
A SOFTWARE BASED APCO PROJECT 25 DATA TRANSMISSION BASE

STATION FOR LOCAL POLICE HEADQUARTERS

BY

ERIC RENÉ RAMSEY

B.S., University of New Hampshire, 2005

THESIS

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Electrical Engineering

September, 2007

ii

This thesis has been examined and approved.

Dr. W. Thomas Miller, III
Thesis Director
Professor of Electrical Engineering

Dr. Andrew L. Kun
Associate Professor of
Electrical Engineering

Dr. William H. Lenharth
Research Associate Professor of
Electrical Engineering

Date

DEDICATION

For my beautiful Wife, Colleen.

Thank you for your Love and Support

iv

ACKNOWLEDGEMENTS

 I would like to take this opportunity thank all of the people who have

guided and supported me during the Thesis processes:

Dr. Lenharth and Dr. Kun, for their mentoring and friendship.

Dr. Miller, my thesis advisor, for sharing his time and knowledge.

Scott, Coleen, and J.R., for their constant support.

My Mother and Father, who offered their Love, support, and excellent advise.

Last but not least, I would like to thank my loving and supporting wife Colleen, for

sacrificing her nights and weekends so that I could work and for always listening

to my problems.

v

TABLE OF CONTENTS

DEDICATION ... iii

ACKNOWLEDGEMENTS ...iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ACRONYMS .. x

ABSTRACT ..xi

INTRODUCTION .. 1

I. APCO PROJECT 25 COMMON AIR INTERFACE ... 4

Encoding and Transmission of Digital Data Packets 8

II. THE TXRX APPLICATION .. 12

Project 25 Packet Conversion .. 12

Header Block .. 13

Data Error Correction .. 20

Network Identifier .. 23

Frame Synchronization Word .. 27

Status Symbols ... 27

Channel Initialization ... 28

Dibits to Frequencies .. 28

Nyquist Raised Cosine Filter .. 29

Pre-Emphasis Filter ... 32

Push-to-Talk Control .. 35

vi

Sound Card Control ... 36

III. TESTING ... 37

Testing Configuration ... 37

Software Testing .. 38

Sound Card Testing ... 41

Analog Radio Modulation Testing Using A VSA 42

Motorola Digital Radio Demodulation .. 48

End-to-End IP Testing.. 48

IV. CONCLUSIONS .. 52

Future Improvements ... 54

APPENDIX A – Motorola XTL500 Code Plug Settings 57

APPENDIX B – Filter Design and Coefficients ... 62

Nyquist Raised Cosine Filter .. 62

Pre-Emphasis Filter ... 64

APPENDIX C – IP Reflector in Project54 ... 66

APPENDIX D – VSA Settings ... 69

APPENDIX E – Registry Parameters ... 70

APPENDIX F – Custom Radio Interface Cable .. 72

vii

LIST OF TABLES

Table I.1- Project 25 Frequency Values .. 9

Table II.1 - SAP Identifier Values .. 14

Table II.2 - Example Header Block ... 17

Table II.3- Rate 1/2 Trellis Encoder State Transition Table .. 21

Table II.4 - Constellation to Dibit Pair Mapping ... 21

Table II.5 - Interleave Table .. 22

Table II.6 - Network Identifier Information ... 23

Table II.7 - Data Unit Identifier Values .. 24

Table II.8 – BCH Code Generator Matrix .. 26

Table II.9 - True Network Identifier .. 26

Table II.10 - Frame Sync Word Sequence .. 27

Table II.11 - Status Symbol Codes ... 27

Table B.1 - Normalized Smoothing Filter Coefficients... 63

Table B.2 - Shaping Filter Coefficient Values ... 64

viii

LIST OF FIGURES

Figure 1 - Overview of the Cruiser and Project 25 Analog Base Station 2

Figure I.1 - Common Air Interface in a Radio System ... 4

Figure I.2 - Voice Versus Data Packets .. 5

Figure I.3 - Commercial Voice and Data Base Station .. 6

Figure I.4 - Designed Voice and Data Base Station .. 7

Figure I.5 - IP Packet to CAI Data Packet Conversion .. 8

Figure I.6 - Project 25 Data Radio System Architecture.. 9

Figure II.1 - Top Level Flow of TxRx Application .. 12

Figure II.2 - Decomposition of Data Message into Short Blocks 13

Figure II.3 - Unconfirmed Data Packet Header Format ... 13

Figure II.4 - Unconfirmed Data Block .. 18

Figure II.5 - Rate 1/2 Trellis Encoder Overview .. 20

Figure II.6 - Trellis Encoder Block Diagram .. 20

Figure II.7 - Packet Data Unit .. 28

Figure II.8 - Actual Smoothing Filter Frequency Response... 29

Figure II.9 - Impulse Response of the Smoothing Filter .. 30

Figure II.10 - Actual and Designed Magnitude Response ... 31

Figure II.11 - Example of Input and Output of the Smoothing Filter 32

Figure II.12 - Running Average Filter Frequency Response ... 33

Figure II.13 - Ideal Pre-Emphasis Filter .. 34

Figure II.14 - Magnitude Response of the Actual and Designed Pre-Emphasis Filter 35

Figure III.1 - Testing Configuration .. 37

Figure III.2 - Output and Input to the Smoothing Filter (Vertical Axis in Hz) 39

ix

Figure III.3 - Output and Input to the Pre-Emphasis Filter (Vertical Axis in Hz) 40

Figure III.4 - Oscilloscope Reading of Test Signal .. 41

Figure III.5- Oscilloscope reading of the Frame Sync. .. 42

Figure III.6 - Frequency Spectrum using VSA ... 43

Figure III.7 - New Test Sequence ... 44

Figure III.8 – Female DB-25 Connector on Motorola Astro ... 45

Figure III.9 - Ideal and Distorted Radio Transmissions ... 45

Figure III.10 - Female DB-25 Connector on Kenwood TK-7180 46

Figure III.11 - APCO 25 Demodulation (Time Measure) using VSA 47

Figure III.12 - APCO 25 Demodulation (Symbols/Errors) using VSA 47

Figure III.13 - Transmit Side of P25Messenger .. 50

Figure III.14 - Receive Side of P25Messenger.. 50

Figure IV.1 - Overview of the Project 25 Analog Base Station .. 52

Figure B.1 - Normalized Smoothing Filter Coefficients ... 63

Figure B.2 - Shaping Filter Coefficients .. 65

Figure C.1 - The IP Reflector Architecture .. 67

Figure C.2 - IP Packet from IP Network Application to "IP Reflector" Driver 67

Figure C.3 - IP Packet from "IP Reflector" Driver to IP Reflector Service 67

Figure C.4 - IP Packet from IP Reflector Service to Custom Data Modem Software 68

Figure F.1 - Custom Interface Cable ... 72

x

LIST OF ACRONYMS

APCO Association of Public-Safety Communications Officials

BCH Bose, Ray-Chaudhuri, Hocquenghem

CAI Common Air Interface

CRC Cyclic Redundancy Check

DTR Data Terminal Ready

FIR Finite Impulse Response

FS Frame Synchronization

FSK Frequency Shift Keying

I/O Input and Output

IP Internetwork Protocol

MFID Manufacturer Identification

MOD Modulo 2

NAC Network Access Code

NID Network Identification

PTT Push-to-Talk

SAP Service Access Point

TxRx Transmit and Receive

XOR Exclusive OR

xi

ABSTRACT

A SOFTWARE BASED APCO PROJECT 25 DATA TRANSMISSION BASE

STATION FOR LOCAL POLICE HEADQUARTERS

by

Eric René Ramsey
University of New Hampshire, September, 2007

 Project54 is a research and development effort to integrate embedded and

wireless technologies into both NH State Police and local police cruisers. One of

the features of the Project54 system, is the ability to query motor vehicle data.

This is done through a Motorola APCO Project 25 digital voice/data radio in the

cruiser and a digital voice/data base station at headquarters. An APCO Project

25 base station is a central hub for the transmission and reception of digital

voice/data packets. The local police departments have the requisite radio

infrastructure, but do not have the budget to purchase and support a Motorola

digital voice/data base station.

 The main goal of this thesis was to develop a low-cost data transmission

base station to transmit data from a police headquarters to a cruiser. The base

station developed uses an analog FM transmitter interfaced to a standard

desktop computer, which implements the APCO Project 25 compliant digital data

modulation.

INTRODUCTION

 Project54 is a collaborative research and development effort between the

University of New Hampshire and the New Hampshire Department of Safety and

is supported by the U.S. Department of Justice. The Project54 system integrates

cruiser-based electronic systems to offer advanced support to New Hampshire

State Troopers and to Local Police Officers (1). One of the many electronic

components integrated in the system is the Motorola Astro digital radio. This

specific model can be found in both the NH State Police cruisers and in all of the

local department cruisers. However, the full voice and data capabilities of the

digital radio are only utilized by the New Hampshire State Police. The complex

digital radio network infrastructure being used by the New Hampshire State

Police includes radios, antennae, repeaters, and base stations. The combination

of all the components is too costly for local departments. The local departments

do not need some of the more complex features the Motorola base station

provides. It is for these two reasons, cost and complexity, that local departments

use the voice functionality, but not the data functionality of their radio system.

