
36 Practical Wireless February 2015

UKHASnet
Mike Richards G4WNC introduces readers to a low-
speed wireless-based mesh network that can be 
built easily and cheaply and has lots of potential 
applications.

O
ver the past few months 
I’ve been involved with 
the UK High Altitude 
Society and, in particular, 
their UKHASnet project. 

The UK High Altitude Society is a loose 
organisation of enthusiasts who work 
together to develop the technology 
to support all things to do with high 
altitude ballooning. I’ve mentioned them 
here before and I’m sure you will have 
heard of some of their record-breaking 
exploits. The group is a true network of 
hackers in the creative sense because 
they are using their engineering and 
programming skills to adapt and 
make the most of, cheap electronic 
components and modules. The 
UKHASnet project is a new networking 
system that was originally conceived to 
support high altitude ballooning but has 
a much wider appeal for any situation 

where you want to connect things 
wirelessly. Let’s start with an overview 
of the UKHASnet network.

UKHASnet
You will doubtless have heard the phrase 
Internet of Things or IoT being generally 
overused by marketing people. However, 
when you try to use the technology, you will 
quickly fi nd that adding wireless connectivity 
to your projects is not as easy or as cheap as 
it ought to be. Bluetooth and Wi-Fi modules 
tend to be very expensive and the Bluetooth 
licensing process severely penalises the 
development of low volume commercial 
products. The UKHASnet approach has 
been to defi ne a simple new network that’s 
ideal for handling low-speed data such as 
sensor readings and simple commands. In 
addition to providing simple connections, the 
UKHASnet has been designed to operate 
as a mesh network. By that I mean that 

● E-Mail: mike@pwpublishing.ltd.uk

Data Modes with Mike Richards G4WNC

repeaters can be used to extend the reach of 
the network in a mesh-like manner, Fig. 1. 

At the heart of this network is the use of 
RF transceiver modules from Hope RF. The 
RFM69HW is the preferred module and this 
is a programmable, VHF/UHF transceiver 
with an output power of up to 100mW and 
frequency setting in 61Hz steps, Fig. 2. 
The unit is designed for operation in the 
sub-1GHz licence exempt bands and can 
be controlled using SPI commands from a 
local processor. In addition to being a very 
useful transceiver, the main attraction of 
the RFM69HW is the price, which can be 
as low as £3-£4 each in small quantities! 
To make a working node, some form of 
microcontroller is also required to read the 
sensor data and to control the RFM69HW. 
The Atmel ATmega328 as used by many of 
the Arduino boards is a popular choice. You 
can use a standard Arduino board, one of 
the many clones or even a bare ATMega328 
chip. In the latter case, by loading an 
Arduino bootloader, you can program it 
using the popular Arduino IDE (Integrated 
Development Environment). As you will see, 
it is very easy to build UKHASnet nodes 
using stripboard construction but there are 
some other interesting options available, as I 
will show you later.

Inside UKHASnet
Before I move on to the practicalities of 
building nodes and making things work, 
let’s have a closer look at the protocols 
used on the network. In order to send data 
successfully over a radio link, you need an 
organised way to manage the transmission. 
The solution used by UKHASnet is to wrap 
the data in packets. This technique is 
used extensively in modern applications 
ranging from our amateur radio packet 
networks through to the internet so it is well 
proven. In the UKHASnet, these packets 
contain information to wake up the receiver, 
synchronise the timing, send the data and 

Fig. 1: UKHASnet mesh networking.

Sensor
node

Sensor
node

Sensor
node

Sensor
node

Repeater
node

Gateway
node

Internet

20mm

16m
m

Fig. 2: The Hope RF RFM69HW VHF/UHF 
programmable transceiver.

