P's Porridge: What's In Those Brown Manuals?

Jack Hamilton

First Health,, West Sacramento, California
JackHamilton@FirstHealth.com

SAS is a registered trademark of SAS Institute Inc. in the USA and other countries. © indicates USA registration.

Overview

The SAS System has a documentation problem.
Although it is generally well documented,
information about any particular product or feature
may be scattered over many different manuals.

The Institute compounds this problem by constantly
upgrading the product, making their documents
obsolescent almost as soon as they're out the door. As
problems go, this is a good one to have, but it's easy
to miss useful new features.

Documentation on new features usually comes in
Changes and Enhancements documents, which have
brown binders. They originally had names of the

form SAS Technical Report P-nnn: Changes and
Enhancements to xxxbut recently the Institute has
dropped the first part of the name. Nevertheless,
these manuals are widely referred to as Tech Reports.

The changes and enhancements documents published
since the original version 6 manuals are several

inches thick. It's not possible to describe them all in a
few minutes, so | will concentrate on a few new
features which I think are the most useful.

Caveats and Cautions

A complete list of current manuals is available from
SAS Institute's Book Sales Department at +1 (800)
727-3228, or on the World Wide Web at

<http://www.sas.com>

Not all enhancements presented here will work on all
platforms and releases.

Release numbers in SAS documentation seem to be
only guidelines, not rules. Some enhancements are
documented for 6.09 on the Alpha platform, but are
actually present in 6.08. Others are documented for
6.07, but aren'tin 6.08 yet.

Manuals Used In Writing This
Paper

SAS Language Reference, Version 6, First Edition;
Document number 56076

SAS Technical Report P-204: SAS Software: Changes
and Enhancements, Release 6.0€Document number
59121

SAS Technical Report P-222: SAS Software: Changes
and Enhancements, Release 6.0ocument number
59139

SAS Technical Report P-242: SAS Software: Changes
and Enhancements, Release 6.08Document number
59159

SAS Software: Changes and Enhancements, Release
6.10; Document number 55120

SAS Software: Changes and Enhancements, Release
6.11; Document number 55300

What's New for the 6.09 Enhanced Release of SAS
Software; Document number 55569

What's Hot in Release 6.12; fttp://www.sas.com/
service/techsup/wn612/wn612.pdf>

Interesting Features by SAS
Release

Some of the new features documented in the brown
manuals are shown below. Within each release,
they're not ordered in any particular way.

A Bonus from the Base Manual

Column Pointer Controls

This feature is described in the base Language
Reference Manual, but | didn't know about it until |
read through the manuals while preparing this paper.

There's a new way to do formatted input: move the
input pointer to the next character after a specified
string. Suppose you had input lines like these:

SFO RAIL BART MUNI .7 BART .2

SAC RAIL STD STD .9 AMTRAK .1
YOL BUS YT AMTRAK .1 YT .9

You want to read the city, primary carrier, and
percentage of traffic for the primary carrier. First,
read the city and primary carrier, then locate the
primary carrier in the remainder of the input line.
After that, it's easy to read the value:

input @1 city $3.
@5 type
carrier
@(trim(carrier)) percent;

If you have a fixed string, you can just put it in
guotes after the at-sign.

Release 6.06 (P-204)

These features are actually included in the base
manuals, but seem to be little known, so I'm
including them. They are changes from 5.18
behavior.

_TEMPORARY__ arrays

The TEMPORARY _ array is a mechanism for
creating variables which are not stored in the PDV.
Access is faster than to regular variables, and there is
no danger of name collision with one of your datastep
variables.

Because these variables are not referred to by name,
only by subscript, and are not stored in the PDV, they
cannot be written to an output dataset.

array xyz{3} _temporary_ (7 11 13);
first = a*test{1};

FILENAME= and FILEVAR= options in the
FILE statement

The FILENAME-= option allows you to find the
complete OS filename of a file.

The FILEVAR= option allows you to dynamically
change the name of the file you're using. You could,
for example, calculate the name of the file based on
your data. Here's a sample job log, with some parts
of the output deleted to save space:

61 data _null_;

62 infile cards;

63 input indate mmddyy8.

64 count 4.;

65 fv = 'd' ||

66 put(indate, date7.);

67 file dummy filevar=fv

68 filename=fn;

69 put count;

70 cards;

NOTE: The file DUMMY is:
FILENAME=P:\d07JUN55,
RECFM=V,LRECL=256

NOTE: The file DUMMY is:

FILENAME=P:\d14FEB23,
RECFM=V,LRECL=256
73 run;

Field alignment with the PUT statement

The -L, -C, and -R options allow you to left, center,
or right-justify the output from a format. For
example:

put x dollar7.2-c;

would center the value of X in the outout field.

