The Problem with NODUPS

Jack Hamilton

First Health
West Sacramento, California

Abstract

The NODUPLICATES option in the SORT proce-
dure supposedly deletes duplicate records from a
SAS® data set. In reality, its actions are somewhat
unpredictable, due to an oddity in PROC SORT.
This oddity can also lead to vastly inflated proc-
essing time in any PROC SORT that uses a DROP
or KEEP statement. This paper presents examples
and suggests some alternatives.

Keywords

Efficiency, NODUPKEYS, NODUPLICATES,
PROC SORT, SORT Procedure, SQL

Overview of the NODUPLICATES Op-
tion

According to theSAS Procedures Guidéhe NO-
DUPLICATES option

checks for and eliminates duplicate obser-
vations. This option causes PROC SORT to
compare all variable values for each obser-
vation to the previous one written to the

output data set. If an exact match is found,
the observation is not written to the output

data set.

Why You Might Delete Duplicates

The most common usage of the NODUPLICATES
option is to prepare a data set for use in a subse-
guent MERGE statement (or equivalent).

Here's an example. Suppose you have a TRAINS
data set containing a record for each train running
between Sacramento and San Francisco, and a
PASSNGRS data set containing a record for each
passenger on one of those trains. The datasets look
like this:

TRAINS

TRAIN DATE NAME

5 01Jun1997 California Zephy
5 02Jun1997 California Zephy
11 01Jun1997 Coast Starlight
11 02Jun1997 Coast Starlight
721 01Jun1997 Capitol

TRAIN DATE NAME
721 02Jun1997 Capitol
PASSNGRS

TRAIN DATE FARE

5 02Jun1997 $13.00
11 01Jun1997 $12.0D
721 01Jun1997 $9.0D
721 01Jun1997 $10.0P

Suppose what you want is a data set containing the
information in PASSENGRS, with the addition of
the train name from TRAINS:

PASS2

TRAIN NAME DATE FARE

5 California Zephyr 02Jun1997 $13.00
11 Coast Starlight 01Jun1997 $12.p0
721 Capitol 01Jun1997 $9.00

721 Capitol 01Junl1997 $10.490

One obvious way to obtain this result is to sort the
datasets and do a merge:

data pass2;
merge trains (in=intrains)
passngrs (in=inpass);

by train;
if (intrains and inpass);
run;
Unfortunately, this produces a message in the log:
NOTE: MERGE statement has more than
one
data set with repeats of BY
values.
NOTE: The data set WORK.PASS2 has 6
observations and 4 variables.

and incorrect results:

TRAIN NAME DATE FARE
5 California Zephyr ~ 02JUN19 13
5 California Zephyr ~ 02JUN19 13
11 Coast Starlight 01JUN19 12
11 Coast Starlight 02JUN19 12
721 Capitol 01JUN19 9

721 Capitol 01JUN19 10

Why? Well, that's just the way SAS software
works. To make this merge work successfully, you
must first delete the duplicate records in TRAINS,
so that there is only one record per train number.

Here Comes Trouble

To eliminate those duplicates, you could use PROC
SORT with the NODUPLICATES option:

proc sort data=trains
out=trains3
noduplicates;

by train;

run;

This produces a message saying that no duplicates
were deleted:

NOTE: 0 duplicate observations were
deleted.

NOTE: The data set WORK.TRAINS3 has 6
observations and 3 variables.

When you look at the output dataset you see why:

TRAIN DATE NAME

5 01JUN19 California Zephyr
5 02JUN19 California Zephyr
1 01JUN19 Coast Starlight
1 02JUN19 Coast Starlight

721 02JUN19 Capitol
721 01JUN19 Capitol

The different dates make the records non-unique.
So let's DROP the DATE variable in the sort:

proc sort data=trains (drop=date)
out=trains4
noduplicates;

by train;

run;

But look at the resulting message and dataset:

NOTE: 0 duplicate observations were
deleted.

NOTE: The data set WORK.TRAINS4 has 6
observations and 2 variables.

The log says that no observations were deleted,
even though there are clearly duplicates in the out-
put dataset:

TRAIN NAME

5 California Zephyr
5 California Zephyr
11 Coast Starlight
11 Coast Starlight
721 Capitol

721 Capitol

What happened?

NODUPLICATES Doesn’'t Always Work

The problem, it turns out, is that there is a bug in
PROC SORT. If you use a DROP or KEEP option,
dropped variables aren’t dropped until the new data
set is written, even when DROP or KEEP is used as
a data set option on the input dataset, so duplicates
appear in the output.

Although it seems to produce wrong results only
when NODUPLICATES or NODUPKEYS is used,
this problem also results in more processor usage
than is strictly necessary, as the example later in
this paper will show. The KEEP/DROP problem is
described in SAS Usage Note V6-SORT-9102.

