOOTP: 12
bootp command: 113,300

defaultfile: 300

dns: 300

dyip: 300

homedir: 300

host: 300

logfile: 300

logscreen: 300

rmhost: 300

start: 300

stop: 300
bootpd command: 113,300
broadcast parameter (see ifconfig command)
BTIO flags (see trace command)
Bulletin: 15
Bulletin ID (BID): 228-229
Bye command (see NOS BBS commands)

C

Cache (domain): 289
cache clean parameter (see domain

command)

cache list parameter (see domain command)

cache size parameter (see domain
command)

cache wait parameter (see domain
command)

call parameter (see netrom command)

Callsign: 14,15

Canonical Name (CNAME): (see Resource
Records)

cd command: 106,110,300

cd subcommand (see ftp command)

CD-ROM: 126

Character Codes: 331-334

CHAT (see TTYLINK)

chat command: 112

Chat command (see NOS BBS commands)

check parameter (see hop command)

choketime parameter (see netrom command)

circular parameter (see mem command)

Clarkson Drivers: 30,53,296

CLEANQ.BAT (see Files)

Client: 63-70

Client/Server: 63-70

Clockwork View (see VIEW)

close command: 110,300

cls command: 109,300

Codes: 331-334

COM ports (see Serial port)

comm command: 53,113,300

Command ground rules: 13-14,115

Command interpreter: 38

CONFIG.SYS (see Files)

CONMODE command: 46

Connect command (see NOS BBS
commands)

connect command: 52,110,146,232-233,
272-274,300

connect parameter (see netrom command)

Control Code (KISS): 43-44,271

Control Files: 311-330

Conventions: 13

Crynwr Packet Drivers: 296

CTS, Clear to Send: 72-73

CWID Interval (see MID command)

D

-d startup option: 97,98
Daemon: 64

/dump: 83
/dump/record: 83,173
/dump/trace: 83
/finger: 83
/public: 84
/public/masters: 85
/public/nosdocs: 85
/public/nosview: 85
/seripts. 85
/spool: 85
/spool/help: 85,164
/spool/mail; 85,148,149,157,158,191°
/spool/mgueune: 85,147,191
/spool/news: 85
/spool/rquene: 85,157,158
/spool/signatur: 85
/tmp: 85
disconnect command: 110,273,301
Distribution lists (see Alias)
dns parameter (see bootp command)
Domain cache: 289-290
Domain Name System (DNS); 28,61,287-291
DNS queries: 287-291
domain command: 113,117,301
addserver: 117,287,301
cache clean: 117,289-290,301
cache list: 289,301
cache size: 291,301
cache wait: 290,301
dropserver: 291,301

346 Index
DARPA, Defense Advanced Research Projects fist: 291,301
Agency: 23 maxwait: 291,301
Datagram: 234 query: 301
Data Link Layer: 49,52-53 ramote add: 301
debug parameter (see mem command) remofe drop: 301
DEC VAX/VMS: 295 remote list: 301
defaultfile parameter (see bootp command) remote retry: 301
dele subcommand (see ftp command) remote trace: 301
delete command: 110,300 retry: 301
derafe parameter (see netrom command) suffix; 58,117,301
description parameter (see ifconfig trace: 112,287,301
command) translate: 117,301
dest parameter (see ax25 command) verbose: 117,118,301
Destination: 16,17 xyzzy: 301
detach command: 112,300 Domain suffix: 58
dialer command: 52,53,113,300-301 /domain.txt (see Files)
digipeat parameter (see ax25 command) Doftted-decimal notation: 55
Digipeater routing: 29,231-234 Download command (see NOS BBS
dir command: 106,110,301 commands)
dir subcommand (see ftp command) Download UUencode command (see NOS
directory parameter (see nntp command) BBS commands)
Directories: 83-85 Drivers

AX.25 (Baycom): 30,37
Clarkson: 30,53,296
Ethemet: 314
drop parameter (see arp, ax256 route,
netrom route, route commands)
dropserver parameter (see domain, nntp,
popmail commands)
DRSI PCPA 8530 Card: 30
drsi parameter (see attach command)
drsistat command: 111,301
DTR, Data Terminal Ready: 119
dump command: 109,111,301
/dump (see Directories)
/dump/record (see Directories)
/dump/trace (see Directories)
/dump/record/* * (see Files)
/dump/session.log (see Files)
/dump/trace/*. * (see Files)
dyip parameter (see bootp command)

E

Eagle 8530 card: 30

eagle parameter (see attach command)
eaglestat command: 111,301

echo command: 111,301

echo parameter (see icmp command)
efficient parameter (see mem command)
ELM Mailer: 16,25

Email (see Electronic mail)