The main goal of this thesis is to design, develop, and prepare for

implementation, a cost effective way for local departments to transmit digital data

from headquarters to cruisers. The result is the Project 25 Analog Base Station.

 The equipment needed to communicate between headquarters and a

cruiser is shown below in Figure 1.

2

Laptop

Digital

(Project 25)

Radio

Desktop Computer

Project 25

Server

Application

Analog

Radio

Cruiser Project 25 Analog Base Station

Figure 1 - Overview of the Cruiser and Project 25 Analog Base Station

The Project 25 analog base station will be considered the server while the

cruiser will be considered the client. The server is composed of a computer and

an analog radio. An Internet Protocol (IP) Network Application at headquarters

sends out an IP packet bound for the laptop in the cruiser. This IP Packet is

captured by software on the base station computer. It is then encoded and

filtered using the APCO Project25 Common Air Interface (CAI) standard. The

output of the application is a Project25 digital waveform modulation which is

played through the computer‟s sound card. The computer controls and transmits

sound through the analog radio. When triggered, the analog radio broadcasts

the waveform on a predefined frequency.

 Once the analog radio transmits the packet, the cruiser, or client, must

receive and properly decode the message. The client‟s radio is a digital radio

tuned to the same frequency as the analog radio. The difference is that the

digital radio only receives transmissions with Project 25 digital modulations. The

transmitted waveform is received on the digital radio and is demodulated, filtered

3

and decoded. The result is passed to the cruiser‟s in-car computer in the form of

an IP packet, completing the task.

 In the first chapter of this thesis, the Project 25 Common Air interface

standard will be presented. During the discussion of the standard, a commercial

voice and data base station will be compared to the designed voice and data

base station. The chapter will also introduce the concept of encoding and

transmission of digital data packets.

 Chapter II will discuss the application which was designed to encode IP

Packets as Project 25 Common Air Interface data packets. Some of the topics

covered in the chapter include header and data block formation, data error

correction, and base band filtering.

 The third Chapter discusses the testing of the whole base station. This is

broken into testing sections, where each section tests a different part or

component of the designed base station. The testing chapter also discusses the

successful results of the Project 25 analog base station.

 Chapter IV discusses the conclusions drawn after the design,

implementation and testing were completed. This chapter also provides an

overview of the finished design and offers future improvements to the system.

4

CHAPTER I

APCO PROJECT 25 COMMON AIR INTERFACE

The APCO (Association of Public-Safety Communications Officials) Project 25

Systems and Standards Definition describes an open interface between mobile,

portable, and base station radios. The objective of Project 25 is to allow effective

and reliable intra-agency and inter-agency communications in a digital mode for

both voice and data. Vendors who adhere to the standard will produce a system

which is interoperable with other standardized equipment. Project 25 documents

describe a number of open interfaces to a reference point, such that

standardized equipment can communicate through the interfaces.

 A key open interface within the Project 25 standard is the Common Air

Interface. The Common Air Interface (CAI) focuses on how to transmit digital

voice and data over a radio channel, as shown in Figure I.1.

Base

Station

Mobile

Radio

CAI

Portable

Radio

Figure I.1 - Common Air Interface in a Radio System

5

The rate at which the communication occurs over the Common Air Interface is

4800 symbols per second, where a symbol is composed of 2 bits, also known as

a dibit. These dibit symbols can take on one of four values relating to four

different frequencies. This style of modulation is called C4FM, or 4-level

frequency modulation.

 Both voice and data packets can be transmitted and received on the same

digital channel, using the 4-level frequency modulation. However, to manage

voice and data communications on the same channel, voice packets are granted

priority over data packets. This is illustrated in Figure I.2. Voice packets take up

the full bandwidth of the signal. Data packets can only be transmitted in the

silence, between voice messages. The distinction between voice and data

packets lies in the control bits present at the beginning of each Common Air

Interface voice or data packet.

Data PacketVoice Packet Voice Packet Voice Packet

Figure I.2 - Voice Versus Data Packets

 The reception and transmission of voice and data packets occurs at the

base station. A commercial voice and data base station configuration is shown in

Figure I.3.

6

Dispatch

Console
Quantar

Station

Project 25

Encoder/

Decoder

Digital

Interface

Unit

Customer

Data

Network

IP Data

CAI Data

Packets

CAI Voice

Packets

Figure I.3 - Commercial Voice and Data Base Station

With this setup, CAI transmissions are received by the Quantar Station. The

demodulated digital packet is then fed to the Digital Interface Unit. The Digital

Interface Unit reads the control bits at the beginning of the packet and steers

voices packets to the dispatch console and data packets to the Project 25

Encoder/Decoder. The output at the dispatch console is an analog voice

waveform that is played over an external speaker. To respond to the voice

transmission, the dispatcher speaks into a microphone. The analog voice

waveform is transformed into a CAI voice packet which is sent from the console,

through the Digital Interface Unit, to the Quantar Station. At the Quantar Station,

the voice packet is frequency modulated, then transmitted. The output of the

Project 25 Encoder/Decoder is a standard IP data packet. For the transmission

of a data packet, information is fed to the Project 25 Encoder/Decoder in the form

of an IP data packet. The output is a CAI Data Packet which is sent to the Digital

7

Interface Unit. The DIU holds onto the data packet until there is a break in voice

transmissions. Once there is silence, the data packet is passed to the Quantar

Station for frequency modulation and is transmitted.

 The voice and data base station designed in this thesis, see Figure I.4,

uses the preexisting voice base station, but adds a custom base station for data

transmission.

Dispatch

Console
Quantar

Station

Customer

Data

Network

IP Data

CAI Voice Packets

Analog

FM Radio

Desktop

Computer

Figure I.4 - Designed Voice and Data Base Station

This setup receives voice messages at the Quantar Station. The CAI voice

packets are passed directly to the dispatch console. The transmission of a voice

packet occurs in the same manner as the commercial voice transmission, except

it does not have to pass through the Digital Interface Unit. For the reception and

transmission of data packets, an analog radio and a desktop computer (PC) are

used. The analog radio receives both voice and data packet transmissions. The

analog version of the digital packet is passed to the computer through the

8

microphone input. This signal is then decoded through software. Voice packets

are ignored, while data packets are decoded into IP data packets. The IP data

packets are then placed on the customer data network through the computers

network card. For the transmission of data packets, IP data packets are received

by the computer and encoded into CAI data packets. These CAI data packets

are then passed through the speaker output of the computer to the analog radio

where they are transmitted. The reception and decoding of data packets is

outside the scope of this thesis and will be discussed in the future work section.

The encoding and transmission of data packets is the main focus of this thesis.

Encoding and Transmission of Digital Data Packets

 Digital data messages are transferred over the Common Air interface

using a packet technique which is discussed further in Chapter II.

IP Packet

Block 1

12 Octets

Block 2

12 Octets

Block m

12 Octets

Header Block

12 Octets

Trellis Coded

Header Block

196 bits

Trellis coded

Data Block

196 bits

Trellis coded

Data Block

196 bits

Trellis coded

Data Block

196 bits

FS NID

70 Bits 70 Bits 70 Bits 70 Bits 70 Bits 70 Bits 70 Bits 70 Bits

Status Symbols as required

2 bits every 70 bits

CAI Data Packet

Figure I.5 - IP Packet to CAI Data Packet Conversion

9

The IP data packet, or data message, is first sent through Project 25

Encoding. See Figure I.5.

Project 25

Encoding

Base

Band

Filters

D/A

Converter

Project 25

Decoding

Filters &

Equalizer

A/D

Converter

Moduator

Demod-

ulator

Tx Amplifier

Rx Amplifier

Analog RadioDesktop Computer

V.C.O.

Duplexer

IP

Packet

IP

Packet

Figure I.6 - Project 25 Data Radio System Architecture

The Packet is segmented into blocks of 12 octets and a header block is

added. Each block is protected by a ½ rate trellis code. Once encoded, the

header and data blocks are placed together to form a sequence. A preamble,

composed of a frame synchronization and network identifier, is then added to the

encoded sequence. The result is then broken into segments of 35 symbols (70

bits), separated by 1 status symbol. Each symbol is composed of one dibit. This

results in four different values related, through C4FM, to four different FM

frequency deviations. The different values and their corresponding frequency

deviations are listed in Table I.1.

Table I.1- Project 25 Frequency Values

Symbol Value Dibit Frequency (Hz)

0 00 600
1 01 1800
2 10 -600
3 11 -1800

10

After the frequency deviations are up-sampled and filtered by a Nyquist

raised cosine and pre-emphasis base band filters, the complete data packet is

passed to a digital to analog (D/A) converter and transferred over the Common

Air Interface through an analog radio (Figure I.6).