INPUT and PUT functions allow ? and ??

If the value you want to convert with the INPUT or
PUT function can't be converted correctly, you will
ordinarily see an error message in the SAS log. Use
of ? or ?? prevents these messages.

s = input(datestr, ?? mmddyy.);

New host system informats such as $ASCII.

It is often necessary to read data using a different
encoding (ASCII vs. EBCDIC). New formats allow
you to read data written in formats other than the
ones native to your system.

The IN operator
The IN operator is a quick way to test whether a
value is in a list of other values. For example:

if title in ('Dr', 'Sir', 'Col’);

Unfortunately, the values in the list must be constants
when the IN operator is used in the data step.

A BY statement applies to only the preceding
SET, MERGE, or UPDATE statement.

In 5.18, you could use only one SET, MERGE or
UPDATE statement in a data step that contained a
BY statement, or bad things would sometimes
happen. This restriction has been lifted.

data new;
if _n_ =1 then
set total(keep=gtot);
set detail
(keep=group btot amt);
by group;

bpercent = btot/gtot;
dpercent = amt/gtot;
<other code>

run;

Release 6.07 (P-222)

Multi-unit intervals in INTxx functions

INTCK and INTNX are little-known and much-
misunderstood functions which allow you to

calculate the interval between two dates or times, or
advance a certain interval from a given date or time.
New options make these functions much more useful.
You can now shift the starting point of an interval to
something meaningful. For example, if you used a
guarter system where the quarters started in February,
May, August, and November, and you wanted to
know when the next quarter started after February 15,
you could use this code:

data _null_;

nextgtr = intnx('month3.2’,
'15feb96'd, 1);

put nextqtr=date7.;

run;

which would print
NEXTQTR=01MAY96

INPUTC, INPUTN, PUTC, PUTN functions

These functions allow you to decide on a format at
runtime, rather than hardcoding it..

data _null_;
input @1 fmt $9.

@11 number $10.;
outnum = putn(number, fmt);

put @1 number $10.
@10 fmt $11.
@20 outnum;
cards;

dollar8.2 123.45
comma6.0 678.9

binaryl0 11
aanorun;
would print
123.45 dollar8.2 $123.45
678.9 comma6.0 679
111 binary10. 0001101111

Dataset passwords

Version 5 of SAS allowed password protection of
datasets. Apparently, many people missed this
feature, because it's back.

data salary (read=green write=red
alter=yellow);

| suspect that the encryption methods used are of the
"protect against your little sister" variety rather than
the "protect against big government agencies"
variety, and in any case haven't been subjected to
public scrutiny, so don't depend on SAS passwords
for real security.

SORTEDBY dataset option

If a dataset is sorted, but wasn't sorted by SAS, you
can tell SAS about it. Some operations will be
performed more quickly as a result.

proc sql;

select *
from x.y (sortedby=usage)
group by usage;

Data step views

Just as SQL views are a shortcut method of telling
SAS how to process data using SQL, datastep views
are a shortcut method of telling SAS how to process
data using datastep code. There are several benefits to
using datastep views. The data step doesn't have to be
compiled every time you use it. You can hide the
intricacies of your code from other users. You can
make coding changes transparent. And you can
sometimes greatly reduce CPU time and I/O by using
a datastep view and a PROC rather than a regular
data step followed by a PROC.

The following data step will create a view named
NEW. When it is accessed, a real dataset (not a view)
named work.errors will be created.

data new errors / view=new;
set old;
if date = . then
output new;
else
output errors;
run;

The documentation says that output views are not
currently supported. | suppose this means that
someday they will be.

KEY= option in SET and MODIFY statements

You can go directly to an observation in a SAS
dataset if it is indexed and you know the key value

for the observation. This has the potential to replace a
lot of messy coding now done with formats or sorts
and merges.

set claims
(keep=claimno patient billed);
set patients
(keep=patient lastname)
key=patient;

When you use the KEY= option, be sure to use the
IORC variable to check whether the lookup
succeeded.

DLM= and DSD options in the INFILE
statement

SAS has long suffered from the inability to read text
files which other programs can read with ease. These
new options make it much easier to read files which
contain tab- or comma-delimited data.

This statement will read a comma-delimited file,
where text strings may optionally be inside quotes:

infile x dim="," dsd;

There's no corresponding facility for writing a
comma-delimited file, but it's straightforward to do
using the PUT statement in conjunction with the
QUOTE function.

DSD implies DLM=",", which is probably the most
common case. To read a tab-delimited file, use

dim='09'x dsd

Version 6.12 of SAS contains an Import/Export
wizard which makes it much easier to read and write
external files.