Encap interface: 121

encapstulation parameter (see ifconfig
command)

End Delay: 119

End Node (see NET/ROM)

Environment Variables: 81,87

eol command: 111,301

ESC key: 103,104,109

Escape command (see NOS BBS
commands)

escape command: 104,109,116,301

Escape to DOS: 102

Escape to Session Manager: 103

Ethernet: 30

etherstat command: 111,301

EXIT command: 96,102

exit command: 109,301

expert parameter (see MboX command)

External Mailer: 16,145

F

F10 (Escape to Session Mgr): 103,104,109
FEND/FESC/TFEND/TFESC (KISS): 43-44
File Access Permissions: 123-128
Files: 83-94
DOS:
C:\AUTOEXEC.BAT: 76,86,312
C\CONFIG.SYS: 76,86,317
C:\DOS\ANSISYS: 76,86
N:\AX25.COM: 86
NACLEANQ.BAT: 86,317
N:WOSxocex. EXE: 86
N:\WOSENV.BAT: 76,81,86,265,325
NAPCELM.EXE: 87
NAPCELM MSG:; 87
NAPCELM.RC: 87,265
N:AREMOTE.BAT: 87,116-117,326
NASTARTNOS.BAT: 87,96-98,328
N\UUDECODE.EXE: 88
N:AUUENCODE EXE: 87
N:\WWIEW.COM: 88
NAVIEW HLP: 88
NAWDSO003E.COM: 88
NOS:
/alias: 88,149,202,204-209,217,263,311
/autoexec.nos: 88-90,97,115-122,
155-160,264,312-317
/domain.txt: 28,55-62,90,263,318-319
Mipusers: 91,123-128,161,263,322-323

/hosts.net: 90
/net.re: 91,137,263,324
/netrom.sav: 91
/popusers: 91,151,211-212,263,326
/seqf: 91
/signatur: 91,264,327
/dump/record/®,*: 91
/dump/session.log: 91,215,283
/dump/trace/*.*; 91,268-269
/finger/sysop: 92,122,264,329
/public/masters/®.*: 92
/public/nosdocs/*.*: 92
/public/nosview/®.* : 92
/seripts/fkeys.lst: 92,105,319
/seripts/fkeys.ser: 92,104,320-321
/scripts/kisson.dia: 92,98-100,118,264,324
[seriptsitncreset.dia: 92,106-107,329-330
/scripts/tnereset.scr: 92,106-107,330
/spool/areas: 92,150,155,164-165,265,311
/spool/forward.bbs: 92,151,217,219,222,
227-228,265,321
/spoolthistory: 92,147,148,228-229
/spool/mail.log: 93
/spool/rewrite: 93,147,148,151,
199-204,209,213,217-226,265,327
/spool’help/* hip: 93,164
/spool/mail/*.txt: 93,149,165,191,211
/spool/mgueune/*.Ick: 93,209-210
/spool/mqueue/sequence.seq: 93,191
/fspool/mquene/™.txt: 93,191
/spool/mgqueue/*. wrk: 93,191,209
/spool/news/*. *; 93
/spool/rquene/*. txt: 93
/spool/rquene/* wrk: 93
/spool/signatur/*.sig: 93,265
/tmp/*.*, 93
filter parameter (see ax25 command)
Filtering NET/ROM Broadeasts: 258-259
FINGER protocol: 12
Finger command (see NOS BBS
commands)
finger command: 112,121,302
/finger (see Directories)
/finger/sysop (see Files)
fkey command: 104-105,109,302
Jkeys.Ist (see Files)
fkeys.ser (see Files)
flow subcommand (see ftp command)
Flow Control: 73
flush parameter (sec arp, ax25, route
commands)

348 Index
Forward command (sec NOS BBS commands)
commands) gateway parameter (see Smitp command)
forward parameter (see ifconfig command) Gateway Server (NOS BBS)
Jorward.bbs (see Files) get subcommand (see ftp command)
Forward Slash (/): 14 Graphics memory: 75,96-97
Forwarding GRINOS, 295
IP: 239-249 groups parameter (see nntp command)

NET/ROM: 251-262

SMTP: 148,185-209

PBBS: 21,151-153

POP: 151,152
Frame End (see FEND)
Frame Escape (see FESC)
free parameter (see mem command)
FTP, File Transfer Protocol: 12
ftp command: 24,111,112,129-140,302

ascii: 24,302

batch: 302

binary: 24,302

cd: 133,302

dele: 136,302

dir: 133,302

flow: 133,302

get: 24,133,302

hash: 133,302

list: 302

Is: 133 302

mgetf: 135,302

mikdir: 302

mput: 302

nist: 302

pass: 132,302

put: 24,133,138,302

pwd: 133,302

quit: 133,302

rmdir: 302

type: 138,302

user:132,302

verbose: 302
FTP Inc Packet Interface: 53
/fipusers (see Files)
ftype command: 111,129,303
Full duplex: 119
Function Key Mapping: 104-1035
fwdinfo parameter (see mboX command)