 The Project 25 CAI standard is becoming popular in radio communications

for both voice and data because of its interoperability between mobile radios and

minimal usage of frequency bands. Many third party companies are designing

APCO P25 Base Stations. One example of this is a company called Etherstack.

Etherstack has a comprehensive range of APCO P25 compliant Base Station

and Repeater options. These options are written in highly portable ANSI C/C++.

If a third party radio company is building a base station or a repeater, the Project

25 standard code can be purchased from Etherstack and compiled onto the

digital signal processing chip of the radio in use. (2)

Other work has been done by Vanu, Inc. Vanu, Inc., in partnership with

General Dynamics Decision Systems, developed a handheld software radio

prototype to address interoperability issues between analog and digital radios.

The Vanu software radio supports two waveforms: half-duplex analog FM and

digital APCO Project 25. The software defined radio is able to switch between

the two half-duplex waveforms. This setup is advantageous to departments

interested in voice interoperability, but it does not have any data capabilities. (3)

11

Project 25 CAI Voice packet conversion has even been brought down to

the level of digital signal processing chips. The AMBE-2000 Vocoder Chip,

produced by Digital Voice Systems, Inc., is an extremely flexible, high

performance voice compression solution. It provides exceptional voice quality at

rates as low as 2000 bits per second. This chip can be used for the encoding

and compression of voice data. However, it cannot be used for the encoding of

Project 25 CAI Data Packets. (4)

The main focus of Project 25 compatibility and integration has been in the

development of voice transmission and reception. An inexpensive, simple, stand

alone data transmission and reception base station has never before been

developed or deployed.

12

CHAPTER II

THE TXRX APPLICATION

 The TxRx application developed in this project is a central hub for data

flow throughout the Project 25 server. It is a console application which receives

an IP packet, encodes and modulates it using definitions set forth by the APCO

Project 25 Standard, presses the push to talk (PTT) of the radio, and transmits

the resulting data packet. A top level flow diagram of the TxRx application is

shown in Figure II.1.

Project 25

Packet

Conversion

Nyquist

Raised

Cosine Filter

Pre-

Emphasis

Filter

Push-to-Talk

Control

Sound Card

Control

IP Packet

Input

Output

to

Radio

Figure II.1 - Top Level Flow of TxRx Application

Project 25 Packet Conversion

 The input to the TxRx program is an IP Packet with length no

longer than 512 octets. This IP Packet is received from the Project54 standard

IP Reflector (Appendix C). The packet is next broken into blocks of 12 octets.

The block size of 12 octets is used in the unconfirmed data block structure. In

this case, the message is transmitted without an acknowledgment of reception

from the receiving radio. The fact that the data block structure is unconfirmed

also means that the data packet has a 32 bit CRC (cyclic redundancy check)

13

over the data contents to allow the recipient to determine if the packet has been

received without error. This CRC is positioned at the end of the packet in Block

m (see Figure II.2). The number of blocks in the packet which follow the header

block, the number of pad octets needed to make the last block length 12 octets

and the fact that it uses unconfirmed delivery are all indicated in the header

block.

IP Packet

Block 1

12 Octets

Block 2

12 Octets

Block m

12 Octets

Header Block

12 Octets

Figure II.2 - Decomposition of Data Message into Short Blocks

Header Block

 The header block contains 10 octets of address and control information,

followed by 2 octets of a header CRC error detection code. The format of an

unconfirmed header block is shown in Figure II.3.

Figure II.3 - Unconfirmed Data Packet Header Format

14

In the first octet (octet 0), there are two variables located in bits 6 and 5. Since

they are both one bit, they can only take on one of two values. A/N defines

whether the packet is an unconfirmed data packet (0) or a confirmed data packet

(1). Since this application uses unconfirmed data packets, 0 is assigned to bit 6.

I/O defines whether the packet is an inbound message (0) or an outbound

message (1). Since this application is used to transmit messages from the fixed

infrastructure to a mobile client on the common air interface, 1 is assigned to this

bit. The SAP Identifier, or service access point identifier, describes the network

endpoint used. The SAP Identifier can take on the values shown in Table II.1.

Table II.1 - SAP Identifier Values

0x00 Unencrypted User Data

0x01 Encrypted User Data

0x02 Circuit Data

0x03 Circuit Data Control

0x04 Packet Data

0x05 Address Resolution Protocol (ARP)

0x06 SNDCP Packet Data Control

0x1F Extended Address

0x20 Registration and Authorization

0x21 Channel Re-assignment

0x22 System Configuration

0x23 MR Loopback

0x24 MR Statistics

0x25 MR Out-of-Service

0x26 MR Paging

0x27 MR Configuration

0x28 Unencrypted Key Management message

0x29 Encrypted Key Management message

0x3D Non-Protected Trunking Control

0x3F Protected Trunking Control

15

The type of message transmitted is a data packet. This means that bits 0 to 5

will take on the hex value 0x04. The next octet contains information pertaining to

the manufacturer of the radio receiving the information. The MFID (Manufacturer

Identification) has a standard value of 0x00 unless the data packet contains a

non-standard channel message. Motorola has a specific MFID (0x90), but

through testing it was found that the specific MFID could not be used for

unconfirmed data packets. This resulted in the third octet of the header being

assigned the value 0x00.

 The next three octets are very important to the uniqueness of this thesis.

They define the logical link ID. The logical link ID identifies the radio to which the

data packet is directed. It is equivalent to the Ethernet Media Access Control

(MAC) address on a conventional network. Without the header information from

an incoming CAI packet the base station could not respond to the specific client

radio requesting information. Since the base station is designed with an analog

radio, the whole CAI message will be received, including the CAI header block.

The base station will then have information about the specific radio awaiting a

response. The demonstration described in this thesis transmits to one specific

radio with a predefined logical link id of 054 which corresponds to the

hexadecimal value 0x036.

 Octet 6 contains information on how many blocks of data follow the

header block. This information is used for proper decoding and error checking at

the client radio. The Pad octet count in octet 7 describes how many 0x00 octets

16

are added into the last block to make a complete block of 12 octets. The

maximum number of pad octets is 0x08. Octet 8 is a reserved octet which is only

used when transmitting and receiving confirmed data packets. Otherwise, the

octet is set to 0x00. The data header offset octet is used to divide the data block

into a data header and data information. A data header offset is only used in

some applications. For this application, the data header offset is set to 0x00.

 The last two octets of the header block contain the header CRC. This is

the most complex part of the header block formation. It is calculated from the

first 10 octets of the header block using the cyclical redundant coding procedure

called CRC-CCITT. To calculate the CRC, consider the first 80 header bits (10

octets) of the header block as the coefficients to the polynomial M(x) of degree

79:

where is the most significant bit of the zero-th header octet (Octet 0 – Bit 7)

and is the least significant bit of the ninth header octet (Octet 9 – Bit 0). The

calculation of the CRC uses two other polynomials. The first is called the

generator polynomial and is defined as:

The second is called the inversion polynomial and is defined as:

The header CRC polynomial, , is then computed from the formula,

17

In the above equation, the „mod‟ operator stands for the modulus operation

computed using modulo 2 arithmetic. Modulo 2 arithmetic uses binary addition

with no carries, which is just the exclusive-OR (XOR) operation. After

computation, takes on the form,

where corresponds to the most significant bit of the tenth octet (Octet 10 – Bit

7) and is the least significant bit of the eleventh octet (Octet 11 – Bit 0).

 An example of a completed header block is as follows:

Table II.2 - Example Header Block

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Hex Value

Octet 0 0 0 1 1 0 1 0 1 0x35

Octet 1 1 1 0 0 0 1 0 0 0xC4

Octet 2 0 0 0 0 0 0 0 0 0x00

Octet 3 0 0 0 0 0 0 0 0 0x00

Octet 4 0 0 0 0 0 0 0 0 0x00

Octet 5 0 0 1 1 0 1 1 0 0x36

Octet 6 1 0 0 0 0 0 1 1 0x83

Octet 7 0 0 0 0 1 1 1 0 0x0E

Octet 8 0 0 0 0 0 0 0 0 0x00

Octet 9 0 0 0 0 0 0 0 0 0x00

Octet 10 0 1 1 1 0 0 0 0 0x70

Octet 11 0 0 0 1 1 1 1 0 0x1E

Data Blocks

 The data blocks which follow the header block contain all of the

information from the original IP data packet. This includes both the IP header

and IP data fields. For the unconfirmed data packet format, there is no CRC or

serial number in each of the blocks. Rather, there is one 32 bit CRC in the last

data block calculated over all data. The format of the last data block is shown in

Figure II.4.

18

Figure II.4 - Unconfirmed Data Block

The number of Pad Octets is determined by using the following equation:

For example, if the data message is of length 17 octets, 2 blocks are needed.

