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Abstract

s a reliable, end-to-end transport protocol, the ARPA Transmission Control Protocol

i
(TCP) uses positive acknowledgements and retransmission to guarantee delivery. TCP
mplementations are expected to measure and adapt to changing network propagation de-

.
H
lays so that its retransmission behavior balances user throughput and network efficiency

owever, TCP suffers from a problem we call retransmission ambiguity: when an ack-

w
nowledgment arrives for a segment that has been retransmitted, there is no indication

hich transmission is being acknowledged. Many existing TCP implementations do not

T

handle this problem correctly.

his paper reviews the various approaches to retransmission and presents a novel and
effective approach to the retransmission ambiguity problem.

n1. Introductio

Dynamically estimating the round-trip time, the interval between the sending of a packet and the

e
receipt of its acknowledgement, is a key function in many reliable transport protocols [5,15,22]. Such
stimates are used to ensure that data is reliably delivered. If a packet remains unacknowledged for too

-
m
long, it is assumed to have been lost and is retransmitted. Estimated round-trip times are used to deter

ine when these retransmissions will occur.

Three developments in IP networking [19,20,21] have led to increased interest in the problems of
estimating round-trip times.

First, there has been an explosive growth in the size and complexity of IP internetworks, built by

i
interconnecting existing subnetworks. The best known example is the ARPA Internet. (The ARPANET
s just one component subnetwork in the ARPA Internet.) The ARPA Internet has highly variable

round-trip times. Because its paths are very complex, it also tends to lose more packets.

Second, there has been a large increase in traffic on some of the major IP networks. Higher

n
traffic loads have led to serious network congestion on some parts of the ARPA Internet [16,18]. Like
etwork size, congestion is known to cause highly variable round-trip times and higher packet loss

rates.

Finally, recent research has shown that the standard approaches to estimating round-trip times for

v
the Transmission Control Protocol (TCP) are inaccurate if packets are lost or round-trip times are highly
ariable [9,24]. This discovery is distressing because it suggests that the mechanism reliable protocols

,
m
depend upon to handle loss and variable round-trip times, namely the estimation of round-trip times

ay not work well.

Concern about the accuracy of estimated round-trip times has led to some interesting research into
,

t
reliability mechanisms which are less dependent on round-trip estimates [2,24]. The authors, however
ake a different approach that tries to improve the data used to compute round-trip time estimates. In

h
this paper we present an analysis of this work.
hhhhhhhhhhhhhhhhh
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2. The TCP Algorithm

TCP implementations attempt to predict future round-trip times by sampling the behavior of pack-
,

S
ets sent over a connection and averaging those samples into a ‘‘smoothed’’ round-trip time estimate
RTT .

When a packet is sent over a TCP connection, the sender times how long it takes for it to be ack-
nowledged, producing a sequence, S , of round-trip time samples: s ,s ,s ....1 2 3

W iith each new sample, s , the new SRTT is computed from the formula:

SRTT = (α×SRTT )+(1−α)×si +1 i i

1w i i +here SRTT is the current estimate of the round-trip time, SRTT is the new computed value, and α
is a constant between 0 and 1 that controls how rapidly the SRTT adapts to change.

The retransmission time-out (RTO ), the amount of time the sender will wait for a given packet toi

i :be acknowledged, is computed from SRTT . The formula is

RTO = β×SRTTi

w

i

here β is a constant, greater than 1, chosen such that there is an acceptably small probability that the
round-trip time for the packet will exceed RTO .i

2.1. General Observations

There are several things to observe about the algorithm. First, it can be viewed as an attempt to
.

G
approximate the next value from a function R , where R (i ) is the actual round-trip time for packet i

iven the sequence of measured round-trip times,

S = s ,s ,s ,...,s 1

which correspond to the values of R :

1 2 3 i −

s =R (1),s =R (2),...,s =R (i −1)

w

1 2 i −1

e hope that the RTO computed from those values will be a good upper bound on R (i ), the round-trip

i
time for the next packet. Notice that if the measured round-trip times, S , are inaccurate then the RTO
s probably incorrect; this problem is examined in the next section.

e
b

One should also observe that the values of the constants α and β have important effects on th
ehavior of the algorithm.

