
Paper 229-29
Using New Features in ODS to Create

Master/Detail Reports

Jack Hamilton
First Health

West Sacramento, California

Overview

• This paper will present a few approaches to
creating master/detail reports – some old,
some new.

• The intent is not to explain code in detail.
• The completed paper, with SAS code, will

be available after SUGI from the web site
listed in the paper.

Master/Detail Reports
• A Master/Detail report is a report which

shows data from two related files.
• The example I will use today is a simplified

invoice. The master file contains general
invoice information, and the detail file
contains line items.

• Master/detail reporting is very common.
Class rosters are another example.

Sample Invoice Data

Invoices
Invo ice_Num Cus tomer Invo ice_Date

101 Hugo Furs t 01Jan2004
102 Fre ida Peeples 15Jan2004
103 Al E. Loohah 30Jan2004

Sample Lineitem Data
LineItems
Invoice_Num Line_Num Item Co s t
101 1 Widget 12.00
101 2 Gadget 10.00
101 3 Frammet 36.00

Plus additional rows for the other invoices.

In real life, there might be invoices without lineitems, and
even vice-versa, but I’m not handling those situations.

What We Want To see

Invoice: 101 for Hugo Furst on 01JAN2004

1 Widget 12.00

2 Gadget 10.00

3 Frammet 36.00

4 Thingies 37.56

Total: $95.56

Master/Detail Reporting in SAS
• Although master/detail reports are common

in both business and non-business life, Base
SAS doesn’t have a built-in way to handle
them without preprocessing the data in
some way.

• I think this is a serious deficiency. MS
Access can do it. Crystal Reports can do it.
Why can’t SAS?

What This Paper Does
• This paper presents several ways of creating

master/detail reports in the current version
of SAS, 8.2.

• It also suggests some new ways to do
reporting in version 9.1.

What This Paper Doesn’t Do
• This paper doesn’t talk much about

appearance. The important thing is getting
data on the page.

• For fiddling with appearance, use ODS.
There are many papers and presentations on
the topic at every SUGI.

• An additional new way to control
appearance is ODS LAYOUT, which also
is not discussed here.

OK, Onwards
I will briefly discuss five older methods:
• So-called “data_null_” reports, which use

the data step language to write listing
output.

• PROC REPORT
• PROC PRINT with #BYVAL
• Sending data _null_ output to ODS
• Data _null_ reports using data set indexes

New Methods

I will also discuss two new ways to create
master/detail reports:

• PROC DOCUMENT
• The data step object-oriented interface to

ODS

Zoom, Zoom, Zoom

I’m going to go through the older methods
very quickly. Complete code is in my paper.

A good reference for these older reporting
methods is the SAS Guide to Report Writing:
Examples.

Simple DATA _NULL_ Reporting

• The first step in traditional master/detail
reporting in the data step is to join the two
files together.

• Typically, this is done with a MERGE
statement, which requires both data sets to
be sorted.

Simple DATA _NULL_ Reporting

data sugi29.invoices_and_items;
merge sugi29.invoices

sugi29.lineitems;
by invoice_num;

run;

In my example, I will do the merge in a
separate step and save the results for later use,
but it could be done in the main data step.

Read in the data, using BY to set first. And
last. variables, and write to the listing file.

Simple DATA _NULL_ Reporting

data _null_;

set sugi29.invoices_and_items;

by invoice_num;

file print;

If this is the first record for an invoice, write
the header and reset the total:

Simple DATA _NULL_ Reporting

if first.invoice_num then

do;

if _n_ ne 1 then

put _page_;

put 'Invoice: ' invoice_num

'for ' customer

'on ' invoice_date;

totalcost = 0;

end;

Next, write a line for each detail line and update the
cost:

Simple DATA _NULL_ Reporting

put @5 line_num 3.

@10 item $10.

@22 cost comma10.2;

totalcost + cost;

After the last detail line for an invoice has
been written, write out the total:

Simple DATA _NULL_ Reporting

if last.invoice_num then

put /

@10 'Total:'

@22 totalcost dollar10.2;

run;

And here's the first page of the results:

Simple DATA _NULL_ Reporting

Invoice: 101 for Hugo Furst on 01JAN2004

1 Widget 12.00

2 Gadget 10.00

3 Frammet 36.00

4 Thingies 37.56

Total: $95.56

There are two problems with traditional data
null reporting:

• It can be very complicated to write (and to
understand later).

• It's designed for monospace, lineprinter
output.

Simple DATA _NULL_ Reporting

New Features in Versions 6 and 8
More recent versions of SAS have added

useful new features:

• The Output Delivery System (ODS) added
additional output destinations and the ability
to use proportional, styled fonts.