The first data block contains 12 octets of data. The second block is composed of

the last 5 octets of data, 3 pad octets and the 4 octets of CRC. However, there is

an issue with the Pad Octet Count equation. There are certain scenarios where

the pad octet count equals -4, -3, -2, or -1. This occurs when the last data block

contains more than 8 octets, but less than 12 octets. The solution to this is not

set forth clearly by the standard. Through testing, it was found that when the last

block contained between 8 and 12 octets, the remaining octets of the block need

to be filled with the value 0x00. The number of data blocks is then increased by

one and the pad octet count is automatically set to 8.

 The message CRC is a 4 octet cyclic redundancy check coded over all of

the data octets after the header block and all of the octets in the last block. The

Project 25 standard states that the CRC should be coded over all of the data

octets included in the intermediate blocks and the octets of user information of

the last block. By this definition, the pad octets should be left out of the CRC

19

code. However, after testing, it was found that the pad octets of the last block

were needed in the calculation of the message CRC. To calculate the CRC, let k

be the total number of user information and pad bits. Consider the polynomial

M(k) to contain all of the bits of user data:

where is the most significant bit of the zero-th octet (Octet 0 – Bit 7) and

is the least significant bit of the last message octet. For the calculation, two

polynomials need to be defined. The first is the generator polynomial,

The second polynomial needed is the inversion polynomial,

The message CRC polynomial, , is then computed using the following

formula:

The coefficients of are placed in the last data block with corresponding

to the most significant bit of the message CRC (Octet 8 – Bit 7) and

corresponding to the least significant bit of the last message CRC (Octet 11 – Bit

0).

 The header block and all the data blocks will now be referred to as the

CAI data packet.

20

Data Error Correction Code

 Now that the complete CAI data packet has been formed, it must pass

through data error correction coding. The data blocks for unconfirmed data

packets use a rate ½ trellis code. The encoding process of the rate ½ code is

diagrammed in Figure II.5.

Text

Octet 0

Octet 1

Octet 11

Flushing

Dibit

00

Text Text

Stage 1

Separate

into Dibits

Trellis Encoder

Finite State Machine

Stage 2

Interleaver

Stage 3

To Modulator

Figure II.5 - Rate 1/2 Trellis Encoder Overview

In the first stage, the octets of the data blocks are separated into dibits. An extra

dibit, also known as a flushing dibit (00), is added to the end of the string, to

make a total of 49 dibits. This sequence is next passed into stage 2. Stage 2 is

a Trellis encoder finite state machine. The trellis encoder receives x dibits as

inputs, and outputs 2x dibits. The encoding process is diagrammed below in

Figure II.6.

Current

State

Storage

Finite State

Machine

Transition Table

Dibit

Input

Input

State

Constellation

Point Output

Figure II.6 - Trellis Encoder Block Diagram

21

The finite state machine uses the current input, previous input, and a state

transition table, see Table II.3, to determine a constellation point. For the first

input, the previous input, or state, is 00.

Table II.3- Rate 1/2 Trellis Encoder State Transition Table

 Input
 00 01 10 11

F
S

M

S
ta

te

00 0 15 12 3

01 4 11 8 7

10 13 2 1 14

11 9 6 5 10

The constellation point is next mapped to a dibit pair using Table II.4.

Table II.4 - Constellation to Dibit Pair Mapping

Constellation
Point

Dibit 0 Dibit 1

0 00 10

1 10 10

2 01 11

3 11 11

4 11 10

5 01 10

6 10 11

7 00 11

8 11 01

9 01 01

10 10 00

11 00 00

12 00 01

13 10 01

14 01 00

15 11 00

The input sequence of 49 dibits produces an output sequence of 98 dibits

representing a single 12 octet block.

22

The final stage of data error correction is interleaving. The purpose of the

interleaver is to spread burst errors due to Rayleigh fading over the 98 dibit

block. In the interleaver, the dibit array is rearranged to form another dibit array

according to the interleave table shown in Table II.5.

Table II.5 - Interleave Table

Interleave Table
Output
Index

Input
Index

Output
Index

Input
Index

Output
Index

Input
Index

Output
Index

Input
Index

0 0 26 2 50 4 74 6
1 1 27 3 51 5 75 7

2 8 28 10 52 12 76 14
3 9 29 11 53 13 77 15

4 16 30 18 54 20 78 22
5 17 31 19 55 21 79 23

18 72 44 74 68 76 92 78
19 73 45 75 69 77 93 79

20 80 46 82 70 84 94 86
21 81 47 83 71 85 95 87

22 88 48 90 72 92 96 94
23 89 49 91 73 93 97 95

24 96
25 97

To summarize the data error correction portion of the Project 25 standard, a data

block of 12 octets is broken into a series of 48 dibits and a flushing dibit is added

to the end. This sequence is passed through the ½ rate trellis encoder finite

state machine which has a constellation point output. The constellation point

sequence is mapped to a series of dibit pairs, producing an output sequence of

98 dibits. The last step is to interleave the dibit array. The input to the data error

correction is a 12 octet data block and the output is a block of 98 dibits. Once all

23

the blocks, including the header block, have passed through the data error

correction functions, they are placed back together as one long string which will

be referred to as the encoded data packet.

Network Identifier

 The network identifier is placed at the beginning of the encoded data

packet. It provides a simple means of addressing radio networks depending on

the radio system configuration. The network identifier also has a small field

which identifies the type of message, in this case data, so that the proper error

correction can be performed. The network identifier encodes 16 bits of

information, see Table II.6.

Table II.6 - Network Identifier Information

↓ Transmitted First Transmitted Last ↓

Network Access Code Data Unit ID
N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1 N0 D3 D2 D1 D0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The 16 bits of data are composed of a 12 bit network access code, chosen

arbitrarily as 0x054, and a 4 bit data unit ID. The data unit id can take on any

one of the values in

24

Table II.7.

25

Table II.7 - Data Unit Identifier Values

Data Unit ID Parity Bit Data Unit Usage

0b0000 0 Header Data Unit

0b0001 and 0b0010 1 Reserved

0b0011 0 Terminator without subsequent Link Control

0b0100 0 Reserved

0b0101 1 Logical Link Data Unit 1

0b0110 1 Reserve

0b0111 0 Trunking Signaling Data Unit

0b1000 and 0b1001 1 Reserved

0b1010 1 Logical Link Data Unit 2

0b1011 0 Reserved

0b1100 0 Packet Data Unit

0b1101 and 0b1110 1 Reserved

0b1111 0 Terminator with subsequent Link Control

The value for the Data Unit Identifier which will be used for data transmission is

0b1100 with a parity bit of 0. This data unit identifier is used for transmitting a

Packet Data Unit.

This information is protected with a (63,16,23) primitive BCH code. A single

parity bit is appended to the end to round out the NID code word to 64 bits. The

(63,16,23) BCH code is described in the APCO Project 25 standard as being

generated using the extension Galois Field. The generator polynomial for the

code is of 47th degree with 27 non-zero terms. It is given below in octal notation.

The generator matrix for the full code, after adding the 64th bit, is given in Table

II.8 in octal notation. The left 16 columns of the code form an identity matrix and

the right 48 columns form a parity check matrix.(5)

26

Table II.8 – BCH Code Generator Matrix

The network identification code used in this thesis to access the channel used for

the transmission and reception of data packets starts as the 16 bit sequence in

Table II.9.

Table II.9 - True Network Identifier

↓ Transmitted First Transmitted Last ↓

Network Access Code Data Unit ID
0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The final 64 bit (8 octet) sequence attached to the beginning of the encoded data

packet is:

MSB 00 00 01 01 01 00 11 00 10 00 10 01 01 10 11 00

 01 11 01 00 00 11 01 01 11 00 11 11 01 11 11 00 LSB

Note that the network identifier sequence is the same for all transmitted data

packets.

27

Frame Synchronization Word

 Frame synchronization is provided by a specific preamble which is known

to both the transmitter and the receiver. The frame synchronization word, or

sync word, is used to mark the first bit of the message data. It is needed at the

beginning of every data transmission. For a transmission over the common air

interface, the frame sync word sequence is listed in Table II.10.

Table II.10 - Frame Sync Word Sequence

Transmitted First Transmitted Last

01 01 01 01 01 11 01 01 11 11 01 01 11 11 11 11 01 11 01 11 11 11 11 11

Status Symbols

 Once the frames synchronization (FS) and network identifier (NID) are

added to the beginning of the encoded data packet, the message must be

expanded with status symbols. The two bit symbols are added after every 70

bits (35 dibit symbols) of the encoded data packet. Status symbol codes are

given in Table II.11.

Table II.11 - Status Symbol Codes

Status Symbol Meaning

01 Inbound Channel is Busy
00 Unknown, use for talk-around
10 Unknown, use for inbound or outbound
11 Inbound Channel is Idle

28

Since the full packet data unit, see Figure II.7, is transmitted on a channel which

transmits outbound messages and receives inbound messages, the two bit

status symbol used is 10.