G

garbage parameter (see mem commandy
Gateway: 17
Gateway command (see NOS BBS

Guest account: 123-127

H

haddress parameter (see mbox command)
Half duplex: 119
hapn parameter (see attach command)
HAPN 8273 adapter: 30
hapnstat command: 111,303
Hardware Checkout: 71-73
hash subcommand (see ftp command)
Heard (sce NOS BBS commands)
heard parameter (see ax25 command)
hearddest parameter (see ax26 command)
Help command (sec NOS BBS commands)
help command: 100-101,109,303
help/* hip (see Files)
Hexadecimal Conversion Table: 331
HID command: 46
Hierarchical Addressing: 224-226
history (see Files)
HOME environment variable: 81,87
homedir parameter (see bootp command)
hop command: 27,111,279,282-285,303
check: 27,282-285,303
maxtt: 282,303
maxwait: 283,303
queries: 283,303
trace: 112,283,303
HOST command: 46
host parameter (see bootp command)
Host Mode (see TNC)
Hostid: 118
Hostname: 14,113,118
hostname command: 113,118,303
/hosts.net (see Files)
How to get NOSview: 9
HPOLL command: 46
HP-UX: 296
hs command: 303
hs parameter (see attach command)

| PR

IBM PC (see PC)
ICMP, Internet Control Message Protocol:
12,283-285
icmp command: 111,303
acho: 303
sfatus: 303
trace: 112,303
ifbufsize parameter (see Mem command)
ifconfig command: 111,112,120-121,122,303
broadcast: 121,303
descnption: 120,155,156,170,303
encapsulation: 120,303
forward: 303
Ip_address: 120,303
linkaddress: 121,303
mtu: 120,303
netmask: 121,303
mbuf: 121,303
Image mode: 129
IN A, IN CNAME, IN MX, IN NS (see
Resource Records)
Incoming Bulletins: 203-204,206
Info command (see NOS BBS commands)
info command: 101,109,303
Info parameter (see netrom route command)
Interactive UNIX: 295
Interface: 7,30
interface parameter (see netrom command)
Intermediate mailhost (%): 188
Intemnet Protocols: 23
Internet Stack: 49
Intemetwork Layer: 50
/O Address: 95
IP, Internet Protocol: 12,23
ip command: 111,303
access: 303
address: 118,236,303
rimer: 303
status: 111,303
fth: 303
ip_address parameter (see ifconfig
command)
1P Address: 27
IP Address Coordinators: 335-339
IP Gateway: 18,241-248
IP routing/forwarding: 239-249
IRQ: 95
irtt parameter (see ax25, netrom, fcp
commands)
isat command: 109,116,303

180, International Standards Organisation: 17

J

JNOS: 11,295

Jjumpstart parameter (see MboxX command)

Justheard command (see NOS BBS
commands)

K

KA9Q (Phil Kam) 4, 11

Keyboard characters: 15

Keyboard mapping: 104,310

kick command: 110,112,140,303

kick parameter (sec ax26, mbox, netrom,
nntp, pop, smtp, tcp commands)

Kill command (see NOS BBS commands)

Kill parameter (see SMtp command)

KISS, "Keep It Simple, Stupid!" protocol:
12,31,43-45,342

kiss parameter (see attach command)

KISS command: 46,99

KISS Control Codes: 44,271

Kiss Mode (see TNC)

kisson.dia (see Files)

L

Label: 7

LASTDRIVE: 76

Link Address: 28

linkaddress parameter (see ifconfig
command)

Link Layer (see Data Link Layer)

List command (see NOS BBS commands)

list parameter (sce domain, popmail, smtp
commands)

list subcommand (see ftp command)

Listener (see Client/Server)

listservers parameter (sec nNtp command)

load parameter (see netrom command)

Localhost (see loopback)

lock command: 109,304

Lock files: 97

log command: 109,116,304

logfile parameter (see bootp command)

Login Name: 124,181

350

Index

logscreen parameter (see bootp command)
lookup parameter (see route command)
Loopback, Loopback address: 53,70,121,137
loopback (domain.txt): 55-56

Is subcornmand (see ftp command)