The value of α controls how rapidly the SRTT adjusts to changing round-trip times. Mills [11]

t
has measured network round-trip times and recommends that there be two values for α, depending on
he relative values of the sample, s , and SRTT . Mills observed that round-trip times are roughly Pois-

s
i i

on distributed, but with brief periods of high delay. During these periods, he found that the standard
d

u
way of computing SRTT and RTO often did not adapt swiftly enough, and the TCP sender woul
nnecessarily retransmit packets because the RTO was set too low. As a result, he suggested a non-

linear filter where α is smaller when SRTT <s , allowing the SRTT to adapt more swiftly to suddeni i

increases in network delay.

Choosing a value for β is harder because it has important and conflicting effects on individual

l
user throughput and overall network efficiency [15]. To achieve optimal throughput β should be only a
ittle greater than 1. This keeps the RTO very close to the SRTT and ensures that packet loss will be

fl
quickly detected. Detecting lost packets quickly is important for good throughput, since the end-to-end

ow control mechanisms in reliable protocols like TCP will cause the sender to stop transmitting new
packets if a packet remains unacknowledged for much longer than the round-trip time.

Unfortunately, what is good for throughput is disastrous for efficient network utilization. If the
e

r
RTO is nearly equal to the SRTT (i.e., if β is near unity) then a large number of packets will b
etransmitted unnecessarily because the sender times out too soon. For example, consider the situation

s
c
where RTO = SRTT , (i.e, β=1), and the SRTT is an accurate median of the round-trip times. In thi
ase, roughly half of all packets will be timed out and retransmitted because their acknowledgement

took too long, burdening the network with unnecessary retransmissions. To minimize retransmissions, β
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P
s
should be chosen such that the RTO will be a high upper limit on the round-trip times. The TC
pecification [21] recommends a value of β=2 as a reasonable balance. Another possibility suggested

,
a
by Van Jacobson [7,8] is to vary β based on the observed variance in measured round-trip times
lthough this is outside the immediate scope of this paper.

2.2. Back-off

Whenever a timeout occurs, virtually every TCP implementation increases the RTO by some fac-

t
tor before retransmitting the unacknowledged data. Should the new, larger RTO expire yet again before
he retransmission is acknowledged, it is increased still further. This technique is known as back-off.

n
(Back-off is performed independently of SRTT calculation, since without an acknowledgment there is
o new timing information to be fed into the calculation). A variety of algorithms are used since the

-TCP specification does not prescribe one. Some (e.g., Berkeley UNIX ) step through a table of arbi1

m
b
trary back-off factors for each successive retransmission; others simply double the RTO (i.e., perfor
inary exponential back-off) for each consecutive attempt. Whatever the algorithm, TCP back-off is

o
essential in keeping the network stable when sudden overloads cause packets to be dropped. When the
verload condition disappears, packet loss stops and the TCPs reduce their RTO to their normal SRTT-

3

based values.

. Sampling Round-Trip Times

A key assumption of the TCP algorithm is that the sequence of round-trip samples is an accurate
measurement of the true network round-trip times (i.e., that s =R (1),s =R (2), etc.). It has recently been1 2

g
f
shown that the two standard sampling methods, measuring from the first transmission and measurin
rom the most recent transmission, give inaccurate results [9,24].

t
h

This inaccuracy is caused by packet retransmission. The information carried in the packe
eaders of TCP and most other reliable protocols does not indicate if an acknowledgement is in

e
m
response to the original transmission of a packet or a retransmission. As a result, a round-trip tim

easurement for a retransmitted packet is ambiguous. We will call this problem retransmission ambi-

3

guity.