Trellis Coded

Header Block

196 bits

Trellis coded

Data Block

196 bits

Trellis coded

Data Block

196 bits

Trellis coded

Data Block

196 bits

FS NID

70 Bits 70 Bits 70 Bits 70 Bits 70 Bits 70 Bits 70 Bits 70 Bits

Status Symbols as required

2 bits every 70 bits

Figure II.7 - Packet Data Unit

Channel Initialization

 Through testing, it was found that a transmitted packet data unit would not

properly be decoded because of erroneous receive clock synchronization at the

beginning of the transmission. To remedy this, the clock synchronization in the

receive radio needs to be initialized before the packet data unit, led by the frame

synchronization, is transmitted. The clock synchronization signal used is 125

repetitions of the symbol sequence: 01 01 11 11. It was determined by

experimenting that this signal is sufficient in tuning the receive radio‟s decoder so

that once the packet data unit is received, it is properly decoded.

Dibits to Frequencies

 The channel initialization and packet data unit are both composed of a

sequence of dibit symbols. Each dibit symbol is encoded as one of four

frequency deviation values. The mapping between bits and frequency deviation

values is given in Table I.1.

29

Nyquist Raised Cosine Filter

 The Nyquist raised cosine filter is also known as a smoothing filter. The

role of the smoothing filter is to limit the bandwidth of the frequency deviation

signal while minimizing the intersymbol interference. The Project 25 standard

specifies this filter should have a frequency response given by:

A plot of the actual filter gain response, based upon the previous equation, is

shown in Figure II.8.

Figure II.8 - Actual Smoothing Filter Frequency Response

The input to the smoothing filter is the sequence of frequency deviation pulses

(4800 symbols per second) generated by the 2-bit symbol to 4-level frequency

encoder. The normalized impulse response of the smoothing filter is shown in

30

Figure II.9. The horizontal axis displays time in symbol periods where 1 symbol

period is equal to 1/4800 seconds.

Figure II.9 - Impulse Response of the Smoothing Filter

When this filter impulse is convolved with the input sequence, the effect of each

symbol pulse is spread by the filter over approximately 12 symbol periods, 6

before and 6 after the main peak. This means that the filter output reflects not

just a single pulse filter, but is affected by the previous several impulses.

However, it can be observed that the zero crossings of the impulse response

happen at integer multiples of the symbol periods. By properly spacing the

frequency deviations, the frequency deviation needed can occur at relative time

0, while the 6 symbol periods before and after fall at the zero crossings and are

nullified. The smoothing filter is implemented digitally at an effective rate of

48000 samples per second. To do this, the input frequency deviations are

padded by 9 zeros so that they occur every tenth symbol.

31

 The designed smoothing filter is a truncated version of the actual or ideal

smoothing filter. The time base for the impulse response of the ideal filter, Figure

II.9, reaches from negative infinity to positive infinity. Due to computational

restraints, the impulse response is truncated at -6 and +6 symbol periods. This

results in a filter with 120 coefficients instead of an infinite number of coefficients.

The designed smoothing filter response versus the actual smoothing filter

response is shown in Figure II.10.

Figure II.10 - Actual and Designed Magnitude Response

 An example of the input and the output of the smoothing filter is shown

below in Figure II.11.

32

Figure II.11 - Example of Input and Output of the Smoothing Filter

The red stem plot shows the input frequency deviations. Note that the frequency

deviations are padded by 9 zeros.

Pre-Emphasis Filter

 The output of the smoothing filter is now passed on as the input to the pre-

emphasis, or shaping, filter. The role of this filter is to pre-compensate for

filtering which is performed in the symbol decoder section of the client digital

radio. To understand the shaping filter, the built-in decoding filter of the client

digital radio must be explained. The decoding filter is a ten term (one symbol

period) running average filter. This running average filter has the frequency

response shown in Figure II.12.

33

Figure II.12 - Running Average Filter Frequency Response

The equation for the filter gain is as follows:

The shaping filter is intended to pre-compensate in the transmitter for this

attenuation in the receiver. Thus, the appropriate filter gain should be the inverse

of the equation for the decoding filter:

The ideal gain of the shaping filter goes to infinity whenever the frequency is an

integer multiple of 4800 Hz. However, the shaping filter is preceded by the

smoothing filter. Since the smoothing filter has zero gain for all frequencies

above 2880 Hz, the shaping filter will always be in the range of stability. Figure

II.13 shows the ideal shaping filter for the inverse gain function.

34

Figure II.13 - Ideal Pre-Emphasis Filter

To design this filter, the exact inverse function for could not be used.

Instead, the filter was designed as a low pass filter based on the characteristics

of an inverse sinc filter. The tool used to aid in the design of the filter coefficients

was MATLAB‟s Filter Design Toolbox. The resulting filter is an FIR (finite

impulse response) filter with 39 filter coefficients. See Appendix B. The filter

gain of the designed filter has the same characteristics as the ideal filter for

. However, for , the filter takes on the characteristics of a

low pass filter. This is done so that the designed filter is always stable. The

designed filter gain versus the actual filter gain is shown in Figure II.14.

35

Figure II.14 - Magnitude Response of the Actual and Designed Pre-Emphasis Filter

The output of the pre-emphasis filter is a fully encoded and modulated Project 25

Data Packet in the form of an analog signal sampled at 48000 samples per

second.

Push-to-Talk Control

 Before the Project 25 waveform can be transmitted through the analog

radio, the push-to-talk (PTT) of the radio must be pressed. The PTT is an

internally powered, normally high, 5V, signal. This is an active low signal,

meaning that the PTT is triggered when the signal is grounded. To ground this

signal, one of the RS-232 standard control lines was used. The control line used

was the Data Terminal Ready (DTR) line. This is accessed through pin 4 of a

standard RS-232 DB-9 connection. In code, the communication (COM) port is

enabled and handshaking is disabled. The DTR line is normally low, which

means that after initialization, the control for the DTR needed to be set true.

Before a transmission of audio, the DTR control is set to false, or 0, which sets

36

the voltage of the line to -9 V. This activates the PTT of the radio. Once the

transmission ends, the DTR value returns to true, which brings the voltage up to

+9 V and disables the radio PTT. Since the radio PTT input is designed for an

open circuit or ground, rather than an active drive of +9V or -9V, the input was

protected using a simple passive circuit (Appendix F).

Sound Card Control

The sound card is controlled through a standard Windows library called

winmm.lib. This library allows for the setup and control of basic playback

features through the computer‟s default soundcard. For this application, the

sound card is opened with a sampling rate of 48 KHz, the sound is played at

100% volume, and a function waits for the sound to be played.

37

CHAPTER III

TESTING

Testing Configuration

 Testing was a crucial part to the completion of the Project 25 CAI base

station. It occurred during key points of the software and hardware development.

The equipment test configuration is shown in Figure III.1.

PC

1

Analog

Radio

Oscilloscope

Sound

Card

Load
RF

Out

Load

Vector

Signal

Analyzer

Load
Motorola

Digital Radio

RF

In
Motorola

Digital Radio

Test Base Station Test Cruiser

PC

2

Figure III.1 - Testing Configuration

The test configuration can be segmented into three main sections. These

sections are only connected through radio frequency (RF) transmissions. The

first section is the test base station. The test base station is comprised of a PC,

with a sound card, and an analog radio. The sound card used is a Creative

Sound Blaster X-Fi card. This specific sound card was used because of its ability

to play audio at a the desired rate of 48 KHz, its high signal to noise ratio, and its

linear frequency response. The output of the sound card is attached to the

38

input of an analog radio. The radio frequency output of the analog radio is

attached to a load.

Another section of the test configuration is the Vector Signal Analyzer

(VSA). The VSA used was an Agilent 89441A with an Intermediate Frequency

(IF) unit and a Radio Frequency (RF) unit. For this setup, a specific Agilent

module (Option AYA) was installed. This option added vector modulation

analysis for characterizing digital modulation schemes, in particular APCO 25.

The VSA was tied to the rest of the setup through a load attached to the RF

Section.

The final section of the test configuration is the test cruiser section. The

test cruiser section mimics the setup found in a New Hampshire local police

cruiser. It has a Motorola XTL5000 digital radio attached to a PC running

Windows XP. The digital radio communicates with the PC through the

Project54‟s Project25PPP service.

Software Testing

The first set of tests was conducted after the TxRx application was

complete. These tests were all conducted at the software level. The first step

was to print all of the header block and data block information to a command

window. The results of this test allowed for the correction of code issues such as

the pad octet count calculation, calculation of the header block CRC and the data

blocks CRC, and the detection of issues with the Data Error Correction function.

39

The next set of tests was conducted on the designed filters. This was done by

printing the input and output of each filter into a text file. The text files were then

parsed and plotted using MATLAB. The input and output of the smoothing filter

is shown in Figure III.2.