I have not had an opportunity to test the behavior
of PROC SORT under version 7 or 8 of SAS
software.

Never Use NODUPLICATES

After discovering problems similar to the one
above, and finding a whole host of bugs related to
PROC SORT in the SAS Usage Notes, | decided
that | simply couldn’t trust PROC SORT with the
NODUPLICATES option. There are many cases in
which they appear to work correctly, but | don't
want remember which cases do and which cases
don't.

| think I'm better off with the blanket ruleNever
Use NODUPLICATES. | will sometimes do un-
necessary work, but | won’t have to worry that I'm
getting bad results without knowing it (we first dis-
covered this problem when a complicated SQL
guery wasn't returning the expected results. SQL
allows merges with duplicate keys in multiple input
data sets, so we didn’t get the warning shown in the
first merge statement above. It took hours of dig-
ging to find the problem).

Why | Don’t Use NODUPKEYS

The NODUPKEYS option is similar to
NODUPLICATES, but eliminates duplicates based
only on the BY variables, not the entire record. |
don’'t use NODUPKEYS because of the random-
ness it introduces into the output. If you have
several keys with the same BY values, PROC
SORT will pick one, and in general you don’t know
which (it depends on the sort algorithm used, which
in turn depends on the number of observations in
the dataset, the options you set for SORT system
options, and various other things). My opinion: if
you're carrying other variables, you ought to care
what their values are, so you dont use
NODUPKEYS. If you don't care what the values
are, you should just drop them, so you don’'t need
NODUPKEYS.

What To Do Instead
There are at least three easy workarounds:
Use A SORT Followed by a Data Step

This is the easiest solution. Do a regular sort, fol-
lowed by a data step to delete the duplicates:

proc sort data=trains (drop=date)
out=trains5;

by train;

run;

NOTE: The data set WORK.TRAINS5 has 6
observations and 2 variables.

data trainsb5;
set trainsb;

by train;
if first.train;
run;

NOTE: The data set WORK.TRAINS5 has 3
observations and 2 variables.

Use A Data Step View, PROC SORT, and A Data
Step

| said above that PROC SORT doesn't drop vari-
ables until output. This means that all variables in
the input dataset will be lugged around during the
sort, even when they won't be used. This can result
in much longer execution times than necessary.
One way around this is to use a VIEW on the input
data set.

data trainsé / view=trainsé;
set trains (keep=train name);
run;

NOTE: DATA STEP view saved on file
WORK.TRAINSSG.

proc sort data=trains6
out=trains7;

by train;

run;

NOTE: The data set WORK.TRAINS7 has 6
observations and 2 variables.

data trains7;
set trains7;

by train;
if first.train;
run;

NOTE: The data set WORK.TRAINS7 has 3
observations and 2 variables.

Use PROC SQL

A SELECT statement in PROC SQL will also de-
lete duplicates:

proc sql;
create table trains8 as
select distinct train, name
from trains
order by train;
NOTE: Table WORK.TRAINSS8 created,
with 3 rows and 2 columns.

The SAS usage notes say that there may be prob-
lems with this solution under some circumstances,
SO you might want to stick to the SORT/data step
solution if you want to be absolutely sure. | have
never encountered one of these problems myself.
See SAS Usage Notes V6-SQL-E428, V6-SQL-
D929, V6-SQL-6925, and V6-SQL-4953.

Some Sample Timings

| created three sample datasets with varying num-
bers of observations and variables and ran them
through PROC sort with NODUPLICATES, plus
the three alternatives, to get timings. This example
doesn't tickle the duplicates bug, but it does show
that PROC SORT is doing something funny.

Elapsedin Small Medium Large
mm:ss.hh

NODUPS .33 .55 18:55.57
SET 1.05 1.63 19:18.54
SET/VIE 2.34 3.88 3:52.7(
w

SQL 44 1.19 1:55.95

Results are for SAS for Windows®.
Similar results were obtained under OpenVMIS

SAS Versions

The problem was originally discovered in SAS 6.09
running on a DEC Alpha under OpenVMS.
The examples in this paper were creating using
SAS 6.10 under Microsoft Windows 3.1 running on
a 60 MHz Pentium Process®rwith 16MB of
RAM.

References

SAS Institute Inc (1990), SAS Procedures Guide,
Version 6, Third Edition, Cary, NC, SAS Institute.
Inc.

Contact Information

Jack Hamilton

METRICS Department

First Health

750 Riverpoint Drive

West Sacramento, California 95605 USA

1 (916) 374-3833
JackHamilton@FirstHealth.com

Trademarks

SAS is a registered trademark of SAS Institute Inc.
in the USA and other countries® indicates USA
registration. Microsoft and Windows are registered
trademarks of Microsoft Corporation. DEC and
OpenVMS are trademarks of Digital Equipment
Corporation. Pentium is a registered trademark of
Intel Corporation.