• PROC REPORT and PROC TABULATE
added procedural support for report.

Using #BYVAL to Customize Headers

A common use of data null was simply to add
page titles whose text depended on data
values.

#BYVAL provides a way to do that without
data step code.

#BYVAL Code
options nobyline;
title "Invoice #BYVAL1 for #BYVAL2 on
#BYVAL3";

proc print data=invoices_and_items
noobs;

by invoice_num customer
invoice_date;

id line_num;
var item cost;
pageby invoice_num;sum cost;
sumby customer;

run;

#BYVAL Output
Invoice 101 for Hugo Furst on 01JAN2004

Line_Num Item Cost

1 Widget 12.00
2 Gadget 10.00
3 Frammet 36.00
4 Thingies 37.56

----------- ----------
Customer 95.56

Invoice_Num 95.56

PROC REPORT
• PROC REPORT is a very powerful

reporting procedure, but it's not the topic of
this paper. I will give an example, but I
recommend looking at the documentation,
and at SUGI papers by Lauren Haworth,
Sandy McNeill, and Ray Pass.

• PROC TABULATE is often an alternative;
see papers by the same suspects or by Dan
Bruns.

PROC REPORT Code
proc report data=invoices_and_items

nowindows;

column invoice_num customer
invoice_date line_num item cost;

define invoice_num / order noprint;
define customer / order noprint;
define invoice_date / display noprint;
define line_num / order;
define cost / sum;

PROC REPORT Code
compute before _page_;

line @1 'Invoice: ' invoice_num 3.
' for ' customer $10.
' on ' invoice_date

worddatx12.;
endcomp;

break after customer
/ summarize page dol;

run;

PROC REPORT Code
Invoice: 101 for Hugo Furst on 01
Jan 2004

Line_Num Item Cost
1 Widget 12.00
2 Gadget 10.00
3 Frammet 36.00
4 Thingies 37.56

==========
95.56

PROC REPORT
• There are other ways I could have achieved

the same effect.
• PROC REPORT automatically does any

needed sorting and summarization; you
don't have to write code to do it.

• PROC REPORT can use ODS to customize
the appearance of your output.

Sending data _null_ output to ODS

• Without making any substantial changes,
you can send data _null_ output to ODS and
get some of the benefit of the Output
Delivery System.

• I'm mentioning this, but I don't really
recommend it – customization is difficult.

Sending data _null_ output to ODS

ods listing close;
ods pdf

file='example4.pdf';

%include 'example1.sas';

ods pdf close;
ods listing;

Sending data _null_ output to ODS

It is, at least, possible to customize the titles and
footnotes easily. The big disadvantage is that you
get a fixed number of columns for the entire report.

Using Indexes In data _null_ Reports
• Recent versions of SAS allow you to use

the KEY= option on the SET statement to
directly read observations with a given
value for a variable, provided that the data
set is indexed on that variable.

• This eliminates the need for a MERGE to
join the master and detail tables.

• Didn't work right before 6.12 (or so).

Using Indexes In data _null_ Reports
The LineItems data set was previously
indexed:

proc datasets library=sugi29
nolist;

modify LineItems;
index create Invoice_Num;

run; quit;

Using Indexes In data _null_ Reports
data _null_;

set sugi29.invoices;
file print;
if _n_ ne 1 then

put _page_;
put 'Invoice: ' invoice_num

'for ' customer
'on' invoice_date;

totalcost = 0;

Using Indexes In data _null_ Reports
iorc = 0;
do while (_iorc_ = 0);

set sugi29.lineitems
key=invoice_num;

if _iorc_ = 0 then
do;
put @5 line_num 3.

@10 item $10.
@22 cost comma10.2;

totalcost = totalcost + cost;
end;

end;

Using Indexes In data _null_ Reports
put @5 'Total'

@22 totalcost comma10.2;
error = 0;

run;

Using Indexes In data _null_ Reports

Invoice: 101 for Hugo Furst on 1 Jan 2004
1 Widget 12.00
2 Gadget 10.00
3 Frammet 36.00
4 Thingies 37.56

Total 95.56

Using Indexes In data _null_ Reports
You might look at this and think "Wow, that's
more complicated than the earlier version!
Why bother?" You might be right for this
example, but if you have more levels of detail
– cities within counties within states, for
example – it quickly becomes difficult to keep
track of all the first. and last. variables needed
by the previous method. This method lets you
put all the code dealing with one data set in
one place. Also, the top level doesn’t need to
be sorted.