Figure III.2 - Output and Input to the Smoothing Filter (Vertical Axis in Hz)

The red stem plot denotes the frequency deviation inputs to the smoothing filter.

The top plot shows the whole array of inputs and outputs. The middle plot shows

the first 300 points of the array of inputs and outputs. Note that the input is the

alternating symbols discussed in the Channel Initialization section of Chapter II.

The last plot shows the frame synchronization and network identifier discussed in

the Frame Synchronization and Network Identifier sections of Chapter II. By

40

seeing the desired signal output of the smoothing filter, it can be assumed that

the calculation for the convolution of the frequency deviations with the filter

coefficients is correct.

 The next series of plots, see Figure III.3, shows the output of the

smoothing filter as the input to the shaping, or pre-emphasis filter. The same

coloring scheme is used, where the input is shown in red and the output is shown

in blue.

Figure III.3 - Output and Input to the Pre-Emphasis Filter (Vertical Axis in Hz)

The output of the filter puts more emphasis on the frequencies closer to positive

and negative 2880 Hz. The above plots are used for testing in the same way that

the smoothing filter plots were used. The desired relationship meant that the

41

calculation of the convolution of the output of the smoothing filter with the pre-

emphasis filter coefficients is correct.

Sound Card Testing

 The next step in the testing process involved viewing the output of a test

signal on an oscilloscope.

 The Project 25 CAI Standard uses a test sequence with a known

modulation output. The test sequence is the same as the channel initialization

sequence. The output of this test sequence should be a sine wave with a

frequency of 1.2KHz. The output of the sound card, with frequency deviations

equal to the channel initialization sequence, is shown in Figure III.4.

Figure III.4 - Oscilloscope Reading of Test Signal

Note that this signal has the same shape as the signal in the center plot of Figure

III.2.

 Once the sine wave in Figure III.4 was correctly viewed, a more

complicated signal was captured. The signal is the frame synchronization. The

42

ideal pre-compensated synchronization frame is the first 24 symbols of the last

plot in Figure III.2. The output of the sound card is shown below in Figure III.5.

Note that the shapes of the two waves are identical. The only difference is in the

units used to measure the amplitudes.

Figure III.5- Oscilloscope reading of the Frame Sync.

Analog Radio Modulation Testing Using A VSA

For the next step in the testing process, a vector signal analyzer (VSA)

was used. A vector signal analyzer is a version of a spectral analyzer which can

also be used for some digital demodulation applications. The specific vector

signal analyzer used for testing, an Agilent 89441A, had the capability of

receiving a radio frequency (RF) transmission and demodulating it. The VSA

also had a module, Option AYA, which could be used to demodulate digital

Project 25 CAI Packet transmissions. The first step in testing with the VSA was

to adjust the amplitude of the signal used as the input to the analog radio. The

amplitude was adjusted using the test sequence shown in Figure III.4. The

43

modulated signal, received by the VSA, should be a 1.2 KHz signal with a peak

frequency deviation of 2880 Hz. The frequency of the signal was verified using

the VSA to produce a frequency spectrum which was centered around the carrier

frequency of 155.37 MHZ. See Appendix D for the VSA settings to produce the

result shown in Figure III.6.

Figure III.6 - Frequency Spectrum using VSA

Note that there is a prominent spectral peak at approximately 1.2 KHz. For the

measurement of the peak frequency deviation of the received signal, a plot of

frequency versus time was viewed on the VSA. It was found that the amplitude

of the signal being passed to the sound card, in the test base station section, was

not great enough to produce the desired peak frequency deviation. By

increasing the amplitude of the signal by a factor of 3, the peak frequency

deviation fell into the range of 2880 KHz.

44

 The vector signal analyzer was next used for testing the analog radio. A

new test signal was defined. The signal which was used for testing was a

repeated series of eight 1800 Hz symbols and eight -1800 Hz symbols. The test

sequence is shown in Figure III.7.

Figure III.7 - New Test Sequence

The first radio used to transmit the new test signal was a Motorola Astro, the

same style as the radio in the test cruiser section. The Motorola digital radio had

the capability of programming a channel in either analog or digital mode. The

external input used to connect the computer audio output to the radio‟s audio

input was the auxiliary microphone (AUX_TX) and auxiliary push-to-talk

45

(AUX_PTT) pins. See

Figure III.8.

Figure III.8 – Female DB-25 Connector on Motorola Astro

However, it was found that the AUX_TX pin was not a direct input to the

frequency modulator. Instead, the input signal went through sampling and

filtering. When the new test signal was transmitted, the VSA showed that the

transmitted signal was actually a distorted version of the true signal. See Figure

III.9.

46

Figure III.9 - Ideal and Distorted Radio Transmissions

The ideal transmitted signal is shown in blue, while the distorted version is shown

in red. There is a correlation between the two signals, but the error is too large.

After viewing the schematics of the Motorola ASTRO, it was found that there was

no way to avoid the sampling and filtering.

 The Kenwood TK-7180 analog radio was found to have a direct line to the

frequency modulator with a specific push-to-talk signal used for the direct line.

The input and output connections to the Kenwood TK-7180 occurs through a 25

pin connector on the back of the radio. The pin out of the connector is shown in

Figure III.10.

113

1425

Push-to-Talk Signal

Audio +

Ground

Figure III.10 - Female DB-25 Connector on Kenwood TK-7180

47

When the test signal was transmitted through the Kenwood radio, the

resulting waveform was found to be very similar to the ideal test signal. Due to

this result, the Kenwood TK-7180 would be used through the next series of tests.

The next step in the testing of the analog radio was to use the Project 25

digital demodulation module (Option AYA) to test the transmission of a true

Common Air Interface Packet. The VSA digital demodulation module makes the

VSA act like the Quantar Station discussed in Chapter I. The input to the VSA is

the FM transmission and the displayed output is a dibit stream. Figure III.11

shows the demodulated frame synchronization and Figure III.12 shows the

corresponding dibit sequence. The settings to achieve the following figures are

given in Appendix D.

Figure III.11 - APCO 25 Demodulation (Time Measure) using VSA

Note that the demodulation of the transmitted signal is similar to the ideal

frame synchronization waveform in the lower plot of Figure III.2.

48

Figure III.12 - APCO 25 Demodulation (Symbols/Errors) using VSA

The dibit stream representing the demodulated signal, in Figure III.12, is the

same dibit stream as the ideal frame synchronization word found in Table II.10.

Motorola Digital Radio Demodulation

Once the signal was properly being demodulated by the vector signal

analyzer, it was time to test if the Motorola Astro radio would demodulate and

decode the transmitted message. Refer to Appendix A for Motorola code plug

settings. At first, when the message was transmitted through the analog radio,

the “Busy” light on the Astro would activate, but no message was present at the

serial data output. This meant that the radio saw activity on the frequency

channel, but it was ignored. This was because the logical link ID was incorrect.

Once this was fixed, the transmitted message caused the radio to display the

message “DATA TRX”. However, no information was received at the output. It

was found that the CRC was calculated incorrectly. The issue was found and

fixed. After this fix, messages were transmitted and received correctly.

49

End-to-End IP Testing

Since messages could be transmitted and received correctly, the

robustness of the setup needed to be tested. To do this, the P25Messenger was

used.

The P25Messenger application was written as a demonstration and

testing tool to show the capabilities of the TxRx application. This application is a

simple IP messenger. The message is typed on the transmit end and transferred

to the receive end via IP protocol. Since it uses standard IP messaging

techniques, it can also be used, in conjunction with the IP Reflector and TxRx

application, to transmit messages across the common air interface.

 Once the message is typed and the “Return” key is pressed, the message

is encapsulated in an IP packet and sent to the address 10.1.0.2. This message

runs through the IP reflector and is passed to the TxRx application. Note that

according to Figure C.1 in Appendix C, the P25Messenger is an “IP Network

Application” and the TxRx application is “Custom Data Modem Software”. The

message is sent through the CAI and is demodulated and decoded by the

Motorola Astro radio. The output of the Astro radio is an IP packet bound for

address 10.1.0.2. This was the original payload prior to running through the

TxRx Application. The receive side of the application is listening at a specific port

and IP address, which is the same port and address to which the transmit side is

sending messages. The IP packet is received and displayed in the

P25Messenger application on the receive side. Messages of various lengths

50

were transmitted and received across the common air interface. Screen shots of

the P25Messenger are shown below in Figure III.13 and Figure III.14.