Izw command: 110,304

Macintosh: 295
mail (see Files)
Mail: 15,142
mail command: 110,145,304
mailbox parameter (see pOp command)
Mailbox password: 181-184
Mailbox server: 141
Mail Exchanger: 193-197
Mail Gateways: 186-187
MAILER environment variable: 81,87,145
Mailer: 15,25,141-142
Mail forwarding: 26,148,185-229
mailhost parameter (see pop command)
mail.log (see Files)
mail/®.txt (see Files)
maxclients parameter (see sSmtp command)
maxframe parameter (sec ax26 command)
maxmsg parameter (see Mbox command)
maxttl parameter (sec hop command)
maxwait parameter (see domain, hop
commands)

mbox command: 110,111,304

atfend: 159,304

expert: 159,304

fwdinfo: 159,304

haddress: 159,222,304

Jjumpstart: 304

kick: 152,153,159,220,224,304

maxmsg: 159,304

motd: 159,304

nrid: 159,304

operator: 304

password: 159-160,304

qth: 159,222,304

secure: 159,160,304

smtptoo: 159,223,304

status: 304

timer: 152,153,219,304

tiptimeout: 304

frace: 304

utc: 159,222-223,304

zipcode: 159,223,304

Mbxusers command (see NOS BBS
commands)

mem command: 109,111,304

circular: 304

debug: 304

efficient: 304

free: 304

garbage: 304

ifbufsize: 304

minheap: 304

nibufs: 304

sizes: 304

status: 304

thresh: 304
MEMMAX: 75,96
Message: 15
mget subcommand (see ftp command)
MID command: 99
minheap parameter (see mem command)
minqualify parameter (see netrom command)
mkdir command: 110,304
mikdir subcommand (see ftp command)
mode command: 112,234,253,304
mode parameter (see ax25 route, smtp

commands)

Modem Control: 30,72-73
Monitoring FTP transfers (#): 134-135
more command: 102-105,110,304
Morse Identification (MID): 99,100
motd command: 110,117,305
motd parameter (see mboX command)
mput subcommand (see fip command)
mgqueue (see Files)
maqueue/™ Ick (see Files)
mqueue/* txi (see Files)
maqueue’*. wrk (see Files)
mss parameter (see {Cp command)
mitu parameter (see ifconfig command)
muititask command: 109,116
MX, Mail Exchanger: 34,35,193-197
mxlookup parameter (see smitp command)
MYCALL command: 99
mycall parameter (sec ax26 command)

N

Native Mode (see TNC)

NET: 11,295

netmask parameter (see ifconfig command)
/net.rc (see Files)

NET/ROM: 11,12,21,251-262,275-278

Index

NET/ROM Alias: 15,256,258,275-276
Netrom command (see NOS BBS
commands)

nefrom parameter (see attach command)
netrom command: 111,305

acktime: 254,305

affas: 256,258,305

benodes: 253,254,276,305

call: 256,258,261,305

connect. 262,275,278.305

choketime: 254,305

derate: 254,305

interface: 256,258,305

irtt: 254,255,305

kick: 305

load: 277,305

minquality: 254,255,258,305

nodefiter. 258-259,305

nodetimer. 254,255,305

obsotimer: 254,255,305

promiscuous: 258,305

qiimit: 254,255,305

reset: 305

retries: 254,255,305

route: 111,275,305

route add: 259-262,305

route drop: 305

route info: 278,305

save: 277,305

status: 278,305

timertype: 254,255,305

ft: 254,256,305

user: 305

verbose: 252,253,305

window: 254,256,305
/netrom.sav (see Files)
Network Connectivity Services: 27
Network Layer: 49,50
Network Mask (see ifconfig command)
nibufs parameter (see Mem command)
Nickname (ses CNAME, Resource Records)
nist subcommand (see ftp command)
NNTP, Network News Transfer Protocol: 12
nntp command: 111,112,305

addserver: 305

directory: 305

dropserver: 305

groups: 305

kick: 305

listservers: 305

quiet: 306

trace: 112,306

351
nodefilter parameter (see netrom command)
Nodes command (see NOS BBS

commands)

nodelimer parameter (see netrom command)
NOS: 11,22
Command Set Summary: 109-113
Directory Tree: 78
File Tree: 79,84
Mailer: 141,162-166
Protocols: 51
Startup: 96-99
Where to get NOS: 295-296
NOS BBS: 16,25,141-184
File Server: 141-142,166-168,173-179
Finger Server: 141-143,171
Gateway Server: 141-143,168-170
Mailbox Server: 141-142,162-166
Remote Sysop Server: 141-143,171,181-184
Setup: 155-160
NOS BBS Commands: 161-171
7162
Area: 150,164-165
Bye: 163
Chat: 162
Connect: 168-169
Download: 166,174-175
Download UUencoded (DU): 167,
175-177
Escape: 163
Finger: 171
Gateway: 162
Help: 163
Info: 164
Justheard: 168
Kill: 165
List: 166
Mbxusers: 164
Netrom: 168
Nodes: 168
Operator: 158,163,168
Ports: 156,168,170
Read: 166
Send: 166
Send Forward: 166
Send Reply: 166
Telnet: 170
Upload: 168,177-178
Verbose: 166
What:168,173-174
Xpert: 164
Zap: 168,179
@ Remote Sysop: 171