New in V9 – PROC DOCUMENT
• Proc DOCUMENT is a base SAS procedure

that lets you reorder the output from SAS
procedure and the data step.

• PROC DOCUMENT works with document
objects, which are created by the new ODS
destination DOCUMENT.

New in V9 – PROC DOCUMENT
There are two steps to the process:
•Create a document object for each section of
output
•Replay (i.e. print) the sections in the desired
order, which is different from the original
order.
Because PROC REPORT does not fully
support ODS DOCUMENT, I will use PROC
TABULATE to create the sections.

Creating Document Objects
ods document name=example7;
proc tabulate data=sugi29.invoices;

by invoice_num;
class invoice_num customer;
var invoice_date;
keylabel max=' ';
table invoice_num * customer,

invoice_date * max
* format=worddatx12.;

run;

Creating Document Objects
proc tabulate

data=sugi29.lineitems;
by invoice_num;
class line_num item;
var cost;
keylabel sum='';
table (line_num * item) all,

cost*sum;
run;

ods _all_ close;

Listing Document Objects
proc document name=example9;

list / levels=all;
run;

quit;

Document Objects Listing
Listing of: \Work.Example9\
Order by: Insertion
Number of levels: All

Obs Path Type
1 \Tabulate#1 Dir
2 \Tabulate#1\ByGroup1#1 Dir
3 \Tabulate#1\ByGroup1#1\Report#1 Dir
4 \Tabulate#1\ByGroup1#1\Report#1\Table#1 Table

(slightly modified to fit on this slide)

Document Objects

• We'll have a lot of these document objects,
one for each BY-group in each PROC
TABULATE. By default, they're in the
order in which they were created.

• We want to play them back with the objects
for each invoice placed together.

• In this example, I'm doing it manually, but
in practice you would do it with a program.

Replaying Document Objects
ods pdf
file="%sysfunc(pathname(sugi29))\..\examp
le9.pdf" notoc;

ods pdf startpage=never;

proc document name=example9;
replay

\Tabulate#1\ByGroup1#1\Report#1\Table#1;
replay

\Tabulate#2\ByGroup1#1\Report#1\Table#1;
run; quit;

Replaying Document Objects

The appearance needs some work, but you can see that the
right data are being written in the right order.

Why Bother?
This technique will come in useful when you

have dozens or hundreds of invoices.

• If you have 1000 invoices to create, it will be
more efficient to run two PROC
TABULATES than 2000 tabulates.

• You can intersperse graphs between tables
and text.

The Object-Oriented Interface
• Version 9 supports objects in the data step.

Rather than working on data per se, you
work on objects, which have methods
(similar to functions) and properties (similar
to values).

• One of the object types is ODS.

The Object-Oriented Interface
Output is thought of as a series of objects.

• Each page contains a table object containing
the invoice information followed by another
table containing the lineitem information.

• Each table contains rows, each row contains
cells, and each cell contains text.

• Each object can be formatted separately,
programatically.

The OO Code
data _null_;

declare odsout Example10();
set sugi29.invoices end=end;
Example10.table_start();
Example10.row_start();
Example10.format_cell (text: 'Invoice: '

|| put(invoice_num, 3.)
|| ' for ' || trim(customer)
|| ' on ' || left(put(invoice_date,

worddatx12.)));
Example10.row_end();
Example10.table_end();

The OO Code
totalcost = 0;
iorc = 0;
Example10.table_start();
Example10.row_start();
Example10.format_cell(text: 'Line Num');
Example10.format_cell(text: 'Item');
Example10.format_cell(text: 'Cost');
Example10.row_end();

The OO Code
do while (_iorc_ = 0);

set sugi29.lineitems key=invoice_num;
if _iorc_ = 0 then

do;
Example10.row_start();
Example10.format_cell(

text: put(line_num, 3.));
Example10.format_cell(text: item);
Example10.format_cell(

text: put(cost, comma10.2));
Example10.row_end();
totalcost = totalcost + cost;
end;

end;

The OO Code
Example10.row_start();
Example10.format_cell(text: 'Total',

column_span: 2,
Overrides: "font_weight=bold");

Example10.format_cell(text:
put(totalcost, comma10.2)
Overrides: "font_weight=bold"));

Example10.row_end();
error = 0;
Example10.table_end();
if not end then

Example10.page();
run;

The OO Output

Paper Availability
• Check the web page listed in the proceedings

www.excursive.com/sas/

• It won't be available until a week or so after SUGI
(I'm taking the train back to Sacramento).

• Send me email:

jackhamilton@firsthealth.com

(listed in the proceedings)

Questions?