Figure III.13 - Transmit Side of P25Messenger

Figure III.14 - Receive Side of P25Messenger

Now that the messaging system worked correctly, a more thorough testing

of the setup needed to be conducted. the code for the P25Messenger was

rewritten to transmit a count message. The structure of the transmitted message

was: “Transmit Message Count: x” where the variable x took on the value of the

transmission counter. The receive end of the P25Messenger also had a counter

51

for the number of messages received. By comparing the number of messages

received with the number transmitted, it was possible to determine the number of

transmitted packets lost. The P25Messenger transmitted and received on two

separate computers. The result of this test was a total transmit count of 13,066

messages (transmitted at 5 second intervals) and total receive count of 13,053

messages. Thirteen messages (0.0099% of transmitted messages) were not

successfully received. In trying to determine the cause of the errors, it was found

that the frequency of occurrence of errors increased when the receive computer

was made busy by running unrelated, CPU intensive, software. This leads to the

hypothesis that Project54‟s Project25PPP service might occasionally have not

been getting the CPU time it needed to properly handshake with the Motorola

radio. Since this software was not developed specifically for this thesis and the

overall packet loss was very low, this will be investigated more fully in the future.

52

CHAPTER IV

CONCLUSIONS

 The primary goal of this thesis was to design and develop a cost effective

way for local departments to transmit information from headquarters to cruisers.

The result was the Project 25 Analog Base Station. Using the pre-existing radio

network infrastructure, which is standardized across all local departments in the

state of New Hampshire, IP packets were transmitted in the form of CAI data

packets. The source of the transmissions was a desktop computer attached to

an analog radio. These two components make up the Project 25 Analog Base

Station as shown in Figure IV.1.

IP Network

Application

IP Reflector

Driver and

Service

Project 25

Encoder/

Decoder

Base

Band

Filters

Sound

Card

Control

PTT

Control

Analog

Radio

TxRx Application

Desktop Computer

Figure IV.1 - Overview of the Project 25 Analog Base Station

 The desktop computer runs a custom application, designed and written for

this thesis, called the TxRx Application. The TxRx Application receives IP

Packets from the IP Reflector Service, encodes the packet as the data block of a

53

CAI data packet, filters with a Nyquist Raised Cosine filter and a Pre-Emphasis

filter, and then transmits the waveform through the computer‟s sound card. The

output of the sound card is then fed through a custom cable and used as the

audio input of an analog radio. The analog radio transmits the audio on a pre-

determined CAI digital channel. A digital radio is tuned to this frequency and

receives the CAI Data packet. The digital radio demodulates and decodes the

data packet which results in the IP Packet which was first sent to the TxRx

Application.

 The system developed in this project implements the transmission half of

a Project 25 base station data radio (Figure I.6). A separate effort to develop the

receive portion is ongoing. Once the base station is able to receive requests for

information, it can be used for record queries, through Project54, by local police.

This would result in a safer, more time efficient method of requesting vehicle and

driver information. Since all local police agencies in New Hampshire already

have Project 25 data capable mobile radios in their cruisers, this approach would

be cost effective as well.

 Since the receive portion of the base station data radio was not yet

available, the system developed could not be tested in a normal operating

configuration. However, the data transmission system was tested in each stage

of development against the standards set forth in Project 25 documents.

Subsequently, the transmitter was tested in terms of end-to-end IP Packet

delivery using a commercial Project 25 compliant digital receiver (Motorola Astro

54

Digital Radio). The fact that all of these tests yielded positive results, gives high

confidence that the design of the transmission system is sound.

Future Improvements

 There are improvements that can be made to the design and

implementation of the Project 25 analog base station.

 One of the improvements is to only transmit when the channel is not busy.

Since all of the tests were conducted on one radio transmitting on a specific

frequency, there was no need to wait for the channel to be available. However, if

the desire is to perform mixed voice and data on the same channel, there is a

possibility of lost CAI Data packets. The loss of packets would be caused by

transmission collisions between the data and voice base station radios. This

improvement would be used to increase the robustness of the system.

 Another improvement is to implement dynamic mapping of mobile radio

logical link IDs to IP addresses, in cooperation with the receive side of the Project

25 analog base station. For the current setup, the logical link ID is coded into the

TxRx application. So in effect, all messages are addressed to the same mobile

radio. Once a request for information message is received, the logical link ID of

the mobile radio should be stored in a table of values, matched to its IP address.

When the return information is received over the IP network, it can be sent to the

correct radio.

 Once the receive side is complete, the TxRx application should be edited

so that it can run as a Windows service instead of an application. This way, a

55

console application would not have to be running in the background on the

server.

The TxRx application should also be changed to implement the confirmed

mode of packet communication. This would involve a difference in the structure

of header and data block formations, including block length, as well as different

CRC computations. Confirmed data packet transmissions would also need to be

able to provide handshaking with the receive radio to make sure the data packet

was properly received.

 Another interesting implementation, which involves the reception of digital

data packets, is CAI data registration. With CAI data registration, a digital radio

sends a message to the base station when it is on a data capable channel. The

message contains identification information including the IP address and logical

link ID of the computer. The logical link ID corresponding to the radio could then

be accepted and added to the dynamic table of values, or rejected, disabling the

radios capability to transmit data onto the channel.

56

REFERENCES

1. CATLab - UNH. Consolidated Advanced Technologies for Law Enforcement

Program (CATLab). [Online] [Cited: March 11, 2007.] www.project54.unh.edu.

2. Etherstack, Inc. APCO P25 Base Station. Amsterdam : Etherstack, Inc.

3. Chiu, Andrew and Forbess, Jessica. A Handheld Software Radio Based on

the IPAQ PDA: Software. Orlando, FL : Software Defined Radio Forum Technical

Conference, 2003.

4. Digital Voice Systems, Inc. AMBE-2000 Vocoder Chip. [Online] [Cited: May

7, 2007.] www.dvsinc.com.

5. Telecommunications Industry Association. Project 25 FMA Common Air

Interface New Technology Standards Project Digital Radio Technical Standards.

Arlington : Telecommunications Industry Association, 1998. TIA/EIA-102.BAAA.

6. Motorola, Inc. ASTRO Digital XTL5000 Basic Service Manual. Fort

Lauderdale, Florida : s.n., 2005.

7. Kenwood, Inc. TK-7180 Service Manual. Japan : s.n., 2004. B51-8691-00.

8. Stallings, William. Data and Computer Communications - Seventh Edition.

Upper Saddle River : Pearson Education, Inc., 2004. 0-13-100681-9.

9. Comer, Douglas E. Internetworking with TCP/IP Vol. 1. - 4th Edition. s.l. :

Prentice Hall, 2000. 0-13-018380-6.

57

APPENDIX A

MOTOROLA XTL5000 CODE PLUG

The Motorola XTL5000 code plug settings needed for CAI Data packet reception

are edited using the programming software provided by Motorola.

Under Radio Configuration – Radio Wide – Data:

Under Conventional – Astro Systems – Astro Configuration – Radio Wide:

58

Under Conventional – Astro Systems – Astro Configuration – Data, keep all the

factory defaults:

Under Conventional – Astro Systems – Astro System – Astro System 1 –

General:

59

Note that the Individual ID is set to 54. This is the same as the logical link ID set

in the header of the transmitted data packet.

Under Conventional – Astro Systems – Astro System – Astro System 1 – Data:

Under Conventional – Astro Systems – Astro System – Astro System 1 –

Advanced:

60

Under Conventional – Conventional Personality – Conventional Personality n (

the configured channel) – Astro:

Note that for the test setup, the frequency 155.37 MHz is related to Conventional

Personality – 47. Under Conventional – Conventional Personality – Conventional

Personality n (the configured channel) – Rx Options:

61

Under Conventional – Conventional Personality – Conventional Personality n (

the configured channel) – Tx Options:

62

APPENDIX B

FILTER DESIGN AND COEFFICIENTS

Nyquist Raised Cosine Filter

For the design of the Nyquist Raised Cosine Filter, or smoothing filter, the Filter

Design Toolbox in MATLAB was used. This resulted in the following code to

determine the filter coefficients:

%% Raised Cosine Filter
close all;

% All frequency values are in Hz.
Fs = 48000; % Sampling Frequency

N = 1002; % Order
Fc = 2400; % Cutoff Frequency
TM = 'Rolloff'; % Transition Mode
R = 0.2; % Rolloff
DT = 'Normal'; % Design Type

% Create the window vector for the design algorithm.
win = barthannwin(N+1);

% Calculate the coefficients using the FIRRCOS function.
% y(n) = b(1)*x(n) + b(2)*x(n-1) +......+b(nb+1)*x(n-nb)

b = firrcos(N, Fc/(Fs/2), R, 2, TM, DT, [], win);
b_smoothing = b((502-60):(502+60));

Hd = dfilt.dffir(b_smoothing);

[H_smoothing,w_smoothing] = freqz(Hd);

63

The resulting filter coefficients are as follows:

Table B.1 - Normalized Smoothing Filter Coefficients

Note that the upper left coefficient represents coefficient: -60 and that the lower

right coefficient represents the coefficient: +60. The value of 1 occurs at zero.

The normalized coefficient values are plotted in the following figure.