BY values usable in titles

You can now include the current BY value in the title
created by a TITLE statement. This means that you
can have much better looking titles. Alas, this applies
only to output from PROC's, not to output from data
steps.

options nobyline;

titte "Payments for region #BYVALL";
proc print;
by region;
run;

pageby region;

In this example, #BYVAL1 means "show the current
value of the first variable in the BY list". You can
also Insert the name of a BY variable with #BYVAR,
or get complete BY variable information with
#BYLINE.

CALL EXECUTE

CALL EXECUTE allows you to write a SAS
program from within SAS, without resorting to
writing an external file and reading it back in (which
there is no general mechanism to do in SAS).

The functionality that this provides may be replaced
by the CATALOG engine in 6.12.

FMTSEARCH= system option

The FMTSEARCH option allows you to tell SAS
where to look for formats. You may specify a one-
level or two-level name. FMTSEARCH= makes it

much easier to maintain department or company
format libraries.
options
fmtsearch=(myfmts deptfmts
compfmts myfmts.old);

Use existing formats in PROC FORMAT

You can now use existing formats inside your own
format definitions. This means, for example, that you
can redefine the output of specific values without
having to duplicate all of SAS's extensive format
library for other values. Here's an example from the
manual:

proc format;

value status
low-'01MAR1990'd = [date7.]
other = 'OVERDUE";

The QUOTE function

The QUOTE function adds double quotes to the
outside ends of a character expression. If the
expression contains internal double quotes, they will
be doubled.

The following code would write a tiny comma-
delimited file:

QA quote(a);
QC quote(c);
put QA "" b "" QC;

CALCULATED component in SQL Queries

Sometimes it is necessary to use the same calculated
value two or more times in a single SQL statement.
For example, suppose you want calculate a
percentage of savings, and also select only those
observations with low savings. The SQL code might
look like this:

proc sql;
select *,

billamt-discamt as savings
where billamt-discamt < 100;

The CALCULATED component allows you to say
"use the variable I've already calculated", instead of
repeating the calculation:

proc sql;
select *,

billamt-discamt as savings
where calculated savings

< 100;

Release 6.08 (P-242)

ERRORCHECK= system option

ERRORCHECK=STRICT causes your program to go
into syntax-check mode if there is an error in a
LIBNAME or FILENAME statement, and to abend if
a %INCLUDE statement fails.

MODIFY, REPLACE, and REMOVE
statements

(This replaces the description in P-222)

The MODIFY statement allows you to modify a SAS
dataset in place, without creating a copy (which is
ordinarily done, invisibly to you, when you change
an existing dataset).

Although there are dangers to this technique (on

some operating systems, the dataset may be damaged
if your program abends), it can greatly increase
processing speed and reduce the amount of disk
space needed.

The REPLACE statement, used after MODIFY,
updates the current observation. The OUTPUT
statement writes a new observation to the end.
REPLACE is the default action when used after
MODIFY (the usual datastep defaultis OUTPUT).
The REMOVE statement marks the observation as
deleted.

INDEX= dataset option
(This replaces the description in P-222)

When indexed datasets were first announced, you had
to use PROC DATASETS or PROC SQL to create
the index.

You can now create indexes while creating the
dataset. Here are some examples:

data new (index=(claimno));
data new (index=(claimno claimdt));

data new (index=(c=(claimno
claimdt)));

Indexes make some operations substantially faster,
but increase the time and disk space needed to create
a dataset.

Release 6.09E (Document 55569)

The Data Step Debugger

This is an important new feature, perhaps the most
significant in 6.11. It's beyond the scope of this
paper.

The SORTEDBY = dataset option is supported
for views and stored datastep programs.

Self-explanatory; see the explanation of the
SORTEDBY option under 6.07, above.

New options on the %PUT statement.

New options on the %PUT statement let you print
some or all macro variables.

%PUT _ALL_will print all currently defined macro
variables.

%PUT _AUTOMATICwIll print all automatic macro
variables (because these variables vary by operating
system and installed products, it has been difficult to
track them all down in the past. This should help).

%PUT _GLOBALWIll print all user-defined global
variables.

%PUT _LOCALwill print all user-created macro
variables available in the currently executing macro.

%PUT _USERwWiIll print all user-created macros.

Writing multiple host variables in PROC SQL
The SEPARATED BY component of the INTO

clause lets you write values from several observations
into a single macro variable.

select name

into :names
separated by ',
from userlist;
%put &names.;

might print
Jan June Joan John

You can also specify multiple macro variables with a
hyphen or THROUGH; each will be set with the
value of a different row:

select name
into :namel-:name4
from userlist;

%put &namel &name2 &name3 &name4,

would print the same result as the earlier example.

Storing MPRINT Output in an External File

You can store the output from the MPRINT option
into an external file, suitable for later use standalone.
To do this, create an MPRINT fileref pointing to the
new file, and specify the MPRINT and
RESERVEDBL1 system options:

options mprint reservedbl;
filename mprint ‘'test.sas’;

This will be useful for debugging macros.

