

1 Decay Scheme

Fe-55 disintegrates by electron capture. A gamma transition with a small probability $(1,3 \times 10^{-7} \%)$ has been observed. A background radiation, due to an inner-bremsstrahlung, with an intensity relative to K capture of $3,24(6) \times 10^{-5}$ photons produces a continuous spectrum up to 231,38 keV.

Le Fe-55 se désintègre par capture électronique. Une transition gamma de faible probabilité a été observée. Un rayonnement de freinage interne produit une émission radiative, dont la probabilité relative à la capture électronique K est de $3,24(6) \times 10^{-5}$.

2 Nuclear Data

 $T_{1/2}({\rm ^{55}Fe}$) : 2,741 (6) a $Q^+({\rm ^{55}Fe}$) : 231,38 (10) keV

2.1 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$	P_K	P_L	P_{M+}
$\epsilon_{0,1}$ $\epsilon_{0,0}$	$\begin{array}{c} 105,\!43 (10) \\ 231,\!38 (10) \end{array}$	0,00000013(1) 100	2nd Forbidden Allowed	$\substack{14,2\\6}$	0,8853 (16)	0,0983 (13)	0,0163~(8)

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity
$\gamma_{1,0}({ m Mn})$	125,949 (10)	0,0000013 (1)	M1+(E2)

3 Atomic Data

3.1 Mn

ω_K	:	0,321	(7)
$\bar{\omega}_L$:	$0,\!0053$	(4)
n_{KL}	:	$1,\!479$	(6)

3.1.1 X Radiations

		Energy keV		Relative probability
Хк				
11	$K\alpha_2$	5,8877		51
	$K\alpha_1$	5,8988		100
	$K\beta_3$	$6,\!4905$	}	
	${ m K}eta_5^{\prime\prime}$		}	20,5
	$\mathrm{K}eta_5'$	$6,\!5354$	}	
Xı				
D	$\mathrm{L}\ell$	0.556		
	$L\alpha$	$0,\!637 -$		
	$\mathrm{L}\eta$	0,567		
	$\mathrm{L}eta$	$0,\!649-0,\!721$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY Auger L	4,95 - 5,21 5,67 - 5,89 6,35 - 6,49 0,46 - 0,67	$100 \\ 27,2 \\ 1,85$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
$\begin{array}{c} {\rm XL} \\ {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \\ \\ {\rm XK}\beta_3 \\ {\rm XK}\beta_1 \\ {\rm XK}\beta_5' \end{array}$	(Mn) (Mn) (Mn) (Mn) (Mn) (Mn)	0,556 - 0,721 5,8877 5,8988 6,4905 6,5354	} } }	$\begin{array}{c} 0,66 \ (10) \\ 8,45 \ (14) \\ 16,56 \ (27) \\ 3,40 \ (7) \end{array}$	$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

4.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}({ m Mn})$	125,949 (10)	0,00000013 (1)

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Mn)	0,46 - 0,67	139,9(5)
e _{AK}	(Mn) KLL KLX KXY	4,95 - 5,21 5,67 - 5,89 6,35 - 6,49	60,1 (5) } }

6 Main Production Modes

 $\begin{array}{ll} {\rm Fe}-54({\rm n},\gamma){\rm Fe}-55 & \sigma:2,25 \ (18) \ {\rm barns} \\ {\rm Possible \ impurities}: \ {\rm Fe}-59 \\ {\rm Mn}-55({\rm p},{\rm n}){\rm Fe}-55 \\ {\rm Fe}-54({\rm d},{\rm p}){\rm Fe}-55 \\ {\rm Possible \ impurities}: \ {\rm Co}-55 \end{array}$

7 References

- PENGRA J.G., GENZ H., RENIER J.P., FINK R.W., Phys. Rev. C5,6 (1972) 2007 (PL/PK, PM/PL)
- DOBRILOVIC L., BEK-UZAROV D., SIMOVIC M., BURAEI K., MILOJEVIC A., Proc. of the Internationnal Conference on Inner-shell Ionization Phenomena CONF-720404 (1973) 128 (K fluorescence yield)
- Tetsuo Kitahara, Sakae Shimizu . Phys. Rev. C11,3 (1975) 920 (P(ionisation))
- LARKINS F.P., At. Data. Nucl. Data Tables 20,4 (1977) 338 (Auger Electrons)
- HOUTERMANS H., MILOSEVIC O., REICHEL F., Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life)
- CHEN M.H., Phys. Rev. A21-2 (1980) 436 (K fluorescence yield)
- KUHN U., GENZ H., LÖW W., RICHTER A., MÜLLER H.W., Z. Phys. A Atoms and Nuclei 300 (1981) 103 (K fluorescence yield)
- HOPPES D.D., HUTCHINSON J.M.R., SCHIMA F.J., UNTERWEGER M.P., NBS-Special publication 626 (1982) 85 (Half-life)
- LAGOUTINE F., LEGRAND J., BAC C., Int. J. Appl. Radiat. Isotop. 33 (1982) 711 (Half-life)
- SMITH D., Nucl. Inst. and Meth. 200 (1982) 383 $(P_K\omega_K)$
- BAMBYNEK W., A. Meisel Ed. Leipzig Aug. 20-23 (1984) (K fluorescence yield)
- KONSTANTINOV A.A., SAZONOVA T.E., SEPMAN S.V., FROLOV E.A.. Metrologia 26 (1989) 205 (K fluorescence yield)
- ISAAC M.C.P., VANIN V.R., HELENE O.A.M.. Z. Phys. A. Atomic Nuclei 335 (1990) 243 (Beta emission energies)
- KOVALIK A., BRABEC V., NOVAK J., DRAGOUN O., GOROZHANKIN V.M., NOVGORODOV A.F., VYLOV TS. J. Elec. Spectro. Rel. Phenomena 50 (1990) 89 (Auger electrons)
- CAMPBELL J.L., MAXWELL J.A., TEESDALE W.J., Phys. Rev. C. 43,4 (1991) 1656 (Doubke K capture probability)
- ZLIMEN I., BROWNE E., CHAN Y., DA CRUZ M.T.F., GARCIA A., LARIMER R.-M., LESKO K.T., NORMAN E.B., STOKSTAD R.G., WIETFELDT F.E., Phys. Rev. C. 46,3 (1992) 1136 (Gamma Emission)
- MOREL J., ETCHEVERRY M., VALLÉE M., Nucl. Inst. and Meth. A339 (1994) 232 (Half-life)
- HUBBELL J.H., TREHAN P.N., NIRMAL SINGH, CHAND B., MEHTA D., GARG M.L., GARG R.R., SURINDER SINGH, PURI S.. J. Phys. Chem. Ref. Data 23-2 (1994) 339 (K fluorescence yield)
- SIEGERT H., SCHÖTZIG U., Progress Report on Nuclear data Research in the Federal Republic of Germany (1995) 56
 - (Half-life)
- Audi G., Wapstra A.H., Nucl. Phys. A595 (1995) 409 (Q)
- SCHÖNFELD E., JANSSEN H., Report PTB Ra-37 (1995) (L fluorescence yield, K_{β}/K_{α})

 KARMALITSYN N.I., SAZONOVA T.E., ZANEVSKY A.V., SEPMAN S.V., Int. J. Appl. Radiat. Isotop. 49,9-11 (1998) 1363 (Half-life)

