
DMRGateway 2 Way

We are pleased to announce the open beta test of DMRGateway 2 Way. This software
& hardware package will allow a AllStar node to connect to a IPSC network for full
transceive. The software will run on Linux x86, x64 and the Raspberry Pi2. The
hardware required is a DV3000 Vocoder from NW Digital Radio. You can use either the
ThumbDV (USB) or PiDV (GPIO).

Two software packages are required to build the DMR <---> AllStar Gateway,
DMRGateway and DMRlink. Most communications between modules, ASL,
DMRGateway, AMBEServerGPIO and ambe_audio are done using UDP packets. This
allows for modules to be hosted on different machines (if desired). You could for
example, run ambe_audio, AMBEServerGPIO and DMRGateway on one machine and
ASL on another.

DMRGateway is the audio bridge between AMBE (DMR) and PCM (Analog). Its main
purpose is to encode PCM to AMBE and to decode AMBE to PCM. It uses UDP to
communicate between several endpoints in the system. DMRGateway when in DMR
receive mode, listens for AMBE frames. For each frame it will format and transmit it to
the Vocoder. The resulting PCM audio is forwarded to AllStar via the chan_usrp channel
driver. In the DMR transmit mode, DMRGateway listens for PCM from chan_usrp,
formats and transmits them to the Vocoder. The resulting AMBE frames are packaged
into IPSC frames and sent to the DMR network. The chan_usrp channel driver is
included with the DIAL distributions and possibly some of the lesser distributions. In
DIAL, chan_usrp must be enabled in /etc/asterisk/modules.conf.

The Second required package is ambe_audio.py and its configuration files. This Python
script is part of the larger DMRlink package. ambe_audio receives AMBE frames from
the IPSC network, and transmits them to DMRGateway. In the other direction,
ambe_audio listens for AMBE from DMRGateway and sends them to the IPSC
network. Since the analog source does not contain Metadata (peer and subscriber
radio IDs) , ambe_audio will provide Metadata in the constructed stream.

Some general notes about usage are in order here. First, this should NEVER be used
to connect to a DMR network that does not allow this type of traffic. Specifically, this
should not be used on the DMR-MARC networks as they explicitly forbid it. Cort,
N0MJS had provided the option of testing this on the SANDBOX network. This network
is designed for experimentation and is perfect for ASL to DMR gateways. ASL node
2100 is already using this (at times) and it works very well. Contact Steve, N4IRS for IP
address and authorization keys to access the SANDBOX. In addition, BrandMeister
also is very experimentation friendly. You can connect to the BM network, and with the
help of one of the administrators, have access to several TGs on their system.

 Components
o AMBEServer and AMBEServerGPIO (Vocoder)

 If using the ThumbDV plug it into any available USB slot. Verify it

exists in /dev/USBx (probably 0) Then edit the DV3000 section of
DMRGateway.ini to point to the /dev/USBx port

 If using a DV3000, compile/install AMBEServerGPIO (currently
done by install script, should be optional) and edit DMRGateway.ini
to point to the IP address of the server.

o DMRGateway
 Place the DMRGateway in your path /usr/local/bin (done by install

script)
 Copy the DMRGateway.ini file in /etc (done by install script)
 Adjust any parameters necessary in the DMRGateway.ini file (IP

address, etc). The DMRGateway.ini file is very well documented
internally. We suggest you read and understand all of the
comments in the doc even if you are not changing them.

o DMRlink
 Make sure the prerequisites are installed (python, twisted, bit string,

etc) The complete DMRlink package is installed in /opt/dmrlink by
the install script.

 Although DMRlink bridge is not required, you may need this to
route DMR packets where you want them

 ambe_audio.py
 Adjust ambe_audio.cfg - REQUIRED
 gatewayDmrId must be set to a valid DMR ID. This is the

User ID the traffic will appear to come from.
 section should be set to reference a named section with

network specific values for talk groups
 Within a section the tgFilter value defines which talk groups

are passed on to the DMRGateway. Set this appropriately.
 Adjust dmrlink.cfg as needed

 RADIO_ID will be used when generating DMR from the
gateway. This is the Repeater ID the traffic will appear to
come from.

o Analog
 AllStar

 Given a running ASL node, enable the chan_usrp channel
driver in /etc/asterisk/modules.conf

 Create a private node in ASL using the chan_usrp channel
driver

 Dongle Mode (experimental)
 Dongle mode is used to communicate on a DMR network

with only the use of a DV3000, sound fob, speaker and
microphone.

 Connect up your sound in/out device (CM1xx is perfect)
 Make sure OSS sound module is loaded (modprobe

snd_pcm_oss)
 Edit DMRGateway.ini to set useMicrophone to true

 PTT is either VOX or toggled by the keyboard (any key
on/off)

 Use alsamixer to adjust speaker and mic audio levels
 Execution

o The packages are designed to run in the background, and no GUI is
required. First time installers may want to create multiple ssh windows and
run each component in the foreground to watch for errors and to verify
proper operation. Once all is well, then proceed to run each component in
the background.

o Make sure ASL is running (ps -ef)
o Connect your public ASL node to the private node number
o Start AMBEServer (if needed)
o Start DMRGateway
o Start ambe_audio.py (python ambe_audio.py)
o DMR to ASL

 For each transmission you will see logging from ambe_audio with
slot, TG and ID or call

 DMRGateway is silent for this stage unless an error occurs
 ASL should receive the audio and pass it on to all connected nodes

o ASL to DMR
 chan_usrp sends each PCM frame to DMRGateway (no logging)
 DMRGateway will output logging on each start and end of

transmission
 ambe_audio will log each transmission
 ambe_audio will pass the DMR on to IPSC on the assigned slot

and TG with the proper DMR IDs
o Remote control

 In order to change the execution without restarting the ambe_audio
server you may send it remote control commands. The commands
can be generated any number of ways but an easy interface is to
use netcat. Send the commands to the IP address and port
specified in the ambe_audio.cfg file. A guru can hook this up to an
ASL script command.

 Change talk groups to monitor:
 echo -n "tgs=x,y,z" | nc 127.0.0.1 31002
 where x,y,z are the new tg numbers. Remember this is in

memory only and will reset if the server is restarted.
 Reread the subscribers (use the get_ids.sh script)

 echo -n "reread_subscribers" | nc 127.0.0.1 31002