352

Index

NOSENV.BAT (see Files)

NOSgas, NOS Get-Away Special: 9
NOSland: 33

NOS root: 14,77,83

NOSview: 7,76

NOSVIEW.ZIP, NOSVW244.ZIP: 10
nrid parameter (see mboXx command)
NRS, NET/ROM Serial Protocol: 12,31
nrstat command: 111,306

(o)

obsotimer parameter (sece netrom command)
operator parameter (see MboX command)
Optimising domain.tet: 60

Optimising DOS: 75-76

Sorigin (domain.txt): 60,62

Origin: 16,17

08/2: 296

O8I, Open Systems Interconnection: 17,49
OSI Router: 18

O8I stack: 50

Other Versions of NOS: 10,295-296

P

PAOGRI, Gerard van der Grinten: 11,295
PAC/COM PC100 card: 30
packet parameter (see attach command)
Packet Intemnational: 342
paclen parameter (see ax28 command)
PAD, Packet Assembler/Disassembler: 37,38
param command: 47,106,111,113,119,306
PARITY command: 46
pass subcommand (see fip command)
password parameter (see mboX command)
Password

bbs: 161-162

fipusers: 123-125

mailbox: 181-184

popmail: 211-214
PBBS Mail Forwarding: 21,26,217-229
PBBS Reverse Forwarding: 21,220
pc100 parameter (see attach command)
PCEIm Mailer: 16,25,144-145
PCELM MSG (see Files)
PCELM.RC (see Files)
PCPA 8530 card: 30
Persistence: 119

Physical Layer: 49-52
pi parameter (see attach command)
PID, Protocol Identifier: 54,271
PING, Packet Internet Groper protocol: 12
ping command: 27,112,279-282,306
Platforms: 295-296
PMNOS, Presentation Mgr NOS (08/2): 296
PMS, Personal Messaging System: 16,39
POP, POP2, POP3 protocols: 12
pop command: 110,112,306

Kick: 306

maitbox: 306

mailhost: 306

quiet: 306

timer: 306

userdata: 306
popmail command: 110,112,307

addserver: 213,307

dropserver: 214,307

kick: 211,214,307

fist: 214307

quiet: 214,307

trace: 214-215,307
POP Mail Forwarding: 26,151,152,211-215
/popusers (see Files)
Port, port number: 64-66, 68-70
Ports command (see NOS BBS

commands)
Poste Restante (see POP Mail Forwarding)
PPERSIST command: 46
PPP, Point-to-Point Protocol: 12,31
PPP command: 113,307
Preference value: 59,194-195
PROMPT symbol: 96,98
promiscuous parameter (sec netrom
command)

Protocol Stacks: 49-50
Pps command: 109,111,307
pthresh parameter (see ax26 command)
/public/masters (see Directories)
/public/nosdocs (see Directories)
/public/nasview (see Directories)
publish parameter (see arp command)
put subcommand (see fip command)
pwd command: 106,110,307
pwd subcommand (see ftp command)

Q

QEX: 342
qlimit parameter (see Netrom command)

Index

353

gth parameter (see mbox command)

queries parameter (see hop command)

query parameter (see domain command)

quiet parameter (see nntp, pop, popmail,
smtp commands)

quit subcommand (see ftp command)

R

Radio callsign (see Callsign)

rarp command: 112,307

RAWHDLC command: 46

RD, Receive Data: 72

Read command (see NOS BBS
commands)

Read-only files: 127-128

reclzw parameter (see sSmtp command)

record command: 109,175-176,307

record/®. * (see Files)

References: 341-342

remote command: 112,308

remote add parameter (sec domain
command)

remote drop parameter (see domain
command)

remote list parameter (see domain command)

Remote login: 24

remote relry parameter (see domain
command)

Remote Session Manager: 181-184

Remote Sysop command (sece NOS BBS
commands)

remote trace parameter (see domain
command)