.1. Measuring From the First Transmission

Many TCP implementations measure round-trip times from the first transmission of a packet.

p
Whenever an acknowledgement is received, the round-trip time is computed from the first time the
acket was sent, regardless of how many times the acknowledged packet has been retransmitted,

s
l

Sampling from the first transmission may cause the SRTT to grow without bound when there i
oss on the network. When there is loss, the TCP sender must retransmit lost packets. If we look at

the sequence of samples, S , we discover that it contains samples of two types. If γ is a boolean func-F i

F e
e
tion which is 0 if the acknowledgement for packet i is acknowledging a retransmission, S can b
xpressed as:

S =
I
K
Lsdd

s

if γ =0

if γ ≠0

I i

F
i

i

i

i

f we look at the values of sdd, those samples which are derived from the acknowledgements of

p
retransmissions, we find that they are a function of the true round-trip time, R (i ), the SRTT, and the

articular retransmission of packet i , r , where r >0, which is being acknowledged:

i

i i

i i i i

s

sdd = R (i )+r ×RTO = R (i )+r ×β×SRTT

dd will be used to compute the new smoothed round-trip time, SRTT Plugging sdd into the SRTT func-
t

i i +1. i

ion gives:

SRTT = (α×SRTT )+(1−α)×(R (i )+r ×β×SRTT )
hhhhhhhhhhhhhhhhhh

i +1 i i i

UNIX is a trademark of AT&T Bell Laboratories.1
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T= (α×SRTT )+(1−α)×R (i )+(βr −αβr )×SRTi i i i

S i iince 0<α<1 the factor (βr −αβr ) is greater than zero and distorts the function, causing it to inflate the
r

t
value of the SRTT. Inflated round-trip time estimates may not be a problem if the original reason fo
he high loss rate was network congestion, because congestion tends to increase round-trip times any-

l
p
way. It is also acceptable if the loss rate is very low since the accumulated error is so small that it wil
robably have no noticeable effect on the SRTT. However, if the path is lossy (e.g., a noisy packet

t
u
radio channel operating without link level acknowledgements), the SRTT grows and throughpu
nnecessarily decreases to low levels.

n3.2. Measuring From the Most Recent Transmissio

Another popular method measures round-trip time from the most recent transmission of a packet.

t
The implicit assumption in this method is that the RTO is accurate; if a packet has to be retransmitted
hen previous transmissions have almost certainly been lost.

,
a

Unfortunately, this assumption is often false. If the RTO is smaller than the true round-trip time
cknowledgements for previous transmissions may arrive after a retransmission. If τ is a boolean func-i

d
v
tion which returns 0 if the acknowledgement is for a previous transmission, the sequence of sample
alues, S is:R

R
i

i

i

i 0if τ ≠
0

s

if τ =d

A

S =
I
K
Lsd

t first glance this doesn’t look too bad. Sdd is a value between 0 and the RTO, which might be
e

i

xpected to distort the SRTT a bit, but doesn’t have the growth term caused by measuring from the first
transmission.

But the picture is not quite so rosy. Recall that the RTO is intended as an estimate of the max-

l
imum possible round-trip time. If an acknowledgement arrives after the RTO has expired, it is highly
ikely to come very shortly afterwards. In other words, instead of being randomly distributed between 0

and the RTO, sdd is likely to be very close to 0 (recall that the sample timer was reset when the RTOi

had elapsed). This will cause the SRTT to decline, reducing the RTO, and increasing the likelihood
-

s
that a packet will be acknowledged just after the RTO has expired. The SRTT stabilizes at an unrea
onably low estimate. Unnecessary data retransmissions occur constantly, useful throughput drops shar-

ply, and network bandwidth is wasted.

Observe that the problem of a declining SRTT could be avoided if the RTO were set extremely
h

t
high, so high that no packet could survive that long unacknowledged. Recall however, that for hig
hroughput, the RTO cannot be much larger than the SRTT. An algorithm which requires an extremely

3

high RTO will give unacceptable performance across a lossy path.

.3. Ignoring Round-Trip Times for Packets That Have Been Retransmitted

.