36 Data Modes.indd   3636 Data Modes.indd   36 15/12/2014   14:0915/12/2014   14:09



February 2015 Practical Wireless  37

check for damage. In the RFM69 modules 
the packets employ the following format, 
Fig. 3:

Preamble: This is a sequence of three 
bytes, each set to 0xAA. In binary notation 
this is 10101010, which some of you will 
recognise as the same technique used by 
RTTY operators as a tuning signal (in their 
case, RYRYRY). The receiver uses this 
alternating signal to adjust the automatic 
frequency control (AFC) and optimise the 
RF gain settings.
Synchronisation: This is a two-byte 
sequence of 0x2D and 0xAA that’s used 
to synchronise the receiver. It’s required 
so that the receiver can identify the 
beginning and end of each element in the 
message and trim its data clock to match 
the transmitter.
Data Length: A single byte that tells 
the receiver how many bytes of data to 
expect. In the present format this is limited 
to 64 bytes but this is more than adequate 
for most applications.
Data: This is where we put our message. 
If you need to send more than 64 bytes, 
you simply split the data over multiple 
packets.
Checksum: A two-byte checksum is 
added, which is used by the receiver to 
check that the data has been received 
error free.
The RFM69 series modules automatically 

handle the packet management so that all 
the user has to do is to supply the data to the 
transmitter and extract it from the receiver. 
Even this task has been made simple thanks 
to the availability of Open Source RFM69 
libraries.

On the RF front, the UKHASnet employs 
simple 2-frequency FSK modulation at 2,000 
baud with a shift of 24kHz. The operating 
frequency of 869.5MHz was chosen because 
it permits transmit powers up to 100mW from 
an airborne device in this licence-exempt 
band.

UKHASnet Data Format
If you consider UKHASnet as a layered 
protocol, then layer 1 is the RF modulation 
system, layer 2 is the packet format I’ve 
just described and layer 3 becomes the 
UKHASnet data format that fi ts inside the 
Data section of the RFM69 layer 2 packet, 
Fig. 4. When designing the UKHASnet 
data format, the fi rst requirement was for 
it to be human readable. This makes the 
data very easy to use and also simplifi es 
the debugging process when you have 

problems. Here are details of the packet 
format:

 Repeat number: This is a single byte at 
the start of the message that specifi es the 
number of times the message should be 
repeated. Every time a node repeats the 
message, this number is decremented by 
1. A repeat limit is necessary to prevent 
repeater loops where the message would 
just go round and round between repeaters. 
If you want your node to permeate further 
through the network, you can increase this 
value for all originated packets.
 Sequence Count: This is a single 
alphabetical character that increments 
from b to z and is used to show the order 
in which packets should be reassembled if 
you have long data messages to send.
 Data: This is where the main content of the 
message is placed. Each item of data is 
preceded by a single letter to indicate the 
data type, with the values following as a 
comma-separated list. To send a series of 
voltage readings the data would look like 
this: V3.2,4.7,5.6 and so on.
 Path: The fi nal part of the message is 
enclosed in square brackets and gives 
the ID of the node originating the packet 

plus details of any nodes that repeated the 
packet. The node at the end of the list is the 
last one to transmit. Put simply, whenever a 
node repeats a packet, it reduces the repeat 
number by 1 and adds its ID to the end of 
the message.
I’ve also shown an illustration of the data 

format in Fig. 5.

How to Use UKHASnet
The best way to learn how to use the network 
is to build yourself a couple of nodes so 
that you can start playing. To help with this 
process, there is an excellent WiKi on the 
UKHASnet website. This is undergoing 
continuous improvement and is a great 
reference source. There is also a very useful 
web API that can be used to monitor the 
data from your nodes. The web API not only 
gathers the data from your nodes but also 
displays the results, graphs the historical 
data and even shows activity on a map. The 
minimum you need to get started is a sensor 
node and a gateway node. If you have a 
Raspberry Pi kicking around the shack, this 
can be used to handle the internet linking to 
send your node data from the gateway to the 
web API. The code for this is already written 

Fig. 4: The layered protocol used for UKHASnet. Layer 3 sits inside the Data segment of Layer 2.

Fig. 3 An illustration of an RFM69 packet.

RFM69 packet format
Preamble - Synchronisation - Data length - Data - CRC 

UKHASNet data format
Repeat - Sequence - Data - Path

RFM69 2FSK modulation, 2000 baud, 24kHz shiftLayer 1

Layer 2

Layer 3

1vT1.4H89.3[WNC6,WNC3]

No of
repeats (1)

Sequence
count (v)

Temperature
(1.4°C)

Humidity
(89.3%)

Originating
node

(WNC6)

Repeating
node (WNC3)

Data
length Data (upto 64bytes)

CRC
checksum

10101010 10101010 10101010 00101101 10101010 dddddddd  nnnnnnnn -------------------- nnnnnnnn cccccccc

Preamble Synchronisation

Fig. 5: The diagram shows a typical UKHASnet packet originating from one of my nodes, WNC3.