REMOTE.BAT (see Files)

rename command: 110,308

Repeat last command (*B): 105

Reply command (see NOS BBS
commands)

reset command: 104,108,110,112,273,308

resef parameter (see ax25, netrom, tcp

command)
Resource Records: 55-62
Address (A): 56-58
Canonical Name (CNAME): 58
Mail Exchange (MX): 59,194-195
Name Server (NS): 60-61
retries parameter (see Netrom command)
retry parameter (see ax256, domain
commands)
Reverse forwarding (AX.25): 21,152,153

rewrite (see Files)
RIP, Routing Information Protocol: 13, 30
rip command: 111,112,308
RLOGIN, Remote Login protocol: 13
rlogin command: 24,112,308
rmdir command: 110,308
rmdir subcommand (see ftp command)
rmhost parameter (see bootp command)
route parameter (see ax25, netrom
commands)
route command: 111,240-247,308
add: 240-247,259,260-261,308
addprivate: 245,308
drop: 245,308
flush: 308
lookup: 308
route add parameter (see netrom command)
route drop parameter (see netrom command)
route info parameter (see netrom command)
Routing
AX.25:29,231-234
NET/ROM: 29,251-262
IP: 29,239-249
Mask: 245-247
TheNet X1G: 248-249
Updates: 29
Wormbhole: 30
Routing Header (PBBS R:): 222-223
rqueue (see Directories)
rqueue/*.txt (see Files)
rqueue/*. wrk (see Files)
RS-232 cable: 72-73
RSPF, Radio Shortest Path First protocol:
13,30
rspf command: 111,308
riimer parameter (see ip command)
RTS, Request to Send: 72-73,119
rif paramelter (see tcp command)
rxbuf parameter (see ifconfig command)

S

-§ Startup Option: 97

save parameter (see netrom command)
scc parameter (see attach command)
scestat command: 111,308

SCO: 296

/scripts/fkeys.st (see Files)
fseripts/fkeys.scr (see Files)
/seripts/kisson.dia (see Files)
/scripts/tneresel.dia (see Files)

/scripts/tncreset.scr (see Files)
secure parameter (see mboX command)
Send command (see NOS BBS
commands)
Send Forward command (see NOS BBS
commands)
Send Reply command (see NOS BBS
commands)
sendlzw parameter (see sSmitp command)
/seqf (see Files)
sequence.seq (see Files)
Serial port: 30,95
Session
escape to the Session Manager: 103
starting a session: 102-103
terminating a session: 104
session command: 103-105,110,111,308
Session Layer: 50
session.log (see Files)
Session Manager: 31,32,54,95-108
SET command: 81,145
SHELL variable: 76
shell command: 102,109,308
Shell Escape (see Escape to DOS)
Shifted ASCII Character Codes: 332,333
/signatur (see Files)
sizes parameter (sec Mem command)
skick command: 110,309
Slash conventions: 14
SLIP, Serial Link Internet Protocol: 13,31
SLFP, Serial Link Frame Protocol: 13
slfp parameter (see attach command)
Slottime: 119
SMTP, Simple Mail Transfer Protocol: 13
smitp command: 110,112,309
batch: 309
gateway: 158,309
kick: 148,149,158,192,309
kill: 210,309
list: 209,309
maxclients: 309
mode: 157,158,309
mxlookup: 309
quiet: 309
recizw: 309
sendlzw: 309
fimer: 148,149.158,192,309
trace: 112,309
usemx: 158,309
SMTP Client/Server: 190
SMTP Gateway: 196-197
SMTP Mail Forwarding: 26,148-149,185-209

SMTP/PBBS mail gateways: 186-187,218

smiptoo parameter (see mboX command)

Socket: 66-67, 97

socket command: 111,309

Software Installation: 75-81

Source: 16,17

source command: 104,109,309

/spool/areas (see Files)

/spool/forward.bbs (see Files)

/spool/history (see Files)

/spool/mail.log (see Files)

/spool/rewrite (see Files)

/spool/help/*.hlp (see Files)

/spool/mail/*.txt (see Files)

/spool/mqueue/®.Ick (see Files)

/spool/mguene/sequence.seq (see Files)

/spool/mqueune/*.ixt (see Files)

/spool/mqueue/* wrk (see Files)

/spool/news/*.* (see Files)

/spool/rqueue/*.txt (see Files)

/spool/rqueue/* wrk (see Files)

/spool’signatur/®.sig (see Files)

Stack (see Protocol Stacks)

START command: 46,73

start parameter (see bootp command)

start command: 110,112,156,212,253,309

Starting NOS: 96-98

STARTNOS.BAT (see Files)

Startup Options: 97-98

Station Identification: 14,118

status command: 102,109,309

status parameter (sce ax28, icmp, ip, mbox,
mem, netrom, tcp commands)

STOP command: 46,73

stop parameter (see bootp command)

stop command: 110,112,309

SUBST command: 14,77,80-81,86

suffix parameter (see domain command)