T

Some implementations simply ignore round-trip time samples tainted by retransmission

his method works, provided the true round-trip time never grows faster than the algorithm can
h

c
adapt. If there is a sudden increase in network round-trip time (e.g., when the failure of a primary pat
auses packets to be sent via a slower secondary path), and if the new path delay becomes larger than

-
n
the RTO, all samples will be discarded, because every packet will be retransmitted before the ack
owledgement comes back. Note that if the RTO is reasonable (i.e., if β is chosen well) then the

t
chance of a dramatic surge is quite small. But the consequences of such a surge are truly disastrous —
he sender is stuck with an unrealistically short RTO that it has little chance or no chance of correcting.

c
Once again, there are numerous unnecessary retransmissions, throughput drops sharply and network
apacity is wasted.

m3.4. Karn’s Algorith

Very recently a new sampling method has been suggested by one of the authors. This method
addresses the problems with ignoring round-trip times of retransmitted packets.
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The fundamental notion of Karn’s algorithm is to use RTO back-off to collect accurate round-trip
time measurements uncontaminated by retransmission ambiguity. The rule is as follows:

When an acknowledgement arrives for a packet that has been sent more than once (i.e.,

i
retransmitted at least once), ignore any round-trip measurement based on this packet, thus avoid-
ng the retransmission ambiguity problem. In addition, the backed-off RTO for this packet is kept

i
for the next packet. Only when it (or a succeeding packet) is acknowledged without an interven-
ng retransmission will the RTO be recalculated from SRTT.

d
i

The last provision ensures that new and accurate round trip measurements will be taken and fe
nto the SRTT estimate regardless of any sudden increase in round-trip delay. If the increase is large,

a
the RTO may oscillate between the backed-off value necessary to avoid an unnecessary retransmission
nd the value calculated from SRTT. However, the SRTT will converge to the correct value, and

unnecessary retransmission will stop.

How quickly the SRTT converges to the new round-trip time depends on the back-off algorithm
-

s
and the SRTT smoothing algorithm, but typically this convergence is quite fast. To prevent unneces
ary retransmissions, the RTO must be greater than the new round-trip time. To achieve this new RTO

n
t
value the SRTT must be at least as large as the new round-trip time, s , divided by β. (For simplicity i
he proof, we assume that the new value for s does not vary). Reaching the new RTO takes n valid

,
a
samples, where n is the minimum value for which the following equality in terms of the new RTT, s
nd the old SRTT, z , is true:

β
shh ≤ ( z × α ) + ( ( s × (1−α) )×α )

n
( i −1 )

1

n

i =
Σ

In the worst case s − z is almost s (i.e., s >> z ), so the z term may be ignored. Dividing the remaining
terms by s , we find that the upper limit on n is given by the solution to:

β
1hh ≤ (1−α)×α )

n
( i −1

1i =
Σ

Using typical values of α = 0.875 and β = 2, n is only 6. Since the number of required valid samples
is small, convergence is usually swift.

A TCP implementation using Karn’s algorithm and Mills’ nonlinear filter has been in heavy use
e

p
on perhaps the worst medium ever used to pass IP datagrams: amateur packet radio [10]. Despit
acket loss rates often exceeding 50%, SRTT values remain quite stable, changing only in response to

3

true changes in round-trip time. Packets lost due to noise leave the SRTT unaffected.

.5. Sampling RTTs in Parallel

While Karn’s algorithm is currently the best available solution to the sampling problem, it is

d
worth taking a few paragraphs to discuss another class of sampling algorithms which have been
eveloped recently. These algorithms depend on the fact that most transport protocols send more than

one packet at a time, and as a result it is possible to take multiple round-trip time samples in parallel.