Figure B.1 - Normalized Smoothing Filter Coefficients

64

Pre-Emphasis Filter

For the design of the Pre-Emphasis Filter, or shaping filter, the Filter Design

Toolbox in MATLAB was used. This resulted in the following code to determine

the filter coefficients:

% FIR constrained equiripple Inverse Sinc Lowpass filter designed using
% the FIRCEQRIP function.

% All frequency values are in Hz.
Fs = 48000; % Sampling Frequency

N = 38; % Order
Fc = 6800; % Cutoff Frequency
slope = 0; % Stopband Slope
isincffactor = 4; % Inverse Sinc Frequency Factor
isincpower = 1.7; % Inverse Sinc Power
Dstop = 0.08; % Stopband Attenuation
Dpass = 1e-006; % Passband Ripple

% Calculate the coefficients using the FIRCEQRIP function.
b_pe = firceqrip(N, Fc/(Fs/2), [Dpass, Dstop], 'slope', slope, 'invsinc', ...
 [isincffactor isincpower]);

[H_designed_pe,F_designed_pe] = freqz(b_pe,1,[],Fs);

The resulting filter coefficients are:

Table B.2 - Shaping Filter Coefficient Values

65

Note that the upper left coefficient represents coefficient: -19 and that the lower

right coefficient represents the coefficient: +19. The value of 0.604 occurs at

zero. The coefficient values are plotted in the following figure.

Figure B.2 - Shaping Filter Coefficients

66

APPENDIX C

IP REFLECTOR IN PROJECT54

The purpose of the IP Reflector, which is distributed as part of the Project54

application, is to be able to create a virtual subnet on the server computer, and

then to capture all IP traffic sent to that subnet by standard applications running

on the server. This provides a consistent method for implementing IP data

communications over specialized devices (radio modems) for which standard

Windows network adapter drivers are not available. The IP Reflector consists of

two components (Figure C.1): a Windows 2000/XP network miniport driver which

runs at the kernel level, and a companion Windows service which runs at the

Operating System (OS) application level. By splitting the functionality into two

pieces, it was possible to minimize the functionality of the kernel level module

and to place most of the functionality in the application level module. This both

facilitates debugging and allows the functional code to call on any desired

Windows OS libraries and services, most of which cannot be accessed by kernel

level modules.

On its upper edge, the IP Reflector network miniport driver implements all of the

kernel level interfaces required for an Ethernet style network adapter driver.

When the driver is installed, it is configured as the connection to an IP subnet

(10.*.*.* in Figure C.1). As a result, all IP packets sent by normal applications on

the host computer to a 10.*.*.* address are delivered by the OS network stack to

67

the IP Reflector driver. These outgoing IP packets are encapsulated into

outgoing Ethernet frames by the OS network stack before delivery to the driver.

In addition to handling IP traffic, the driver must reply appropriately to standard

Ethernet ARP requests from the network stack.

Custom Data

Modem

Software

IP Reflector

Service

(IPReflector

Service.exe)

IP in UDP/IP

IP in UDP/IP

Windows XP Kernel Layer

Windows XP Process Layer

Windows Kernel

IP Stack

“IP Reflector”

Network Miniport

Driver

(ipreflector.sys)

IP Subnet

10.1.x.yz

255.0.0.0

IP Network

Application

IP

IP
 in

 U
DP/IP

IP

(10.251.251.251)

IP Network

Application

CaiListenPort

CaiRespondPort

Figure C.1 - The IP Reflector Architecture

When the driver receives an outgoing Ethernet frame from the network stack, it

strips off the Ethernet framing to obtain the complete IP packet (See Figure C.2).

Hdr Data
IP Network

Application

“IP Reflector”

Network Miniport

Driver

Figure C.2 - IP Packet from IP Network Application to "IP Reflector" Driver

It then packages the complete outgoing IP packet as the payload of a new IP

packet (See Figure C.3) addressed to a specific port on the server computer

used by the IP Reflector service.

Hdr DataHdr
Data“IP Reflector”

Network Miniport

Driver

IP Reflector

Service

Figure C.3 - IP Packet from "IP Reflector" Driver to IP Reflector Service

68

Next, it builds an incoming Ethernet frame which contains the new IP packet as

its payload (IP encapsulated in UDP/IP encapsulated in Ethernet). This incoming

Ethernet frame is then handed back to the OS network stack. The network stack

strips off the Ethernet framing and directs the IP packet to the IP Reflector

service. The payload of the IP packet received by the service contains the

complete original outgoing IP packet (header and data). Finally, the service

sends an IP packet, see Figure C.4, to the IP address and port (assigned via the

registry) of the program which is actually going to deliver the packet (the Custom

Data Modem Software in Figure C.1).

Hdr DataHdr
DataIP Reflector

Service

Custom Data

Modem Software

Figure C.4 - IP Packet from IP Reflector Service to Custom Data Modem Software

Note that the IP Reflector driver and service must reside on the same server

computer, but the modem software could reside on the same or on a different

host computer since the communication between the service and the modem

software is based on the IP standard. The custom modem software must then

send off the packet appropriately (out through special hardware, for example). In

the case of the P25 Base Station design, the Custom Data Modem Software is

the TxRx application. The application listens on a specific IP Address and Port

which is set in the registry. This is the same address and port to which the IP

reflector service transmits messages.

69

APPENDIX D

VSA SETTINGS

This section describes the settings of the Agilent 89441A Vector Signal

Analyzer for various measurements.

Frequency Spectrum Measurement (Figure III.6)

 Measurement Data
 Spectrum ch1

 Data Format
 Magnitude Linear

 Frequency

 Center 155.37 MHz

 Span 5 KHz

 Instrument Mode Demodulation

 Demod Type Analog

 Demodulation Setup

 Ch1 Result FM

APCO 25 Demodulation (Figure III.11 and Figure III.12):

 Instrument Mode Demodulation

 Demod Type Digital

 Standard Setups APCO 25

 Frequency

 Center 155.37 MHz

 Active Trace (Time Measure) A

 Active Trace (Symbols/Errors) D

70

APPENDIX E

REGISTRY PARAMETERS

Three of the applications which are used in this thesis, acquire parameter

information from the registry. All of the applications have registry keys under

“HKEY_LOCAL_MACHINE\Software\Catlab\Project54\”. The first application is

the P25Messenger. Its registry parameters are as follows:

{P25Messenger}
 <Network>
 [ReceiveIp] 0.0.0.0
 [ReceivePort] 6540
 [SendIp] 10.1.0.2
 [SendPort] 6540

 <Parameters>
 [Receive] Enabled or Disabled
 [Transmit] Enabled or Disabled

The settings under the Network key are the IP address for the transmission and

reception of IP Packets. If the [ReceiveIp] string value is set to 0.0.0.0, as shown

above, the application will listen to any packet. The settings under the

Parameters key are for whether the application is set for Receive mode or for

Transmit mode.

 The next application which uses the registry is the IP Reflector. Its

registry parameters are as follows:

71

 {Project25}
 <Network>
 [RcpIp] 10.1.254.254
 [RcpPort] 469
 [ReflectorListenPort] 5454
 [ReflectorRespondPort] 10.251.251.251
 [CaiListenPort] 5456

 [CaiRespondIp] 127.0.0.1
 [CaiRespondPort] 5457

These settings cause the IP Reflector to transfer all of the IP Packets it receives

to the IP address 127.0.0.1 and port 5457.

 The final application to use the registry is the TxRx Application. It‟s

registry parameters are as follows:

 {P25Server}
 <Network>
 [ReceiveIp] 127.0.0.1
 [ReceivePort] 5457
 [SendIp] 127.0.0.1
 [SendPort] 5457
 <Parameters>
 [Port] COMX

The settings under the Network key tell the TxRx application which port to

receive packets from the IP Reflector and which port to send messages to the IP

Reflector. Under the Parameters key is the [Port] string value. This value is set

to the COM Port which will control the push-to-talk.

72

APPENDIX F

CUSTOM RADIO INTERFACE CABLE

A custom interface cable is used to connect the computer to this radio,

see Figure F.1 for the schematic. As discussed in Chapter II, when the push-to-

talk signal is high, the radio is not transmitting. When the signal is pulled low, the

radio begins to transmit. The resistor and the diode are present because the

“high” and “low” levels of the Kenwood radio differ from that of the computer‟s

RS-232. When pin 4 of the DB-9 is high, it outputs a voltage of +9 V. The

resistor limits the current input into the radio, protecting the push-to-talk circuitry.

When pin 4 of the DB-9 is pulled low, it outputs a voltage of -9 V. The diode

limits the input voltage at the push to talk circuit to -0.7 V. This is close enough

to 0V to trigger the push-to-talk of the radio, without damaging the circuitry.

M
al

e
D

B
 –

 2
5

Pin 4

Pin 5

Pin 7

Pin 4

F
em

ale

D
B

-9

1/8" Stereo Jack

18 KΩ

Figure F.1 - Custom Interface Cable