Superuser account: 123,181

Switch (see NET/ROM)

syndata parameter (see tcp command)

sysop permission: 181

sysop (see Files)

T

{3 parameter (see ax25 command)
t4 parameter (see ax25 command)
tail command: 105,110,309
Target: 16,17

Target mailhost: 189

Index

355

TBAUD command: 73
TCP, Transmission Control Protocol: 13,23
tcp command,309
Irt: 309
kick: 309
mss: 309
reset: 309
nt: 309
status: 111,309
syndata: 309
timertype: 309
trace: 112,309
view: 309
window: 309
TD, Transmit Data: 72
TELNET protocol: 13
Telnet command (see NOS BBS
commands)
Telnet client: 64-65
telnet command: 24,64-70,110,112,146,309
Telnet server: 64-68
telnet 26 command (SMTP): 112,
207-208.309
telnet 87 command (CHAT/TTYLINK):
69,112,309
Terminal Node Controller (see inc)
test command: 109,310
TheNet: 11: 248-249
TheNet X1G: 248-249
third-party command: 110,156,310
thresh parameter (see mem command)
fimer parameter (see mbox, pop, smtp
commands)
timertype parameter (see ax26, netrom, tcp
commands)
TIP, Terminal Interchange Protocol: 13
tip command: 53,107-108,112,113,310
tiptimeout parameter (see MboX command)
TMP environment variable: 81,87
TNC, Terminal Node Controller: 16,37,71
Control Codes (param): 44,119
Host mode: 16,38,40-42
KISS mode: 16,38,42-43
Native mode: 16,38-40,73,107-108
Reset: 46-47,106-107
Switching to KISS mode: 45-46,98-100
Switching to native mode: 46-47,106-107
tnereset.dia (see Files)
tncresel.scr (see Files)
ftl parameter (sce ip, netrom commands)
TTYLINK (Chat) protocol: 13,24
ttylink command: 24,112,310

TRACE command: 46

trace command: 52,109,267-272,310

trace parameter (see domain, hop, icmp,
mbox, nntp, popmail, smip, tcp
commands)

trace/*, ¥ (see Files)

traceroute command (see hop command)

translate parameter (see domain command)

Transport Layer: 50

Transpose Frame End (TFEND): 44

Transpose Frame Escape (TFESC): 44

TXDELAY command: 119

TXMUTE command: 119

TXTAIL command: 119

Type byte (KISS): 44

type subcommand (see ftp command)

TZ environment variable: 81,87

U

ucsd.edu: 9

UDP, User Datagram Protocol: 13

UDP Port 33434 (hop): 283-285

udp command: 111,310

UNIX: 295,296

Unsupervised Operation: 184

Upload command (see NOS BBS
commands)

upload command: 110,178,310

Uploading Files (NOS BBS): 178-179

usemx parameter (see STP command)

USER environment variable: 81,87

user parameter (see netrom command)

user subcommand (see ftp command)

userdata parameter (see pOp command)

utc parameter (see mbox command)

UUDECODE command: 13,138-139,177

UUENCODE comamnd: 13,138-139,179

UUencoded Download command (see NOS
BBS commands)

\')

-V Startup Option: 97,265

VAX: 295

Verbose command (sec -v, NOS BBS
commands)

verbose parameter (see domain, nefrom
commands)

356 Index

verbose subcommand (see ftp command)
version parameter (see ax28 command)
VIDRAM, Video RAM: 75,96-97

VIEW 9,80

view parameter (see tCp command)
Virtual Circuit (vc): 234

VMS: 295

W

WAMPES: 295

watch command: 109,310

watchdog command: 109,116,184,310

Well-known Port Numbers: 68

What command (see NOS BBS
commands)

window parameter (see ax25, netrom, tcp
commands)

WNOS: 11,295

Wormhole Routing: 30,31

X

X1G (see TheNet)

XENIX: 296

XFLOW command: 46, 73

XMITOK command: 99,106,107

XOFF command: 46,73

XON command: 46, 73

Xpert command (sec NOS BBS
commands)

Xyzzy parameter (see domain command)

Z

Zap command (sec NOS BBS commands)
zipcode parameter (see mbox command)