One such algorithm has recently been developed in an implementation of the Reliable Data Proto-
t

t
col (RDP), which uses the TCP algorithm to estimate round-trip times [4,17,22]. It relies on the fac
hat networks almost always preserve packet ordering. If two packets are sent close together it is likely

e
o
that they will reach their destination in the order they were sent, and be acknowledged in the sam
rder. So if an acknowledgement for packet i is received after the acknowledgement for packet j ,

c
where j >i , it is a strong hint that the acknowledgement is for a retransmission of packet i . We can
heck the retransmission count, r , for packet i , so this observation gives a sampling method.i

i :

g

Measuring from the first transmission, a sample for packet i , s , should be discarded if

An acknowledgement for some packet j , j >i , has already been received, and

g r ≠0i

The first test can only be applied if packets can be acknowledged when they are received out of order.
Such acknowledgements are called extended or selective acknowledgements. RDP supports extended
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.acknowledgements. TCP does not, although consideration is being given to adding this facility [1]

The performance of this sampling method is highly dependent on the number of parallel transmis-

r
sions a protocol implementation will support. Observations suggest that the algorithm keeps accurate
ound-trip estimates at much higher loss rates than sampling from the first transmission.

’
w

Other estimation methods that use multiple samples taken in parallel have been explored in Mills
ork on synchronizing network clocks [12,13,14]. Synchronizing clocks involves problems of handling

e
s
a certain amount of bad data, caused by noisy links or faulty clocks. The techniques used to eliminat
uch bad values can also be applied to the problem of extracting good round-trip times from a set of

several round-trip times collected at roughly the same time.

Parallel sampling methods tend to suffer from two problems. First, they can be adversely
l

w
affected by the loss of an entire group of packets; all the samples become bad. Second, they often fai

hen a network is congested. When a network is congested, most protocols attempt to reduce the data
-

w
they put on the network by limiting themselves to sending one packet at a time. Unfortunately, a net

ork is most likely to drop packets when it is congested. Thus the ability to take parallel samples is

n
lost at precisely the time we would most like to have an accurate sampling method. One could blur the
otion of ‘‘parallel’’ and simply apply these techniques after every n samples, where n is chosen to

e
m
equal the number packets that are normally in flight. But when the protocol is in one-packet-at-a-tim

ode, recomputing the SRTT must be delayed until n samples have been collected, which could be a

4

long time, at minimum it is roughly n ×SRTT .

. The Perfect Sampling Method

It is worth noting for a moment that most of the methods discussed in this section are attempts to
h

r
achieve the sampling function γ discussed in section 3.2. Recall that γ was a boolean function whic
eturned 0 if the sample was taken from the acknowledgement of a retransmission. The sampling

t
a
methods want to use only those samples measuring the time between the first transmission of a packe
nd the acknowledgement of that first transmission, i.e., those samples for which γ≠0. The problem is

s
that most sampling methods are inadequate approximations of γ, and either exclude too many good
amples or include too many bad samples.

Karn’s algorithm solves this problem by accepting only good samples and using the retransmis-

i
sion back-off strategy to ensure that good samples will eventually be available even if round-trip times
ncrease dramatically.

m5. Deficiencies in the TCP Algorith

So far this paper has focussed on how to improve round-trip estimates by using better sampling
-

m
methods. Before concluding we would like to touch briefly on some other ways that round-trip esti

ates can be improved.

One improvement is to sample more frequently. Some protocol implementations sample round-

e
trips only once per sending window, leading to poor estimates because the estimator does not have
nough recent samples to detect changes in the round-trip time.

P
a

Another possible improvement is to chose a new algorithm for estimating the RTO. The TC
lgorithm assumes that a weighted average, the SRTT, adjusted by some estimate of variance, β, is a

s
s
good approximation of the behavior of the network function, R . Recently, research by Jacobson ha
hown that R is a more complex function than a simple average can accurately model [6,8]. Encourag-

R
ingly, however, Jacobson’s work also suggests that it may be possible to predict the values generated by

with functions of roughly the same complexity as the functions presented in section 2.

6. Conclusion

Much attention has recently been paid to the question of whether one can accurately sample
s

c
round-trip times over a transport protocol connection. The authors have shown that round-trip time
an be accurately sampled and have presented a simple method that gives good round-trip time samples.
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