Release 6.12 (What's Hot)

The %SYSFUNC macro function

This new macro function gives you the ability to
execute data step functions inside a macro.

The %SYSFUNC macro also has the ability to apply
a specified format to the result of the function.. For
example, to put the current date into a title using the
WORDDATE format, you could use the statement

title "%sysfunc(date(), worddate.)";

Release 6.11 (Document 55300)

FILENAME now allows catalog, ftp, and
socket files.

Catalog access provides an easy way to read and
write data or programs stored in SAS catalogs; ftp

and socket access provide another way to look at data
on remote machines connected to your network.

filename prog catalog

'sasuser.progs.readfmt.source’;
%include prog;
filename claims ftp
‘claims.dat’
host="ftp.hccompare.com’;

Note: Not available in SAS for OpenVMS 6.09
TS048.

New dictionary tables: MACROS, TITLES

The DICTIONARY.TITLES table allows you to
retrieve information about all the titles and footnotes
that are currently defined. This table can be used
outside of PROC SQL through a permanent SQL
view, SASHELP.VTITLE.

The DICTIONARY.MACROS table allows you to
look at the names and definitions of all macro
variables. SASHELP.VMACRO is the SQL view.

Note: Not available in SAS for OpenVMS 6.09
TS048.

VMS-Specific Enhancements in
TS048

The text of the online help for these items is
highlighted.

PROC VAXTOAXP

PROC VAXTOAXP is a new procedure that
converts VAX data to AXP format, converting 2
byte data to 3 bytes. It is only intended for VAX
data sets, not catalogs, indexes or other types of
SAS files.

This procedure is used on a DEC Alpha to read
datasets which were created on a Dec VAX.

Increasing Allocation Sizes

Previous versions of SAS for OpenVMS defaulted
to allocating 33 disk blocks to a file when it was
created. When the file needed to be extended, it
was extended in increments of 32 blocks. With this
change, 300 blocks are initially allocated to the
file. This potentially reduces the number of
extends required for the file. When the file is
extended, it is now done so in increments of 96
blocks. The unused disk blocks are deallocated
and freed back to the file system at close time.
These changes reduce the number of times a file
needs to be extended, potentially creates a more
contiguous file, and reduces subsequent access
time.

Two new logical names are supported. SAS$ALQ
and SAS$DEQ. These logical names define the
number of disk blocks to be initially allocated for
SAS files at creation (SAS$ALQ) and the number
of blocks to be allocated when the file needs to be
extended (SAS$DEQ). These correspond directly
to the ALQ= and DEQ= options which have
previously existed and are documented elsewhere.
The order of precedence is as follows: 1) if an
ALQ/DEQ option is specified for a specific data

set that is honored; 2) if ALQ/DEQ is specified on
a LIBNAME statement it affects all the SAS files
created in that library; 3) if the logicals
SASSALQ/SASSDEQ are defined these values are
used; and 4) if none of the above are specified the
system default values are used.

Asynchronous Read-Ahead and Write-
Behind

There are two new data set options to control
asynchronous read-ahead and write-behind for
OpenVMS (RAH/WBH). RAH may have a value
of "YES", "NO", or "LOG" ("LOG" is the same

as "YES", but enables the logging of information
to the SAS log). WBH may have values of "YES"
or "NO". When these options are enabled
asynchronous read-ahead and/or write-behind is
in effect.

Asynchronous read-ahead means that requests to
read pages from the file are asynchronously
gueued such that when a page is requested,
additional pages may be requested from the
operating system asynchronously. When the
application actually requests those additional
pages, they should already be available.

Likewise, asynchronous write-behind means that
when a page is written to disk it is asynchronously
gueued, and control immediately returns to the
application.

When the next page is written, SAS ensures that
the previously queued page has completed its
write before queuing the current page. In this
way, control is returned to the application sooner
without having to wait for the I/O operation to
complete each time.

This option must be specified for each dataset; unlike
some options, it cannot be used in the LIBNAME
statement. It cannot be used in a view. An example
is:

set dataware.penult (rah=yes)

A few tests on large datasets showed no decrease in
I/O or CPU time, but a substantial decrease in
elapsed time. For example, the time needed to read 7
million records decreased from 15 minutes with
RAH=NO to 9 minutes with RAH=YES.

The LOGMULTREAD System Option

A new configuration option LOGMULTREAD
allows the user to open the session log file for
shared read access. This option can be set on the
command line or in a configuration file.

Turning the option on will result in performance
degradation since data is written to the log with
greater frequency.

LOGMULTREAD is off by default.

You would use this option in a long-running batch
job if you wanted to check on its progress.