	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015
	scan0016
	scan0017
	scan0018
	scan0019
	scan0020
	scan0021
	scan0022
	scan0023
	scan0024
	scan0025
	scan0026
	scan0027
	scan0028
	scan0029
	scan0030
	scan0031
	scan0032
	scan0033
	scan0034
	scan0035
	scan0036
	scan0037
	scan0038
	scan0039
	scan0040
	scan0041
	scan0042
	scan0043
	scan0044
	scan0045
	scan0046
	scan0047
	scan0048
	scan0049
	scan0050
	scan0051
	scan0052
	scan0053
	scan0054
	scan0055
	scan0056
	scan0057
	scan0058
	scan0059
	scan0060
	scan0061
	scan0062
	scan0063
	scan0064
	scan0065
	scan0066
	scan0067
	scan0068
	scan0069
	scan0070
	scan0071
	scan0072
	scan0073
	scan0074
	scan0075
	scan0076
	scan0077
	scan0078
	scan0079
	scan0080
	scan0081
	scan0082
	scan0083
	scan0084
	scan0085
	scan0086
	scan0087
	scan0088
	scan0089
	scan0090
	scan0091
	scan0092
	scan0093
	scan0094
	scan0095
	scan0096
	scan0097
	scan0098
	scan0099
	scan0100
	scan0101
	scan0102
	scan0103
	scan0104
	scan0105
	scan0106
	scan0107
	scan0108
	scan0109
	scan0110
	scan0111
	scan0112
	scan0113
	scan0114
	scan0115
	scan0116
	scan0117
	scan0118
	scan0119
	scan0120
	scan0121
	scan0122
	scan0123
	scan0124
	scan0125
	scan0126
	scan0127
	scan0128
	scan0129
	scan0130
	scan0131
	scan0132
	scan0133
	scan0134
	scan0135
	scan0136
	scan0137
	scan0138
	scan0139
	scan0140
	scan0141
	scan0142
	scan0143
	scan0144
	scan0145
	scan0146
	scan0147
	scan0148
	scan0149
	scan0150
	scan0151
	scan0152
	scan0153
	scan0154
	scan0155
	scan0156
	scan0157
	scan0158
	scan0159
	scan0160
	scan0161
	scan0162
	scan0163
	scan0164
	scan0165
	scan0166
	scan0167
	scan0168
	scan0169
	scan0170
	scan0171
	scan0172
	scan0173
	scan0174
	scan0175
	scan0176
	scan0177
	scan0178
	scan0179
	scan0180
	scan0181
	scan0182
	scan0183
	scan0184
	scan0185
	scan0186
	scan0187
	scan0188
	scan0189
	scan0190
	scan0191
	scan0192
	scan0193
	scan0194
	scan0195
	scan0196
	scan0197
	scan0198
	scan0199
	scan0200
	scan0201
	scan0202
	scan0203
	scan0204
	scan0205
	scan0206
	scan0207
	scan0208
	scan0209
	scan0210
	scan0211
	scan0212
	scan0213
	scan0214
	scan0215
	scan0216
	scan0217
	scan0218
	scan0219
	scan0220
	scan0221
	scan0222
	scan0223
	scan0224
	scan0225
	scan0226
	scan0227
	scan0228
	scan0229
	scan0230
	scan0231
	scan0232
	scan0233
	scan0234
	scan0235
	scan0236
	scan0237
	scan0238
	scan0239
	scan0240
	scan0241
	scan0242
	scan0243
	scan0244
	scan0245
	scan0246
	scan0247
	scan0248
	scan0249
	scan0250
	scan0251
	scan0252
	scan0253
	scan0254
	scan0255
	scan0256
	scan0257
	scan0258
	scan0259
	scan0260
	scan0261
	scan0262
	scan0263
	scan0264
	scan0265
	scan0266
	scan0267
	scan0268
	scan0269
	scan0270
	scan0271
	scan0272
	scan0273
	scan0274
	scan0275
	scan0276
	scan0277
	scan0278
	scan0279
	scan0280
	scan0281
	scan0282
	scan0283
	scan0284
	scan0285
	scan0286
	scan0287
	scan0288
	scan0289
	scan0290
	scan0291
	scan0292
	scan0293
	scan0294
	scan0295
	scan0296
	scan0297
	scan0298
	scan0299
	scan0300
	scan0301
	scan0302
	scan0303
	scan0304
	scan0305
	scan0306
	scan0307
	scan0308
	scan0309
	scan0310
	scan0311
	scan0312
	scan0313
	scan0314
	scan0315
	scan0316
	scan0317
	scan0318
	scan0319
	scan0320
	scan0321
	scan0322
	scan0323
	scan0324
	scan0325
	scan0326
	scan0327
	scan0328
	scan0329
	scan0330
	scan0331
	scan0332
	scan0333
	scan0334
	scan0335
	scan0336
	scan0337
	scan0338
	scan0339
	scan0340
	scan0341
	scan0342
	scan0343
	scan0344
	scan0345
	scan0346
	scan0347
	scan0348
	scan0349
	scan0350
	scan0351
	scan0352
	scan0353
	scan0354
	scan0355
	scan0356
	scan0357
	scan0358
	scan0359
	scan0360
	scan0361