36 Data Modes.indd   3736 Data Modes.indd   37 16/12/2014   12:0516/12/2014   12:05



38  Practical Wireless February 2015

Data Modes

so it’s really a case of pulling the hardware 
together.

Stripboard Node
If you have PCB making facilities and are 
familiar with the Eagle schematic and PCB 
designer, you will fi nd that there are designs 
and board layouts on the Github site to get 
you going. If you don’t have those facilities, 
then the stripboard node option is a good 
place to start. You will fi nd full details of the 
node at the URL below.
http://goo.gl/4n0ORm

All you need is an ATmega328 (with 
Arduino bootloader), RFM69HW 868MHz 
module, MCP1700 3.3V voltage regulator, 
28-pin DIL IC Socket, 2 x 1µF ceramic 
capacitors, stripboard, DS18B20 sensor and 
a few resistors.

With so few connections, the stripboard 
node is quite straightforward to build. I’ve 
shown the schematic in Fig. 6 and this has 
been laid out to align with the stripboard 
construction so it serves as a layout guide 
as well as a circuit diagram. You will see that 
I’ve added a DS18B20 temperature sensor 
to the circuit. This is only required on the 
sensor node. At the bottom of the stripboard 
section of the WiKi you will see a link to a 
new section I have supplied that deals with 
programming bare ATmega328s with a 
Windows PC.

Ready Built Nodes
If you’re looking for a compact ready-built 
node, then the US-made Moteino by Low 
Power Labs is a good bet. The website link 
is at the end of this paragraph. These great 
boards measure just 33 x 23mm, comprise 
an ATmega328 with all the supporting 
circuitry and can be bought complete with 
an RFM69HW ready fi tted for about £12 
each, Fig. 7. The shipping costs are also 
very reasonable at just over £6 for USPS 
service to the UK. The ATmega328 on the 
Moteino board is supplied programmed with 
an Optiboot bootloader so it can be used 
with the Arduino IDE. As you can see from 
Fig. 6, the Moteinos have the RFM69HW 
fi tted on the underside of the PCB, which 
helps to make the units so compact. Despite 
their small size, all the standard Arduino 
pins are brought out to the 0.1in-spaced 
headers. Due to the small size, there is no 
USB connection and the boards need to be 
programmed using a standard FTDI adapter 
lead. If you don’t have one of these available, 
Low Power Labs can supply one for just 
under £10. Alternatively, you can use an ISP 
programmer or go for the MoteinoUSB with 
radio that costs around £16.
http://goo.gl/690RXd

Next month, I’ll get into the practical 
details of building a network and adapting 

SCK

MISO

MOSI

INT0

RXD

TXD

MOSI
MISO

SCK
GND
ANT

NC
NSS

GND

RESET

DIO5
DIO4
DIO3
DIO2
DIO1
DIO0

3.3V
GND

GND

NB:Antenna is 8.2cm
length of solid wire

soldered directly to ANT
pin of RFM69W device

ATmega328
RFM69HW

RFM69HW
component
side view

MCP1700
3.3V reg

1 1

+3.7 to 6VDC

0V

Vout +3.3V

Vin

DS18B20
Temp Sense

Vcc

PB2

5k6

Gnd

Tx

Rx

To Raspberry Pi
gateway

Fig. 6: Schematic and layout diagram of a stripboard node.

the software. If you want to get a head start, 
then the UKHASnet Wiki, is a great place to 
start and the IRC channel is a good place to 

visit if you have questions.
https://www.ukhas.net/wiki/doku.php

33mm

23mm

Fig. 7: The Moteino ready-built Arduino + RFM69 boards that are ideal for UKHASnet.

RFM69HW

36 Data Modes.indd   3836 Data Modes.indd   38 15/12/2014   14:1015/12/2014   14:10




	Binder1.pdf
	DMR and UKHASnet_Page_3~
	DMR and UKHASnet_Page_4


